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Abstract. In this paper, we introduce three real functional classes C ∗ and Φ∗c and Φ∗u, and discuss the existence

problems of common fixed points for two mappings of integral type with implicit contractive conditions determined

by C ∗ and Φ∗c and Φ∗u on non-complete ordered metric spaces and give more general results.

Keywords: class C ∗; class Φ∗c ; class Φ∗u; implicit; common fixed point.

2010 AMS Subject Classification: 47H10, 54H25.

1. Introduction and Preliminaries

Throughout this paper, we assume that R+ = [0,+∞) and

Φ= {φ : φ :R+→R+satisfying that φ is Lebesgue integral, summable on each compact

subset of R+ and
∫

ε

0 φ(t)dt > 0 for each ε > 0}

The following results is the famous Banach’s contraction principle:
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Theorem 1.1([1]) Let f be a self mapping on a complete metric space (X ,d) satisfying

d( f x, f y)≤ cd(x,y), ∀ x,y ∈ X , (1.1)

where c ∈ [0,1) is a constant. Then f has a unique fixed point x̂ ∈ X such that limn→∞ f nx = x̂

for each x ∈ X .

It is known that the Banach contraction principle has a lot of generalizations and various

applications in many different directions, see, for examples, [2-13] and the references cited

therein.

Especially, Branciari[14] gave an integral version of Theorem 1.1 as follows:

Theorem 1.2([14]) Let f be a self-mapping on a complete metric space (X ,d) satisfying

∫ d( f x, f y)

0
φ(t)dt ≤ c

∫ d(x,y)

0
φ(t)dt, ∀ x,y ∈ X , (1.2)

where c ∈ (0,1) is a constant and φ ∈ Φ. Then f has a unique fixed point x̂ ∈ X such that

limn→∞ f nx = x̂ for each x ∈ X .

In 2011, Liu and Li[15] modified the method in [13] to generalized the Branciari’s fixed point

theorem with replacing the contraction constant c in (1.2) by contraction functions α and β and

established the following fixed point theorem:

Theorem 1.3([15]) Let f be a self-mapping on a complete metric space (X ,d) satisfying

∫ d( f x, f y)

0
φ(t)dt ≤ α(d(x,y))

∫ d(x, f x)

0
φ(t)dt +β (d(x,y))

∫ d(y, f y)

0
φ(t)dt,∀ x,y ∈ X , (1.3)

where φ ∈Φ and α,β : R+→ [0,1) are two functions with

α(t)+β (t)< 1,∀ t ∈ R+; limsup
s→0+

β (s)< 1; limsup
s→t+

α(s)
1−β (s)

< 1, ∀ t > 0.

Then f has a unique fixed point a ∈ X such that limn→∞ f nx = a for each x ∈ X .

In [16], Jin and Piao discussed the following existence problems of unique common fixed

points for two mappings of integral type with variable coefficient in metric spaces which gen-

eralize and improve Theorem 1.3.
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Theorem 1.4([16]) Let (X ,d) be a complete metric space, f ,g : X → X two mappings. If for

each x,y ∈ X ,∫ d( f x,gy)

0
φ(t)dt ≤ α(d(x,y))

∫ d(x,y)

0
φ(t)dt+β (d(x,y))

∫ d(x, f x)

0
φ(t)dt+γ(d(x,y))

∫ d(y,gy)

0
φ(t)dt,

(1.4)

where φ ∈Φ and α,β ,γ : R+→ [0,1) are three functions satisfying the following conditions

α(t)+β (t)+ γ(t)< 1,∀ t ∈ R+, max
{

limsups→0+β (s), limsups→0+γ(s)
}
< 1, (1.5)

max
{

limsups→t+α(t), limsups→t+
α(t)+ γ(t)

1−β (t)
, limsups→t+

α(t)+β (t)
1− γ(t)

}
< 1,∀ t ∈R+. (1.6)

Then f and g have a unique common fixed point u, and the sequence {xn}n∈N defined by x2n+1 =

f x2n and x2n+2 = gx2n+1 for any x0 ∈ X converges to u.

