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Abstract. In the present paper, the notion of generalized (s,m, ¢)-preinvex function is applied for establish some
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1. Introduction and Preliminaries

The following notation is used throughout this paper. We use [ to denote an interval on the
real line R = (—o0, +00) and I° to denote the interior of /. For any subset K C R” K° is used
to denote the interior of K. R" is used to denote a generic n-dimensional vector space. The
nonnegative real numbers are denoted by R, = [0, 4o0). The set of integrable functions on the
interval [a,b] is denoted by L [a, D).
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The following inequality, named Hermite-Hadamard inequality, is one of the most famous in-

equalities in the literature for convex functions.

Theorem 1.1. Let f : 1 C R — R be a convex function on an interval I of real numbers and

a,b € I with a < b. Then the following inequality holds:

(1.1) f(“+b)< ! /abf(x)dxgw.

2 “b—a 2

The following definition will be used in the sequel.

Definition 1.2. The hypergeometric function >F(a,b;c;z) is defined by

1 1
2Fi(a,b;c;z) = m/o P (=) (1 =)

forc > b > 0and |z| < 1, where B(x,y) is the Euler beta function for all x,y > 0.

In recent years, various generalizations, extensions and variants of such inequalities have
been obtained (see [7], [8], [9]). For other recent results concerning Hermite-Hadamard type
inequalities through various classes of convex functions, (see [14]) and the references cited

therein, also (see [6]) and the references cited therein.

Fractional calculus (see [14]) and the references cited therein, was introduced at the end of
the nineteenth century by Liouville and Riemann, the subject of which has become a rapidly
growing area and has found applications in diverse fields ranging from physical sciences and

engineering to biological sciences and economics.

Definition 1.3. Let f € L;[a, b]. The Riemann-Liouville integrals J¢, f and J;* f of order o >0
with a > 0 are defined by
a L~ a1
IS0 = Frgy L =0, x> a
and
(04 1 b a—1
B = g / (=0 f(1)dt, b>x,
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where ['(a) = / ey, Here JOF(x) = 10 F(x) = £(x).
0

In the case of o = 1, the fractional integral reduces to the classical integral.

Due to the wide application of fractional integrals, some authors extended to study fractional
Hermite-Hadamard type inequalities for functions of different classes (see [11], [14]) and the

references cited therein.

Definition 1.4. (see [2]) If £ > 0, then k-Gamma function I}, is defined as

1 T _
Tu(o) = lim nlk"(nk) ¥ —1
n—->oo (a)n,k

If Re(or) > 0 then k-Gamma function in integral form is defined as

() lk
Ty(a) :/O %o~ ar,

with the property that
(o +k) = ol (o).

Definition 1.5. (see [3]) Let f € L;|a,b]. Then k-fractional integrals of order o,k > 0 witha >0

are defined as

1% (x) = kl“kl(a) [ =0t x>a
and

o 1 b o

A0 = e [ =0t o, b>x

For k = 1, k-fractional integrals give Riemann-Liouville integrals.

Now, let us recall some definitions of various convex functions.

Definition 1.6. (see [5]) A function f : R, — R is said to be s-convex in the second sense, if
(1.2) fAx+(1=L)y) <A f(x)+(1-2)'f(y)

forall x,y € Ro, A € [0,1] and 5 € (0, 1].

It is clear that a 1-convex function must be convex on R, as usual. The s-convex functions in

the second sense have been investigated in (see [5]).
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Definition 1.7. (see [10]) A set K C R" is said to be invex with respect to the mapping 7 :

K x K — R" if x+1n(y,x) € K for every x,y € K and 7 € [0, 1].

Notice that every convex set is invex with respect to the mapping 7n(y,x) = y —x, but the
converse is not necessarily true. For more details please see (see [10], [12]) and the references

therein.

Definition 1.8. (see [13]) The function f defined on the invex set K C R”" is said to be preinvex

with respect 7, if for every x,y € K and ¢ € [0, 1], we have that
f+m@yx) < (1—10)f(x)+1f().

The concept of preinvexity is more general than convexity since every convex function is

preinvex with respect to the mapping 1 (y,x) = y — x, but the converse is not true.

