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1. Introduction

Generally fixed point theorems are proved for selfmaps of metric spaces. Fixed point Theorems
on metric spaces have important theoretical and practical applications. In 1963 Gahler [1,2]
introduced the notion of 2-metric spaces while Dhage[3] initiated the notion of D-metric spaces
in 1984. Subsequently several researchers have proved that most of their claims made are not

valid. As a probable modification to D-metric spaces Shaban Sedghi, Nabi Shobe and Haiyan
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Zhou [4] introduced D* metric spaces. In 2006, Zead Mustafa and Brailey Sims [5,6] initiated
G-metric spaces. Of these two generalizations, the G-metric space evinced interest in many
researchers.

Sessa [7] introduced the concept of weakly commuting mappings as a generalization of
commuting maps. This was further generalized by G,Jungck [8,9] in 1986 as compatible
mappings. In 1996 Jungck and Rhoades [10] introduced the notion of weakly compatible
mappings.

The purpose of this paper is to prove a common fixed point theorem for six weakly compatible

selfmaps of a complete G-metric space.

2. Preliminaries

Definition 2.1: [6] Let X be a non-empty setand G:X*® —[0,) be a function satisfying:

(Gl) G(x,y,2)=0 if x=y=z

(G2) 0<G(x,x,y)forall x,yeX with x=y

(G3)  G(x,x,¥)<G(x,y,z)forall x,y,zeXwith y=z

(G4) G(x,y,2) =G(o(x,y,z)) for all x,y,ze X, where o(x,y,z) is a permutation of the set
{x,y,z} and

(G5)  G(x,y,2) <G(x,w,w)+G(w,y,z) forall x,y,z,weX

Then G is called a G - metric on X and the pair (X,G) iscalled a G - metric Space.

Example 2.2: Let (X, d) be a metric space. Define G¢:X* —[0,x) by
G (x, Y, z) =max{d(x,y),d(y,z),d(z,x)} for x,y,ze X .Then (X, G)isa G-metric Space.

Lemma 2.3: [6] If (X,G) isa G-metric space then G(x,y,y)<2G(y,x,x) forallx,ye X
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Definition 2.4: Let (X,G)be a G-metric Space. A sequence {x,} in X is said to be
G-convergent if there isa x, e X such that to each &>0 there is a natural number N for which
G(X,, X, X,)<¢e forall n>N.

Lemma 2.5: [6] Let (X,G)be a G-metric Space, then for a sequence{x = x and point
x € X the following are equivalent.

(1) {x3} isG-convergentto x.
(i) dg(x,,x)>0 as n-—>oo (thatis {x,}convergesto x relative to the metric dg)
(ili) G(x,,%,,Xx)>0 a8 n—oo
(iv) G(x,,x,x)>0 as n—
(V) G(X,,%,X)—>0 as m,n—>oo
Definition 2.6: [6] Let (X,G) be a G-metric space, then a sequence{x }< X is said to be

G-Cauchy if for eache > 0, there exists a natural number N such that G(x,,x,,x)<e¢ for all
n,m,I >N,

Note that every G-convergent sequence in a G-metric space  (X,G)is G-Cauchy.

Definition 2.7: [6] A G-metric space (X,G)is said to be G-complete if every G -Cauchy
sequence in  (X,G)is G-convergentin (X,G)

Definition 2.8: Let f and g are self maps of a G-metric space (X,G) such that
r!i_QlG(fgxn,gfxn,gfxn)zo for every sequence {x,}in X with r!m fx, :JLn; gx, =t for some teX.
Then the functions f and g are said to be compatible.

Definition 2.9: [11] Suppose f and g are self maps of a G-metric space (X,G). The pair fand g is

said to be weakly compatible if G(fgx,gfx,gfx)=0 whenever G(fx,gx,gx)=0
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Definition 2.10: A function ¢:(R*)* —R" which is continuous and increasing in each
coordinate with ¢(t,t,t,t) <t forevery teR" is called an Implicit relation.

The set all implicit relations is denoted by @

Definition 2.11: Suppose f,g,h,R,Sand T be self maps of a G -metric space such that
f(X)<R(X),9(X)=S(X) and h(X)<T(X).For X, inX, If {x,} is asequence in X such
that  fXg, = RXgn.1, OXans1 = SXanszs MXanio = TXsns, N=0. Then {x,} is called an associated sequence

of x, relative to selfmaps f,g,h,R,Sand T

3. Main results

Theorem 3.1. Let f,g,h,R,Sand T be self maps of a complete G -metric space (X,G) with

following conditions

(i) f(X) =R(X),9(X) = S(X),h(X) =T(X) and

(i)oneof f(X),g(X)and h(X) isclosed subset of X

(iii)  G(fx,gy,hz) <q¢(G(Tx,Ry,Sz),G(Tx, Ry, gy),G(Ry, Sz,hz),G(Sz,Tx, fx))  for  every
X,Y,Z€ X some 0<q<% and ged

(iv) The pairs (f,T),(g,R)and (h,S)are weakly compatible

Then f,g,h,R,Sand T have a unique common fixed pointin X.

