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Abstract. In this paper we present an interesting generalization of Enestrom-Kakeya Theorem which amoung 

other things yields a number of already known classical results by putting some restrictive conditions on the 

coefficients of the polynomials.  
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1.  INTRODUCTION AND STATEMENT OF RESULTS 

           The following result due to Enestrom-and Kakeya [7] is well-known in the theory of 

distribution of the zeros of polynomials 

 THEOREM A.      If   
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is a polynomial of degree n such that  

(1)                                        0... 011   aaaa nn , 

then   P(z)  does not vanish in .1z  
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 Applying this result to  P(tz), the following more general result is immediate. 

 THEOREM B. If  
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is a polynomial of degree n such that  

0... 011

1  
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then all the zeros of P(z) lie in .tz   

 In the literature [1,2,4,5,8] these exist some extensions and generalizations of 

Enestrom-Kakeya Theorem, Joyal, Labellel and Rahman[6] extended this theorem to 

polynomials whose coefficients were monotonic but not necessarily non-negative. Recently 

Aziz and Zarger[3] relaxed the hypothesis in several ways and among other things proved the 

following interesting generalization of Theorem A: 

  

THEOREM C.  If   
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is a polynomial of degree n such that for some .1k   

0... 011   aaaka nn  

then P(z) has all its zeros in  

(2)                                                            kkz  1   

 In this paper we start by proving the following result which includes Theorems A,B and 

C as special cases.  

 THEOREM 1. Let 
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be a polynomial of degree n, if for some real number ,1k  
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then all the zeros of P(z) lie in the disk 

(4)                                                        
na

M
kz  1  

REMARK 1.  Suppose P(z) satisfies the conditions of Theorem C, then clearly for ,1z   

                           n

nnnn zazaaaka 0211 ...)()(    
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                          001211 ...)( aaaaaaka nnnn    

                         001211 ... aaaaaaka nnnn    

                         nka  

 We take nkaM  in Theorem 1, it follows that all the zeors of P(z) satisfying the 

conditions of Theorem C lie in the circle 

kkz  1 , 

which is precisely the conclusion of Theorem C.  

The following corollary follows by taking 
n

n

a

a
k 1  in Theorem 1. 

 COROLLARY 1.  If  
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then all the zeros of P(z) lie in the disk. 
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REMARK 2.  Let 
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be a polynomial of degree n satisfying the condition 

(05)                                            0...0 011   aaaa nn  

then  n

nnnnz
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               03221 ...)()( aaaaa nnnn    

             1 na . 

Hence from Corollary 1 it follows that all the zeros of P(z) satisfying (5) lie in the circle. 
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z 11 1    

This result was earlier proved by the authors in [3] Cor. 2. 

Theorem 1 follows by taking 1t in the following general result: 

THEOREM 2.  Let 
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be a polynomial of degree n. If for some positive real numbers  t  and 1k  
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Theorem 2 follows by taking 
t

R
1

 in the following more general result which yields a number 

of other interesting results for various choices of parameters R and t: 

 THEOREM 3.  Let 
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be a polynomial of degree n. If for some positive real numbers  t and k 1 
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 PROOF OF THEOREM 3.  Consider the polynomial  
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This shows that all the zeros of G(z) lie in the region defined by  

1)1(  zktz
a

M

n

 

Replacing  z  by 
z

1
and noting that ),()( 1 zGzzF n it follows that all the zeros of F(z) lie in 
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M
ktz  )1( . 

Since all the zeros of P(z) are also the zeros of F(z), we conclude that all the zeros of P(z) lie in  
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it follows that all the zeros of F(z) and hence all the zeros of P(z) lie in the circle 
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From (12) and (13), the desired result follows. 
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