The aim of this paper is to establish some generalizations of Hermite-Hadamard type inequal-
ities using new identity given in Section 2 2 for generalized (s,m, @)-preinvex functions via
k-fractional Riemann-Liouville integrals. In Section 33, some applications to special means are

given. These results provide new estimates on these types.

2. Main results

Definition 2.1. (see [4]) A set K C R”" is said to be m-invex with respect to the mapping 7 :
K x K x (0,1] — R" for some fixed m € (0, 1], if mx+tn(y,x,m) € K holds for each x,y € K
and any 7 € [0, 1].

Remark 2.2. In Definition 2.1, under certain conditions, the mapping 1 (y,x,m) could reduce to

n(y,%x).

Definition 2.3. (see [1]) Let K C R" be an open m-invex set with respect to 1 : K X K X
(0,1] — R™ and ¢ : I — K a continuous increasing function. For f: K — R and any

fixed s,m € (0, 1], if

2.0 f(mo(x) +An(e(y), @(x),m)) <m(1—21)"f(@(x)) +A°f(@(y))
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is valid for all x,y € I,A € [0, 1], then we say that f(x) is a generalized (s, m, @)-preinvex func-

tion with respect to 7).

Throughout this paper we denote
Ka,k(n: (pvlar7m7a7b)

(14 (1= 2)) f (mp(b) + LELFO ) 4 (1 - £(1-2)) Fmp(5))

2
_ (r+ )i (a+k)
211(9(a), p(b),m) %
o a),p(b),m a

In this section, in order to prove our main results regarding some Hermite-Hadamard type in-
equalities for generalized (s, m, @)-preinvex function via k-fractional Riemann-Liouville inte-

grals, we need the following new lemma:

Lemma 2.4. Let ¢ : I — K be a continuous increasing function. Suppose K C R be an open m-
invex subset with respectto 1 : K x K x (0,1] — R for any fixed m,A € (0,1], r € [0, 1] and let
©(a),p(b) € K,a < b with n(@(a),p(b),m) # 0. Assume that f : K — R is a differentiable
function on K°, ' € Li[mo(b),me(b) + n(¢(a),p(b),m)]. Then for a,k > 0, the following

identity for k-fractional Riemann-Liouville integrals holds:

n(e(a),p(b),m)

Ka,k(na(l),l7r7m7aab): 2(r+1)

2.2) x /01 (z% + %(1 —A)—(1 —t)%> 7 (m(p(b) + Ht_—ln((p(a), (p(b),m)) dr.

Proof. A simple proof of the equality (2.2) can be done by performing two integration by parts
in the integrals from the right side and changing the variables. The details are left to the inter-

ested reader. O

Now we turn our attention to establish new inequalities of Hermite-Hadamard type for gener-
alized (s,m, @)-preinvex functions via k-fractional Riemann-Liouville integrals. Using Lemma
2.4, the following results can be obtained for the corresponding version for power of the abso-

lute value of the first derivative.
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Theorem 2.5. Let ¢ : [ — A be a continuous increasing function. Suppose A C R be an open
m-invex subset with respect to 1 : A x A x (0,1] — R for any fixed s,m € (0,1],r € [0,1] and
let p(a),p(b) € A, a < b with n(@(a),p(b),m) # 0. Assume that f: A — R is a differen-
tiable function on A°. If | f'|7 is a generalized (s,m, @)-preinvex function on [m@(b),m@(b) +
n(e(a),e(b),m)], g >1,p ' 4+q ! =1, then for any a,A € (0,1] and k > 0, the following
inequality for k-fractional Riemann-Liouville integrals holds:

1 L [n(¢(a),0(b),m)]

|K ,k(na(paz‘anmaaab)' < s
o (r+1>1+a (S—i—l)% 2

k
k+ po

@3) x [%(1 -m+2( )] 17 Q@) +m ((r+ 1) =) [ (o))

Proof. Suppose that ¢ > 1. Using Lemma 2.4, the fact that |f’|7 is a generalized (s,m, @)-
preinvex function, property of the modulus, Holder’s inequality and Minkowski’s inequality,

we have

‘Ka,k(nv(p7)';r7m7a?b)’

n(e(a), o(b),m)| | ! o : t
< [1tel9.0 [ [ (e =) | (moe)+ o). ow)m)