Proof. Let X, € X be an arbitrary point. Then we can construct a sequence {x }in X such that
Yan = X =RXg0u1s Yanu = Wana = SXan100 Yaneo =Xz, =TXg,,5. for n=0,1,2.......

Let Gm - G(ym! ym+11 ym+2)

If m=3n then we have
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G3n = G(y3n’ y3n+11 y3n+2)
=G (X3, 9%3n,1, NXs,5)
= q¢(G (TXSn ' RX3n+l' SX3n+2)’ G(TXSn ! RX3n+l’ gx3n+1)’ G (Rx3n+1’ SX?>n+2 ! hx3n+2)’ G (Sx3n+2 'TXSn ! fX3n))

<AP(G(Yar15 Yan: Yan): G (Van 1 Yans Yanea): G (Vans Yanias Yani2)s G (Yaneas Yan 12 Yan))

= 04(Gsp4: G011 Gyn» Gans )
we now prove that G, <G, ,forevery neN
If G,,>G,,, for some neN by above inequality we have G, <qG,, which is a
contradiction since 0<q <%

Similarly, we can prove that G, ,<G,, and G, , <G, ,

Hence G,<G,, forall n>1

This gives
G(yn’ yn+1l yn+2) < qG(yn—li yn’ yn+l)
<QG(Yo o Yous Yn)

<q"G(Yo Y1 ¥2)
We have G(Y,, ¥y Yni1) SAG(Yns Yoir Yaiz) <A'G(Yo, Y1 V2)

We now claim that {y.} is Cauchy sequence.
For every m,ne Nwith m>nwe have

G(Yns YY) <G(Yns Youar Ynur) + C(Yair Yins Yim)
SG(Yns Yoiar Yo + G (Vnas Yoizs Yoi2) +oooe # G (Yinas Yins Vi)
S2[G(Ynirs Yoo Ya) T G (Ynizr Yauar Yaua) T oo G (Y Yinos Yinoa)]
=2[G(Y,: Yns Vo) + CYosas Yosas Yowo) + v # G (Yt Yot Vi)l
<2[9"G (Yo, Y1, ¥2) + A" "G (Yo, Vs Yor )oveees + A" "G (Yo, Vir V)]
=2[0"+ 9" + .. 40" IG (Yo Vi, Vo)

n

<2q
1

G(Ye, Y Y,) >0asn— oo

Proving that {y,} isa Cauchy sequence and since X is complete, there existsa z in X such
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That limy, =z. thisimplies

nN—o0

Lm Yo = rl]'_r)g X3 = rl]l_rl]o X1 = rl]'_To hXgn,, = Lm RXg.1 = r'ﬂ_[[l SXaniz = rl]mesms =z

Suppose h(X) be a closed subset of X . Hence there exists ue X such that Tu=z

We shall prove that fu=z.If fu=z then G(fu,z,z)>0

By (iii) of the Theorem 3.1 we have
G( fU, gx3n+l’ hx3n+2) < q¢(G(TU, Rx3n+l’ Sx3n+2)’ G(TU, Rx3n+l’ gx3n+1)’ G(Rx3n+1’ SX3n+2’ hx3n+2)’ G(Sx3n+2’Tu' fU))

on letting n — oo we obtain
G(fu,z,2) <q¢(G(Tu,z,2),G(Tu,z,2),G(z,2,2),G(z,Tu, fu))
=0¢(G(z,2,2),G(z,2,2),6(z,2,2),G(z,z, fu))

If G(fu,z,z)>0 thenwe have G(fu,z,z)<qG(fu,z,z2)
Which leads to a contradiction since 0<(g< % ,hence G(fu,z,z)=0 implies fu=z
Since the pair (f,T) is weakly compatible, then we have fTu=Tfu. This gives fz=Tz
Now we show that fz=z
If fz=z then by (iii) of the Theorem 3.1 we have
G(fz, 9Xzp.1, NX5010) < AG(G(TZ, RXg.0 SXanyr ), G (TZ, RXgp 10 9Kyt ) G(RXg1, SXanazs DXanin ), G(SXap0, T2, 12))
On letting n— oo and using that fact fz=Tz , we get
G(fz,2,2) <q¢(G(fz,2,2),G(fz,2,2),G(z,2,2),G(z, fz, f2))
Since G(z, fz, fz) <2G(fz,z,z) and ¢ isincreasing in each co-ordinate then
G(fz,2,2) <q¢(2G(fz,2,2),2G(fz,2,2),2G(fz,2,2),2G(fz,2,2) ) < 29G( fz, 2, 2)
Which is a contradiction since 0<q <% and hence fz=z
Showingthat fz=Tz=z

Since fz=z and f(X) < R(X), then there exists v e X suchthat Rv =1z
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Now we shall prove that gv =1z

If gv=z then G(z,gv,z)>0. Now by (iii) of the Theorem 3.1 we have
G(z, v, hx3n+2) =G(fz,9v, hX3n+2)
< q¢(G(TZ’ RV’ Sx3n+2)’ G(TZ! RV’ gV), G(RV! SX3n+2 ' hx3n+2)1 G(SX3n+2 ’T21 fZ))

on letting n— o we have
G(z,9v,2) <ap(G(z,2,2),6(z,2,9v),G(z,2,2),G(z,2, 7))