Here we will introduce three classes {C ∗,Φ∗u,Φ∗u} of 1-or 2-dimensional functions and estab-

lish the implicit contractive conditions determined by {C ∗,Φ∗u,Φ∗u} about two mappings, and

then discuss the existence problems of common fixed points for two self-mappings of integral

type with the new implicit limitation in a non-complete ordered metric space and give some

more general results. The obtained results further generalize and improve the corresponding

conclusions in the literature, especially the results in [14-16].

To do this, we first introduce the definitions of classes of C ∗ and Φ∗c and Φ∗u.

Definition 1.5 F ∈ C ∗⇐⇒ F : [0,∞)2→ R is a continuous and non-decreasing function satis-

fying following axioms:

(1)F(s, t)≤ s;

(2) F(s, t) = s implies that either s = 0 or t = 0; for all s, t ∈ [0,∞).

Note for some F we have that F(0,0) = 0.

Example 1.6 The following functions F : [0,∞)2→ R are elements of C ∗:

(1) F(s, t) = s− t, F(s, t) = s⇒ t = 0;

(2) F(s, t) = ms, 0<m<1, F(s, t) = s⇒ s = 0;

(3) F(s, t) = sβ (s), where β : R+→ R+ is continuous and non-decreasing;

(4) F(s, t) = s
(1+s)r , where r ∈ (0,1);

(5) F(s, t) = sh(s, t), where h : R+×R+→ R+is a continuous and non-decreasing function

such that h(t,s)< 1 for all t,s > 0;
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Definition 1.7 Let Φ∗c be a set of functions ψ : R+→ R+ satisfying the following conditions:

ψ1: ψ is continuous and strictly increasing

ψ2: ψ(t) = 0⇐⇒ t = 0.

Definition 1.8 Let Φ∗u be a set of all functions ϕ : R+→R+ satisfying the following conditions:

ϕ1: ϕ is continuous and non-decreasing;

ϕ2: ϕ(t)> 0 if t > 0 and ϕ(0)≥ 0.

Remark 1.9 If the non-decreasing condition in Definition 1.5 and 1.8 is removed, then C ∗ and

Φ∗u are C and Φu in [17-18] respectively. Obviously, f ∈ Φ∗c =⇒ f ∈ Φ∗u, but the inverse does

not hold.

Lemma 1.10([19]) Suppose (X ,d) is a metric space. Let {xn} be a sequence in X such that

d(xn,xn+1)→ 0 as n→ ∞. If {xn} is not a Cauchy sequence, then there exist an ε > 0 and se-

quences of positive integers {m(k)} and {n(k)} with m(k)> n(k)> k such that d(xm(k),xn(k))≥

ε , d(xm(k)−1,xn(k))< ε and the following result holds

lim
k→∞

d(xm(k)−1,xn(k)+1) = lim
k→∞

d(xm(k),xn(k)) = lim
k→∞

d(xm(k)−1,xn(k)) = ε.

Remark 1.11 Under the conditions of Lemma 1.9, We easily obtian the following result:

lim
k→∞

d(xm(k),xn(k)+1)= lim
k→∞

d(xm(k)+1,xn(k))= lim
k→∞

d(xm(k)+1,xn(k)+1)= lim
k→∞

d(xm(k),xn(k)−1)= ε.

2. Common Fixed Points

The following two Lemmas are well known results.

Lemma 2.1([15]) Let φ ∈Φ and {rn}n∈N be a nonnegative sequence with limn→∞ rn = a. Then

lim
n→∞

∫ rn

0
φ(t)dt =

∫ a

0
φ(t)dt.