+/Ol(1—z) dt]

a), ,m /g P \7
< |77(<P(2()rf(lb)) )|[</0 (tk +%(1—7L)> dt>

X </01f’

+</01(1—I)Tdt>;</01f/ th>‘1’]

< ’”("’(;E)r’f(l’;)’m)’ [(/Olz’l“dz>;+ (/01 (%(1—z)>pdt)'l’+ (/01(1—t)’1“dz>;]
x ( A (m (1- ) o+ () !f’((P(a))l") dr)é

L1 [n(e(a), @(b),m)
(r+ 1) (54 1) 2

~R

dt

~R

f/

mo(b)-+ - n(0(a).o0)m)

¢\
dt)

(mo(e)+ ot o6)m))

(mo(6) + (@) p(e).m)
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Q=

. [%(1 a2 (kfpa)p] [17(@@) e +m ((r+ 1) = +1) 7 (p(8)) 7]

The proof of Theorem 2.5 is completed. ([l

Corollary 2.6. Under the conditions of Theorem 2.5, if we choose r =0, m=A =k =1 and
n(e(a),p(b),m) = @(a) — ¢(b), then we get the following generalized Hermite-Hadamard

type inequality for fractional integrals

‘f((P(a)) +ilo0) z(w(F;)aj(plgb))a 20 (@) +IE, flo®b))] ‘

< (po)—9(a) (- )( : )’1’[\f’<<p<a>>|q+1f’<<p<b>>!q]‘lf.

s+1 pa+1

Theorem 2.7. Let ¢ : [ — A be a continuous increasing function. Suppose A C R be an open
m-invex subset with respect to ) : A X A x (0,1] — R for any fixed s,m € (0,1],r € [0,1] and
let o(a),p(b) € A, a < b with n(¢(a),p(b),m) # 0. Assume that f: A — R is a differen-
tiable function on A°. If |f'|1 is a generalized (s,m, @)-preinvex function on [m@(b),me(b) +
n(e(a),o(b),m)], g > 1, then for any o,k > 0 and A € (0,1], the following inequality for

k-fractional Riemann-Liouville integrals holds:

‘Koc,k(n7q)akarvmvavb)|
-1 _
< Intole)- o) m) { (k+“(1 _M) [(““ G k)+a) 7 (@)

k+a  k k(s+1)  k(s+1

+ (m (kfa) (r+ 1) F (—s,ZJr 2 +2; r}rl) + ’"“(2—1) ((r+ 1):1— rﬁl)) |f’(<p(b))"]

Ko\
Jr<k+oc)

Proof. Suppose that ¢ > 1. Using Lemma 2.4, the fact that |f'|7 is a generalized (s,m,@)-

-

B (s+ 1,%+ 1) If'(¢(a)|?+m <k+ka> (r+1)2F (s, 1;%+2; r}”) |f’((p(b))|q] q}.

preinvex function, property of the modulus and the well-known power mean inequality, we

have

\Ka,k(n7(p,l,r,m7a,b)|

n(e(a),@®),m)|| 1/ « ’
< [/0 ((F+T0-2))r

dt

(mo6)+ (ot o))

r—+1




8 ARTION KASHURI, ROZANA LIKO

1

#(n (g ) e ran (s S G ) Y ((’“ffl‘ ) If’(fp(b))q] q

Jr(kfa)l—; 3(s+1,z+1)|f/(¢(“))|q+m<lﬁuka> (r+1y 2R (s 1; %+2 ) ' (@(b))] ]‘lf}

The proof of Theorem 2.7 is completed. U

Corollary 2.8. Under the conditions of Theorem 2.7, if we choose r =0, m = A =k =1 and
n(e(a),p(b),m) = @(a) — ¢(b), then we get the following generalized Hermite-Hadamard

type inequality for fractional integrals

f(o(a) +f(e(b))  T(a+l)
2 2(p(a) — @(b))*

_ (9()—9(@) ( il)lé
- (04

1
S (@@) 2k (=s.at Lat2i1)
o+s+1 o+ 1

|f’(<P(b))|q]

Bls+ 1ot I (ol + HELAHED !f’(¢(b>)lq] }

_|_
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Remark 2.9. For M > 0 and g > 1, if | f’|7 < M, then by Theorem 2.5 and Theorem 2.7, we
can get some special kinds of Hermite-Hadamard type inequalities via k-fractional Riemann-
Liouville integrals. For k = 1, we obtain special kinds of Hermite-Hadamard type inequalities

via Riemann-Liouville integrals. Also, for different choices of values A,r, for example A =
11 11

57 51 r= 57 57
integral inequalities of these types.

