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Abstract. In this paper, we study the explicit representation of Pál-type weighted (0;0,2)-interpolation on the

unit circle on two pairwise disjoint sets of nodes obtained by projecting vertically the zeros of
(
1−x2

)
Pn (x)

and
(
1−x2

)
P
′′
n (x) respectively onto the unit circle, where Pn (x) stands for nth Legendre polynomial.
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1. Introduction

The problem of Lacunary interpolation was initiated by P. Turán [12] on the zeros of
(
1− x2

)
P
′
n−1 (x),

where Pn−1 (x) is the Legendre polynomial of degree (n−1). The problem of (0,2) interpola-

tion on the roots of unity was first studied by O. Kiš [9]. Later on several mathematicians have

studied such kind of interpolatory polynomials on the different set of nodes viz. real line, unit

circle etc. L.G.Pál [11] considered two sets of nodes with one additional condition,where the

function values are prescribed on one set and the derivative on other one and the functional

value at the additional point and he obtained a unique polynomial of degree 2n− 1. In 1990,
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M. R. Akhlaghi and A. Sharma [1] considered Pál-type interpolation problems on the zeros

of ∏n (x) and ∏
′
n (x) and obtained the fundamental polynomials. After that J.Szabadós and

A.K.Varma [8] considered convergence of (0,2) interpolation process on the zeros of ∏n (x) and

obtained existence,explicit representation and convergence theorem . In 2010, M.Lénárd [10]

considered the Pál-type interpolation on different kind of interpolation conditions on the real

line. H.P. Dikshit [2] considered the existence of Pál -type interpolation on the non-uniformly

distributed nodes on the unit circle. In 2011, K. K. Mathur and author1 [3] established con-

vergence of weighted (0,2) interpolation on unit circle. In 2012, she [4] considered (0;0,2)

interpolation on projected nodes of
(
1− x2)Pn (x) and P

′
n (x) on the unit circle.Later on she [5]

considered the (0,2;0) interpolation on the same set of nodes. After that she (with M. Shukla)

[6] considered weighted Pál-type (0;1) interpolation on the two disjoint set of nodes ,which

are obtained by projecting vertically the zeros of
(
1− x2)P(α,β )

n (x) and P(α,β )′

n (x) respectively

onto the unit circle, where P(α,β )
n (x) stands for the Jacobi polynomial. Recently, authors [7]

considered weighted (0,2) interpolation on the nodes obtained by projecting vertically the ze-

ros of
(
1− x2)P

′
n (x) onto the unit circle obtained the existence and established a convergence

theorem for the same.

These have motivated us to consider (0;0,2) interpolation on two pairwise disjoint set of nodes

onto the unit circle, in which the Lagrange data is prescribed on the first set of nodes where

as Lacunary data on the other one .We obtained regularity and explicit forms of interpolatory

polynomials.

In this paper, we consider two pairwise disjoint set of the nodes Zn and Gn, where Lagrange

data on Zn and weighted (0,2) data on Gn are prescribed , where Zn and Gn are given as,

(1) Zn =


z0 = 1, z2n+1 =−1,

zk = cosθ k + i sinθ k,

zn+k = zk , k = 1(1)n



(2) Gn =


t0 = 1, t2n−3 =−1,

tk = cosϕk + i sinϕk,

tn+k = tk , k = 1(1)n−2


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In section 2,we give some Preliminaries, in section 3, we describe the problem and regularity,

in section 4, we present the explicit forms of Pál-type weighted (0;0,2)-interpolation onto the

unit circle.

2. Preliminaries

In this section, we shall give some well-known results, which we shall use.

The differential equation satisfied by Pn (x) is

(3)
(
1− x2)P

′′
n (x)−2xP

′
n (x)+n(n+1)Pn (x) = 0

(4) W (z) =
2n

∏
k=1

(z− zk) = KnPn

(
1+ z2

2z

)
zn

(5) R(z) =
(
z2−1

)
W (z)

(6) H (z) =
2n−4

∏
k=1

(z− tk) = K∗n P
′′
n

(
1+ z2

2z

)
zn−2

(7) N (z) =
(
z2−1

)
H(z)

We shall require the fundamental polynomial of Lagrange interpolation based on the zeros

of R(z), H (z) and N (z) are respectively given as:

(8) Lk (z) =
R(z)