Lemma 2.2([15]) Let φ ∈Φ and {rn}n∈N be a nonnegative sequence. Then

lim
n→∞

∫ rn

0
φ(t)dt = 0⇐⇒ lim

n→∞
rn = 0.

Definition 2.3 φ ∈Φ is called to be strictly increasing about integral type if for any x,y ∈ [0,∞)

with x < y, ∫ x

0
φ(t)dt <

∫ y

0
φ(t)dt.
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Example 2.4 Let φ : R+→ R+, φ(t) = 1
1+t for each t ∈ R+. Then obviously for 0≤ x < y,

∫ x

0

1
1+ t

dt = ln(1+x) < ln(1+y) =
∫ y

0

1
1+ t

dt.

Hence φ(t) = 1
1+t is a strictly increasing function about integral type.

Now, we give the first main result about common fixed point problems for two implicit con-

tractive mappings with integral type on a non-complete metric space.

Theorem 2.5 Let (X ,d) be a metric space, f ,g : X → X two mappings. Suppose that for each

x,y ∈ X ,

ψ

(∫ d( f x,gy)

0
φ(t)dt

)
≤F
(

ψ
(
α(d(x,y))

∫ d(x,y)

0
φ(t)dt +β (d(x,y))

∫ d(x, f x)

0
φ(t)dt + γ(d(x,y))

∫ d(y,gy)

0
φ(t)dt

)
,

ϕ
(
α(d(x,y))

∫ d(x,y)

0
φ(t)dt +β (d(x,y))

∫ d(x, f x)

0
φ(t)dt + γ(d(x,y))

∫ d(y,gy)

0
φ(t)dt

))
,

(2.1)

where φ ∈ Φ is strictly increasing about integral type, ϕ ∈ Φ∗u, ψ ∈ Ψ∗c , F ∈ C ∗ and α,β ,γ :

R+→ R+ are three functions satisfying the following conditions

α(t)+β (t)+ γ(t)≤ 1,∀ t ∈ R+. (2.2)

If f X or gX is complete, then f and g have a common fixed point. Furthermore, if α(t) 6= 1 for

all t > 0, then f and g have a unique common fixed point

Proof. Take x0 ∈ X . We construct a sequence {xn}n∈N satisfying the following conditions

x2n+1 = f x2n and x2n+2 = gx2n+1 for all n ∈ N∪{0}. Let dn = d(xn,xn+1),∀n ∈ N∪{0}.

For n ∈ N∪{0}, by (2.1) and F ∈ C ∗,

ψ

(∫ d2n

0
φ(t)dt

)
= ψ

(∫ d( f x2n,gx2n−1)

0
φ(t)dt

)
≤F
(

ψ(α(d(x2n,x2n−1))
∫ d(x2n,x2n−1)

0
φ(t)dt +β (d(x2n,x2n−1))

∫ d(x2n, f x2n)

0
φ(t)dt
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+ γ(d(x2n,x2n−1))
∫ d(x2n−1,gx2n−1)

0
φ(t)dt),

ϕ(α(d(x2n,x2n−1))
∫ d(x2n,x2n−1)

0
φ(t)dt +β (d(x2n,x2n−1))

∫ d(x2n, f x2n)

0
φ(t)dt

+ γ(d(x2n,x2n−1))
∫ d(x2n−1,gx2n−1)

0
φ(t)dt)

)

=F
(

ψ([α(d(x2n,x2n−1))+ γ(d(x2n,x2n−1))]
∫ d2n−1

0
φ(t)dt +β (d(x2n,x2n−1))

∫ d2n

0
φ(t)dt),

ϕ([(α(d(x2n,x2n−1))+ γ(d(x2n,x2n−1))]
∫ d2n−1

0
φ(t)dt +β (d(x2n,x2n−1))

∫ d2n

0
φ(t)dt)

)
≤ψ([α(d(x2n,x2n−1))+ γ(d(x2n,x2n−1))]

∫ d2n−1

0
φ(t)dt +β (d(x2n,x2n−1))

∫ d2n

0
φ(t)dt).