1 and function @, by Theorem 2.5 and Theorem 2.7 we can get some interesting

3. Applications to special means

In the following we give certain generalizations of some notions for a positive valued function

of a positive variable.

Definition 3.1. (see [15]) A function M : ]R%r — R, is called a Mean function if it has the

following properties:
(1) Homogeneity: M(ax,ay) = aM(x,y), for all a > 0,
(2) Symmetry: M(x,y) = M(y,x),
(3) Reflexivity: M(x,x) = x,
(4) Monotonicity: If x <x’ and y <Y/, then M (x,y) < M(xX,y'),
(5) Internality: min{x,y} < M(x,y) < max{x,y}.

We consider some means for arbitrary positive real numbers «, 8 (@ # ).

(1) The arithmetic mean:

o+
2

A:=A(a,B) =
(2) The geometric mean:
G :=G(a,B) = /P

(3) The harmonic mean:
2

+

H:=H(a,p)=

==

1
o
(4) The power mean:
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(5) The identric mean:

%(%) o # B

I:=I1c,B)=
o, o=/
(6) The logarithmic mean:
LimL(0.B) = —b—% . o] £|Bl, aB £0
TR T B el | |
(7) The generalized log-mean:
ﬁp+1__ap+1

b=t P =6 a

(8) The weighted p-power mean:

)] P; peR\{-1,0}, a#p.

1

M, o, O, - 0 =<Zn:oc,~uf’>p
up, uy, - LUy i=1
where 0 < o; <1,u; >0(i=1,2,...,n) with Y. , oy = 1.
It is well known that L, is monotonic nondecreasing over p € R with L_; := L and Ly :=
I. In particular, we have the following inequality H < G < L <[ < A. Now, let a and b be
positive real numbers such that a < b. Consider the function M :=M(@(a), ¢(b)): [¢(a),p(a)+
n(e(b),e(a))] x [@(a),p(a) +n(e(b),p(a))] — Ry, which is one of the above mentioned
means and ¢ : I — A be a continuous increasing function, therefore one can obtain various
inequalities using the results of Section 22 for these means as follows:

Replace 1(9(y), ¢(x),m) with n(@(y),(x)) and setting n(¢(a), ¢(b)) = M(¢(a), ¢(b)) for

m =1 1in (2.3) and (2.4), one can obtain the following interesting inequalities involving means:

(14§01 2)) f (@(b) + ML) 4 (1= £(1-2)) flo(b))
2

(r+1) % (o +k)

x [lg(Jl:Hf (‘P(b) + M<(p@7<p(b)>) +1 a)~l¢(l7))>7f((p(b))i| ‘

r+1 ((p(b)JrM(“’(r+

L1 Mel).e0)
T )" (s 2

k
k+pa

6.1 . [Z(l -m+2( )] @@+ ((r+ 17 ) 1 (o))
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(1+£(1= ) £ (p(b) + M2 ) 1 (1-2(1-2) f(o(b)
2

talS)

(r+ 1) TT(a+k)
2M(¢(a), (b))

M(p(a),0(b a
W) +I(q/)k<b)+M((p(rall(p(h))>f((p(b)):| ‘

<|reh f ((p(b) +

M((p(a)v(p(b)) k o l_é a(lf)t) k )
: 2(r+1)"" X{<k+a+k(1_l)> [(k(s—i—l) +k(s+1)+a>|f (¢(a))]?

1

() revram (o G L) SR (L) If’(fp(b))I”r

3.2)

Ko\
+(k+a>

Letting M(¢(a), (b)) =A,G,H,P,,I,L,L,,M, in (3.1) and (3.2), we get inequalities involving

> (r+1)°2F <—s,1;Z+2;r+11) f’(fp(b))l"] ;}-

B (s+ 1, % + 1) ' (@(a) + (Ha

means for a particular choices of a differentiable generalized (s, 1, ¢)-preinvex function f. The
details are left to the interested reader.
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