R′ (zk) (z− zk)
,k = 0(1)2n+1

(9) lk (z) =
H(z)

H ′
(tk) (z− tk)

, k = 1(1)2n−4

(10) l1k (z) =
N(z)

N ′ (tk) (z− tk)
,k = 0(1)2n−3
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(11) Jk (z) =
∫ z

0
t lk (t) dt

(12) Jn (z) =
∫ z

0
H (t) dt

which satisfies,

(13) Jn (−z) =− Jn (z)

We will also use the following results

(14) W ′ (zk) =
1
2

Kn
(
z2

k −1
)

zn−2
k P

′
n (xk)

(15) W ′′ (zk) = Kn
[
(n−1)

(
z2

k −1
)
−1
]

zn−3
k P

′
n (xk)

(16) W ′ (tk) =
1
2

Kn
n
{
(n+3)

(
t2
k −1

)
+4
}(

t2
k +1

) tn−1
k Pn (x

∗
k) ,

(17) W ′′ (tk) =
1
2

Kn
n(n−1)

{
(n−1)

(
t2
k −1

)
−1
}(

t2
k +1

) tn−2
k Pn (x∗k) ,

(18) R ′ (zk)=
(
z2

k −1
)

W
′
(zk)

(19) R
′′
(zk) = 4zkW

′
(zk)+

(
z2

k −1
)

W ′′ (zk)

(20) R
′
(tk)=

(
t2k −1

)
W
′
(tk)+2tkW (tk)

(21) R ′′ (tk) = 4tkW
′
(tk)+

(
t2
k −1

)
W ′′ (tk)+2W (tk)

(22) H ′ (tk) =
K∗n
2
(
t2
k −1

)
tn−4
k P

′′′
n (x∗k) ,

(23) H ′′ (tk) = K∗n
{
(n−5)

(
t2
k −1

)
−5
}

tn−5
k P

′′′
n (x∗k) ,

(24) N ′ (zk)=
(
z2

k −1
)

H ′ (zk)+2zk H(zk)

(25) N ′′ (zk) = 4zkH ′ (zk)+
(
z2

k −1
)

H ′′ (zk)+2H(zk)
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(26) N ′ (tk)=
(
t2k −1

)
H ′ (tk)

(27) N ′′ (tk) = 4tkH ′ (tk)+
(
t2
k −1

)
H ′′ (tk)

3. The Problem and Regularity

Let {zk}2n+1
0 and {tk}2n−3

0 be two disjoint set of nodes obtained by projecting vertically the

zeros of
(
1−x2) Pn (x) and

(
1−x2)P

′′
n (x) onto the unit circle respectively, where Pn (x) stands

for nth Legendre polynomial. Here we are interested to determine the polynamial Rn (z) of

degree ≤ 6n−5 satisfying the conditions:

(28)


Rn (zk) = αk , k = 0(1)2n+1

Rn (tk) = β k , k = 1(1)2n−4

[p(z)Rn (z)]
′′

z=tk
= γk , k = 0(1)2n−3

where, p(z) is weight function such that [p(z)W (z)N (z)]
′′

z=tk = 0, and αk , β k and γk are

arbitrary complex constants.

Theorem 3.1: Rn(z) is regular on Zn and Gn.

Proof : It is sufficient, if we show, the unique solution of (28) is Rn (z)≡ 0, when all data αk =

β k = γk = 0.

In this case, we have

Rn (z) =W (z)N (z)q(z),

where, q(z) is a polynomial of degree ≤ 2n−3.

Obviously, Rn (zk) = 0 for k = 0(1)2n+1,

and also Rn (tk) = 0 for k = 1(1)2n−4, from

[p(z)Rn (z)]
′′

z=tk
= 0

we get,

q′ (tk) = 0

Therefore , we have

q′ (z) = aH (z)
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q(z) = aJn (z)+b

where Jn (z) is given in (12).

Now for z = 1 & −1, we get

a = b = 0

Therefore, Rn (z)≡ 0

Hence the theorem follows.