(2.3)

If there exists n ∈ N such that

∫ d2n−1

0
φ(t)dt <

∫ d2n

0
φ(t)dt,

then by the strictly increasing condition of ψ and (2.2), we obtain from (2.3) that

ψ(
∫ d2n

0
φ(t)dt)< ψ(

∫ d2n

0
φ(t)dt).

This is a contradiction, hence we have

∫ d2n

0
φ(t)dt ≤

∫ d2n−1

0
φ(t)dt, ∀ n ∈ N. (2.4)

Notice that the following result is the one part of (2.3):

ψ

(∫ d2n

0
φ(t)dt

)
≤F
(

ψ([α(d(x2n,x2n−1))+ γ(d(x2n,x2n−1))]
∫ d2n−1

0
φ(t)dt +β (d(x2n,x2n−1))

∫ d2n

0
φ(t)dt),

ϕ([(α(d(x2n,x2n−1))+ γ(d(x2n,x2n−1))]
∫ d2n−1

0
φ(t)dt +β (d(x2n,x2n−1))

∫ d2n

0
φ(t)dt)

)
.

(2.5)
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Similarly, by (2.1) and F ∈ C ∗, we have

ψ(
∫ d2n+1

0
φ(t)dt) = ψ(

∫ d( f x2n,gx2n+1)

0
φ(t)dt)

≤F
(

ψ(α(d(x2n,x2n+1))
∫ d(x2n,x2n+1)

0
φ(t)dt +β (d(x2n,x2n+1))

∫ d(x2n, f x2n)

0
φ(t)dt

+ γ(d(x2n,x2n+1))
∫ d(x2n+1,gx2n+1)

0
φ(t)dt),

ϕ(α(d(x2n,x2n+1))
∫ d(x2n,x2n+1)

0
φ(t)dt +β (d(x2n,x2n+1))

∫ d(x2n, f x2n)

0
φ(t)dt

+ γ(d(x2n,x2n+1))
∫ d(x2n+1,gx2n+1)

0
φ(t)dt)

)
≤ψ([α(d(x2n,x2n+1))+β (d(x2n,x2n+1))]

∫ d2n

0
φ(t)dt + γ(d(x2n,x2n+1))

∫ d2n+1

0
φ(t)dt)

and ∫ d2n+1

0
φ(t)dt ≤

∫ d2n

0
φ(t)dt. (2.6)

Combining (2.4) and (2.6), we have∫ dn+1

0
φ(t)dt ≤

∫ dn

0
φ(t)dt, ∀n = 0,1,2, · · · . (2.7)

Since φ is strictly increasing about integral type, so we obtain

dn+1 ≤ dn, ∀n = 0,1,2, · · · . (2.8)

Therefore there exists u ∈ R+ such that limn→∞ dn = u. By Lemma 2.1 and the properties of φ

and ψ , from (2.5),

ψ

(∫ u

0
φ(t)dt

)
= lim

n→∞
ψ

(∫ d2n

0
φ(t)dt

)
≤F(ψ(limsup

n→∞

[α(d(x2n,x2n−1))+ γ(d(x2n,x2n−1))] lim
n→∞

∫ d2n−1

0
φ(t)dt

+ limsup
n→∞

β (d(x2n,x2n−1) lim
n→∞

∫ d2n

0
φ(t)dt),

ϕ(limsup
n→∞

[α(d(x2n,x2n−1))+ γ(d(x2n,x2n−1))] lim
n→∞

∫ d2n−1

0
φ(t)dt

+ limsup
n→∞

β (d(x2n,x2n−1) lim
n→∞

∫ d2n

0
φ(t)dt))

≤F(ψ(
∫ u

0
φ(t)dt),ϕ(

∫ u

0
φ(t)dt)),
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hence ψ(
∫ u

0 φ(t)dt) = 0 or ϕ(
∫ u

0 φ(t)dt) = 0, so
∫ u

0 φ(t)dt = 0. Therefore u = 0, that is,

limn→∞ dn = 0.

Now, we will show that {xn} is a Cauchy sequence. Suppose, to the contrary, that {xn} is not

a Cauchy sequence, then by Lemma 1.10 and Remark 1.11, there exists ε >0 for which we can

find subsequences {xn(k)} and {xm(k)} of {xn} with n(k)> m(k)> k, ∀k = 1,2, · · · such that

ε = lim
k→∞

d(xm(k),xn(k))= lim
k→∞

d(xm(k),xn(k)+1)= lim
k→∞

d(xm(k)+1,xn(k))= lim
k→∞

d(xm(k)+1,xn(k)+1).

(2.9)

We can assume that the parity of n(k) and m(k) are different for each k by limn→∞ dn = 0.

Suppose that m(k) is even and n(k) is odd. Take x = xm(k),y = xn(k) in (2.1) and let k→ ∞,

then using Lemma 2.1 and (2.9), we obtain that

ψ(
∫

ε

0
φ(t)dt) = lim

k→∞
ψ(
∫ d(xm(k)+1,xn(k)+1)

0
φ(t)dt) = lim

k→∞
ψ(
∫ d( f xm(k),gxn(k))

0
φ(t)dt)

≤F(ψ(
∫

ε

0
φ(t)dt),φ(

∫
ε

0
φ(t)dt)),

hence ψ(
∫

ε

0 φ(t)dt) = 0 or ϕ(
∫

ε

0 φ(t)dt) = 0 by F ∈ C ∗, thus
∫

ε

0 φ(t)dt = 0. Therefore ε = 0,

which is a contradiction. Similarly, we obtain the same contradiction for the case that m(k) is

odd and n(k) is even. Hence {xn} is a Cauchy sequence.

Suppose that f X is complete. Since x2n+1 = f x2n ∈ f X , so there exists x∗ ∈ f X such that

x2n+1→ x∗ as n→∞. Hence d(x2n+2,d)≤ d(x2n+1,x2n+2)+d(x2n+1,x∗) implies that x2n+1→

x∗ as n→ ∞, so we have xn→ x∗ as n→ ∞. Similarly, we also obtain that there exists y∗ ∈ gX

such that xn → y∗ as n→ ∞ for the case that gX is complete. Hence we may assume that

xn→ x∗ ∈ f X ∪gX as n→ ∞ in any case.

Using (2.1) and Lemma 2.1, we have

ψ(
∫ d( f x∗,x∗)

0
φ(t)dt) = lim

n→∞
ψ(
∫ d( f x∗,gx2n+1)

0
φ(t)dt)

≤F(ψ(limsupn→∞

[
α(d(x∗,x2n+1))

∫ d(x∗,x2n+1)

0
φ(t)dt

]
+ limsupn→∞

[
β (d(x∗,x2n+1))

∫ d(x∗, f x∗)

0
φ(t)dt

]
+ limsupn→∞

[
γ(d(x∗,x2n+1))

∫ d(x2n+1,gx2n+1)

0
φ(t)dt

]
),
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ϕ(limsupn→∞

[
α(d(x∗,x2n+1))

∫ d(x∗,x2n+1)

0
φ(t)dt

]
+ limsupn→∞

[
β (d(x∗,x2n+1))

∫ d(x∗, f x∗)

0
φ(t)dt

]
+ limsupn→∞

[
γ(d(x∗,x2n+1))

∫ d(x2n+1,gx2n+1)

0
φ(t)dt

]
)

≤ F(ψ(
∫ d(x∗, f x∗)

0
φ(t)dt),ϕ(

∫ d(x∗, f x∗)

0
φ(t)dt)),

so ψ(
∫ d( f x∗,x∗)

0 φ(t)dt) = 0 or φ(
∫ d( f x∗,x∗)

0 φ(t)dt) = 0, hence
∫ d( f x∗,x∗)

0 φ(t)dt = 0, therefore

f x∗ = x∗. Similarly, we have gx∗ = x∗. Therefore x∗ is a common fixed point of f and g.