4. Explicit Representation Of Interpolatory Polynomials

We shall write Rn (z) satisfying (28) as:

(29) Rn (z) =
2n+1

∑
k=0

αkAk (z) +
2n−4

∑
k=1

β kBk (z)+
2n−3

∑
k=0

γkCk (z)

where Ak (z), Bk (z) and Ck (z) are unique polynomial ,each of degree at most 6n−5 satisfying

the conditions :

For k = 0(1)2n+1

(30)


Ak
(
z j
)

= δ jk, j = 0(1)2n+1

Ak
(
t j
)

= 0 , j = 1(1)2n−4

[p(z)Ak (z)]
′′

z=t j
= 0, , j = 0(1)2n−3

For k = 1(1)2n−4

(31)


Bk
(
z j
)

= 0 , j = 0(1)2n+1

Bk
(
t j
)

= δ jk j = 1(1)2n−4

[p(z)Bk (z)]
′′

z=t j
= 0 , j = 0(1)2n−3

For k = 0(1)2n−3

(32)


Ck
(
z j
)

= 0, j = 0(1)2n+1

Ck
(
t j
)

= 0, j = 1(1)2n−4

[p(z)Ck (z)]
′′

z=t j
= δ jk, j = 0(1)2n−3
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Theorem 4.1: For k = 0(1)2n−3 , we have

(33) Ck (z) =
1

2tk R(tk) p(tk)H ′ (tk)
R(z) H (z)

∫ z

0
t lk (t) dt

Proof: Let,

(34) Ck (z) = ck R(z) H (z) Jk (z)

where Jk (z) is given in (11).

Obviously, Ck
(
z j
)
= 0 , for each j = 0(1)2n+1.

and Ck
(
t j
)
= 0 , for each j= 1(1)2n−4.

One can see that [p(z)Ck (z)]
′′

z=t j
= 0 , for j 6= k and for j = k, we get

(35) ck =
1

2tk R(tk) p(tk)H ′ (tk)

using (35) in (34) we get (33).

Theorem 4.2: For k = 1(1)2n−4, we have

(36)

Bk (z) =
l2
1k (z)W (z)

W (tk)
− W (z)N (z)

H ′
(tk)R(tk)

{∫ z

0

[l1k
′ (t)− l1k

′ (tk) l1k (t)]
(t− tk)

dt+ bk

∫ z

0
t lk (t)

}

where,

(37) bk =
1
tk

[
p ′′ (tk)
2p(tk)

+
W ′′ (tk)
2W (tk)

+
p′ (tk)W ′ (tk)
p(tk)W (tk)

+4lk′ (tk)

{
p
′
(tk)

p(tk)
+

W ′ (tk)
W (tk)

}]
Proof: Let

(38) Bk (z) =
l2
1k (z)W (z)

W (tk)
+

W (z)N (z)
H ′ (tk) R(tk)

{Sk (z)+bkJk (z)}

where Jk (z) is given in (11).

Obviously,

Bk
(
z j
)
= 0 , for j = 0(1)2n+1
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One can check that

Bk
(
t j
)
= δ jk , for j = 1(1)2n−4

Further from [ p(z)Bk (z)]
′′

z=t j
= 0, for j 6= k , we get,

(39) Sk (z) =−
∫ z

0

[
l′1k (t)− l′1k (tk) l1k(t)

]
(t− tk)

dt

again for j = k, we get (37).

using (37) and (39) in (38) ,we get (36).

Theorem 4.3: For k = 0(1)2n+1, we have

(40)

Ak (z)=
Lk (z)N (z)H (z)

N (zk)H (zk)
− N(z)W (z)

H2 (zk)R′ (zk)N (zk)

∫ z

0

(
t2−1

) [H ′ (t) H(zk)−H ′ (zk) H(t)]
(t− zk)

dt

Proof: Let ,

(41) Ak (z) =
Lk(z) N(z) H (z)

N(zk) H (zk)
+

N(z)W (z)
H 2 (zk) R ′ (zk) N (zk)

Mk (z)

Obviously, Ak
(
z j
)
= δ jk , for j = 0(1)2n+1,

and Ak
(
t j
)
= 0, for j = 1(1)2n−4.

one can check that, [ p(z)Ak (z)]
′′

z=t j
= 0, for j = k.

Further from [ p(z)Ak (z)]
′′

z=t j
= 0, for j 6= k ,we get

(42) Mk (z) =−
∫ z

0

(
t2−1

) [H ′
(t)H(zk)−H

′
(zk)H(t)

]
(t− zk)

dt

Using (42) in (41) we get (40).
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