If y∗ is another common fixed point of f and g, then d(x∗,y∗) 6= 0, Using α(d(x∗,y∗)) < 1

and (2.1), we obtain

0 < ψ(
∫ d(x∗,y∗)

0
φ(t)dt) = ψ(

∫ d( f x∗,gy∗)

0
φ(t)dt)

≤F(ψ(α(d(x∗,y∗)
∫ d(x∗,y∗)

0
φ(t)dt),φ(α(d(x∗,y∗)

∫ d(x∗,y∗)

0
φ(t)dt))

≤ψ(α(d(x∗,y∗)
∫ d(x∗,y∗)

0
φ(t)dt)

<ψ(
∫ d(x∗,y∗)

0
φ(t)dt),

which is a contradiction. Hence x∗ is the unique common fixed point of f and g.

The following result is a more generalization of of Theorem 2.5.

Theorem 2.6 Let (X ,d) be a metric space, m,n ∈ N and f ,g : X → X two mappings. If f

and g in all conditions in Theorem 2.1 are replaced by f m and gn respectively, then the same

conclusion also holds.

Proof. Let F = f m and G = gn, then F and G satisfy all of the conditions of Theorem 2.1, hence

there exists an unique element u ∈ X such that f mu = Fu = u = Gu = gnu.

Using (2.1), we obtain the next contradiction

ψ(
∫ d( f u,u)

0
φ(t)dt) = ψ(

∫ d( f m f u,gnu)

0
φ(t)dt) = ψ(

∫ d(F f u,Gu)

0
φ(t)dt)

≤F(ψ([α(d( f u,u))
∫ d( f u,u)

0
φ(t)dt +β (d( f u,u))

∫ d( f u,F f u)

0
φ(t)dt
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+ γ(d( f u,u))
∫ d(u,Gu)

0
φ(t)dt]),

ϕ([α(d( f u,u))
∫ d( f u,u)

0
φ(t)dt +β (d( f u,u))

∫ d( f u,F f u)

0
φ(t)dt

+ γ(d( f u,u))
∫ d(u,Gu)

0
φ(t)dt]))

≤F(ψ(
∫ d( f u,u)

0
φ(t)dt),ϕ(

∫ d( f u,u)

0
φ(t)dt)),

hence
∫ d( f u,u)

0 φ(t)dt = 0 by the property of {C ∗,Φ∗u,Φ∗u}, i.e., f u = u. Similarly, gu = u, so u

is the common fixed point of f and g. The uniqueness is obviously.

Next, we discuss the same problems as the above on ordered metric spaces.

Theorem 2.7 Let (X ,�,d) be a ordered metric space, f ,g : X → X two mappings. Suppose

that The conditions (2.1) and (2.2) hold for each two comparable elements x,y ∈ X and t ≥ 0

respectively. Furthermore, if the following conditions hold

(i) for each x ∈ X , x� f x and x� gx;

(ii) f and g are continuous;

(iii) f (X) or g(X) is complete.

Then f and g have a common fixed point u ∈ f X ∪gX .

Proof. Take any x0 ∈ X , then by (i), we have the next result:

x0 � f x0 =: x1,x1 � gx1 =: x2,x2 � f x2 =: x3,x3 � gx3 =: x4, · · · .

Hence we obtain a sequence {xn} satisfying

x2n+1 = f x2n, x2n+2 = gx2n+1, xn � xn+1,n = 0,1,2, · · · . (2.10)

(2.10) implies that xn and xm are comparable for all m,n = 0,1,2, · · · , hence modifying and

repeating the process of the proof of Theorem 2.5, we know that {xn} is a Cauchy sequence and

there exists u ∈ f X ∪gX such that xn→ u as n→ ∞.

Using (ii), we have

u = lim
n→∞

x2n+1 = lim
n→∞

f x2n = f lim
n→∞

x2n = f u,

u = lim
n→∞

x2n+2 = lim
n→∞

gx2n+1 = g lim
n→∞

x2n+1 = gu,

hence Su = Tu = u, i.e., u is a common fixed point of f and g.
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The next result is the non-continuous version of Theorem 2.7.

Theorem 2.8 Let (X ,�,d) be a ordered metric space, f ,g : X → X two mappings. Suppose

that The conditions (2.1) and (2.2) hold for each two comparable element x,y ∈ X and t ≥ 0

respectively. Furthermore, if the following conditions hold

(i) for each x ∈ X , x� f x and x� gx;

(ii) If {xn} is a non-decreasing sequence and limn→∞ xn = u ∈ X , then xn � u for all n ∈ N;

(iii) f (X) or g(X) is complete.

Then f and g have a common fixed point u ∈ f X ∪gX .

Proof. Just as the proof of Theorem 2.7, using (i) and (iii), we have that there exists a non-

decreasing Cauchy sequence {xn} satisfying (2.10) such that xn→ u ∈ f X ∪gX as n→ ∞ and

xn � u for all n ∈ N by (ii). Hence by (2.1), we have

ψ(
∫ d(u,gu)

0
ϕ(t)dt) = lim

n→∞
ψ(
∫ d( f x2n,gu)

0
ϕ(t)dt)

≤F(ψ(limsup
n→∞

{[α(d(x2n,u))
∫ d(x2n,u)

0
ϕ(t)dt

+β (d(x2n,u))
∫ d(x2n, f x2n)

0
ϕ(t)dt + γ(d(x2n,u))

∫ d(u,gu)

0
ϕ(t)dt]}),

φ(limsup
n→∞

[α(d(x2n,u))
∫ d(x2n,u)

0
ϕ(t)dt

+β (d(x2n,u))
∫ d(x2n, f x2n)

0
ϕ(t)dt + γ(d(x2n,u))

∫ d(u,gu)

0
ϕ(t)dt]}))

≤F(ψ(
∫ d(u,gu)

0
ϕ(t)dt),φ(

∫ d(u,gu)

0
ϕ(t)dt)),

hence
∫ d(u,gu)

0 ϕ(t)dt = 0 by the property of {C ∗,Φ∗u,Φ∗u}, therefore d(u,gu) = 0, i.e., gu = u.

Similarly, we also have f u = u, hence u is the common fixed point of f and g.

Let C( f ,g) = {x ∈ X : f x = gx = x} be the set of common fixed point of f and g.

Theorem 2.9 Suppose that all of the conditions of Theorem 2.7 or Theorem 2.8 are satisfied.

Furthermore, if any two different elements u,v ∈ C( f ,g) are comparable and α(t) 6= 1 for all

t > 0, Then f and g have a unique common fixed point.

Proof. Obviously, there exists u ∈C( f ,g) by Theorem 2.7 or Theorem 2.8. Suppose that v is

also a common fixed point of f and g. If u 6= v, then d(u,v) 6= 0 and α(d(u,v))< 1.
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Since u and v are comparable, using (2.1), we have

0 < ψ(
∫ d(u,v)

0
ϕ(t)dt = ψ(

∫ d( f u,gv)

0
ϕ(t)dt

≤F(ψ([α(d(u,v))
∫ d(u,v)

0
ϕ(t)dt +β (d(u,v))

∫ d(u, f u)

0
ϕ(t)dt + γ(d(u,v))

∫ d(v,gv)

0
ϕ(t)dt]),

φ([α(d(u,v))
∫ d(u,v)

0
ϕ(t)dt +β (d(u,v))

∫ d(u, f u)

0
ϕ(t)dt + γ(d(u,v))

∫ d(v,gv)

0
ϕ(t)dt]))

≤ψ(α(d(u,v))
∫ d(u,v)

0
ϕ(t)dt)

<ψ(
∫ d(u,v)

0
ϕ(t)dt),

which is a contradiction. Hence u = v, so u is the unique common fixed point of f and g.

Remark 2.10 It is needed that the sum of the coefficient functions is less than 1 in Theorem 1.3

and 1.4, but the sum may equal to 1 in Theorem 2.5-Theorem 2.9.
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[3] I. Altun, D. Türkoǧlu, Some fixed point theorems for weakly compatible mapping satisfying an implicit

relation, Taiwanese J. Math. 13(2009), 1291-1304.

[4] J. Jachymski, Remarks on contractive conditions of integral type, Nonlinear Appl. 71(2009), 1073-1081.

[5] M. Mocanu, V. Popa, Some fixed point theorems for mappings satisfying implicit relations in symmetric

spaces, Liberates Math. 28(2008), 1-13.

[6] U. C. Gairola, A. S. Rawat, A fixed point theorem for interal type inequality, Int. J. Math. Anal. 2(15)(2008),

709-712.

[7] Sirous Moradi, Mahbobeh Omid, A fixed point theorem for integral type inequality depending on another

function, Int. J. Math. Anal. 4(2010), 1491-1499.

[8] I. Altun, M. Abbas and H. Simsek, A fixed point theorem on cone metric spaces with new type contractivity,

Banach J. Math. Anal. 5 (2011), 15-24.



COMMON FIXED POINTS FOR TWO IMPLICIT CONTRACTIVE MAPPINGS 13

[9] V. Popa, M. Mocanu, Altering distance and common fixed points under implicit relations, Hacettepe J. Math.

Satist. 38 (2009), 329-337.

[10] Mujahid Abbas, B. E. Rhoades, Common fixed point theorems for hybrid pairs of occasionally weakly com-

patible mappings satisfying generalized contractive condition of integral type, Fixed point theory and Appli-

cations. 2007 (2007), article ID 54101, 9 pages.

[11] M. Abbas, Y. J. Cho and T. Nazir, Common fixed points of iri -type contractive mappings in two ordered

generalized metric spaces, Fixed point theory and Applications. 2012(2012), Article ID 139.

[12] F. Gu and H. Q. Ye, Common Fixed Point Theorems of Altman Integral Type Mappings in Metric Spaces,

Abstract and Applied Analysis, 2012 (2012), Article ID 630457, 13 pages.

[13] E. Rakotch, A note on contractive mappings, Proc. Amer. Math. 13(1962), 459-465.

[14] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type,

Int. J. Math. Sci. 29(2002), 531-536.

[15] Z. Q. Liu, X. Li, S. M. Kang and S. Y. Cho, Fixed point theorems for mappings satisfying contractive condi-

tions of integral type and applications, Fixed Point Theory and Applications. 2011(2011), Article ID 64.

[16] X. Jin, Y. J. Piao, Common fixed point for two contractive mappings of integral type in metric spaces, Applied

Math. 6(2015), 1009-1016.

[17] A. H. Ansari, Note on ”ϕ-ψ-contractive type mappings and related fixed point”, The 2nd Regional Confer-

ence on Mathematics and Applications, Payame Noor University. 2014, 377-380.

[18] Arslan Hojat Ansari, Y. J. Piao, Nawab Hussain, Classes of Functions on Common Fixed Points for Two

Mappings of Integral Type with Semi-Implicit Contractive Conditions in Metric Spaces, Adv. Fixed Point

Theory. 6(4)(2016), 486-497.

[19] G. V. R. Babu, P.D. Sailaja, A Fixed Point Theorem of Generalized Weakly Contractive Maps in Orbitally

Complete Metric Spaces, Thai Journal of Mathematics. 9(1)(2011), 1-10.