=0¢(0,G(z,2,9v),0,0)

<q¢(G(z,9v,2),G(z,,9v,2),G(z,9v,2),G(z,9v, 2))
<0qG(z,2,92)

Which is a contradiction since 0<( <% and hence gv=1z
Since the pair (g,R) is weakly compatible then we have gRv=Rgv.Hence gz=Rz
We now show that gz =z. If gz = z,then by (iii) of the Theorem 3.1 we have

G(fz,9z,hx,,,,) < ap(G(Tz,Rz,5x,,,),G(Tz, Rz, 92),G(RZ, SXy,,, Xy, ), G(SXsy,0, T2, 12))
on letting n — cowe get

G(fz,9z,2) < q¢(G(Tz,Rz,z),G(Tz,Rz, 9z),G(Rz, 2, 2),G(z, Tz, fz))

G(z,9z,2) <q¢(G(z,92,2),G(z,92,92),G(9z, 2,2),G(z,2,2))
<q¢(2G(z,92,2),2G(z,92,2),2G(z, 9z, 2),G(z,92,2))
<20qG(z,9z,2)

Which is a contradiction since 0<q <% ,and hence gz=z

Therefore gz=Rz=z

Since gz=z and g(X) < S(X), then there exists we X such that Sw=z

Now we prove that hw=z

If hw=z,then G(z,z,hw)>0.Now by (iii) of the Theorem 3.1 we have
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G(z,z,hw) = G(fz, 9z, hw) < q¢(G(Tz, Rz, Sw), G(Tz, Rz, 9z), G(Rz, Sw, hw), G (Sw, Tz, fz))
=0q¢(G(z,2,2),6(z,2,2),G(z,2,hw),G(z, Z,))
<q¢p(G(z,z,hw),G(z,z,hw),G(z, z,hw),G(z, z,hw))
<gG(z,z,hw)

Which is a contradiction since 0<q <% and hence hw=z

Since, the pair (h,S) is weakly compatible then we have hSw = Shwimplies hz=Sz .
If hz =z thenfrom (iii) of the Theorem 3.1 we have
G(z,2,hz) =G(fz,9z,hz) < q¢(G(Tz,Rz, Sz),G(Tz, Rz, 9z), G(Rz, Sz, hz), G(Sz, Tz, fz))
=0q¢(G(z,2,hz),G(z,2,2),G(z,hz,hz),G(hz, Z,2))
<q¢p(G(z,2,hz),0,2G(hz, 2,2),G(hz,z,2))
=q¢(ZG(z,z,hz),ZG(z,z,hz),2G(z,z,hz),ZG(z,z,hz))
<20G(z,z,hz)

Which is a contradiction since 0<q <% and hence hz=1z
Proving that hz=Sz=z

Hence zisacommon fixed pointof f,g,h,R,Sand T

The proof is similar when  g(X)orh(X) closed subset of X with appropriate changes,

Now we prove the uniqueness of common fixed point. If possible let Z' be another common

fixed pointof f,9,h,R,Sand T

Then from (iii) of the Theorem 3.1 we have

G(z,2',2")=G(fz,9z',hz")
<q¢(G(Tz,Rz',Sz"),G(Tz,Rz",92'),G(Rz",Sz",hz"),G(Sz", Tz, fz))
=q4(G(z,2',2"),G(z,2',2),G(z",2',2),G(z",2,2))
<q¢(G(z,2',2,G(z,2',2"),0,2G(z,2",7"))
<q¢(2G(z,2',2"),2G(z,2',2",2G(z,2",2"),2G(z,2',2"))
<20G(z,z2',2")

Which is a contradiction since 0<q <% and hence z=z

Showing that Z is a unique common fixed pointof f,g,h,R,Sand T .
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As an illustration we have the following example.
Example 3.2: Let X =[0,1] with G(x,y,z)=max{|x—y||y—z||z—x[} for X y,zeX.
Then G isa G-metricon X.

Define f: X > X,g: X > X,h: X > X, T:X>X,R: X > X,S:X > Xby

1 jf

1if xe(0,1]

1if x=0

f(x):g(x):{ Lif xe(0.1]

and h(x)={

R(x)=S(x) =2 if xe[0,1] and T(x) =x if x€[0,1]
F(X)=g(X)=0.4 h(X)={ 3 RX)=S(X)=[3.4] T(X)=[01]
Clearly f(X)<R(X),g(X)<S(X) andh(X) < T(X)
Also f(X),g(X),h(X) are closed subsets of X
The pairs (f,T), (g,R),and (h,S) are commute at their coincident point 2 and hence they
are weakly compatible
We now prove the mappings satisfying the condition (iii) of the Theorem 3.1

Case (i): If x=y=z=0,then

G(fx,9y,hz) =% ,G(Tx, Ry, Sz) =3 ,G(Tx,Ry,gy) =%,G(Ry, Sz,hz) = 2 ,G(Sz, T, fx) =1

157 15
Therefore, the condition (iii) of the Theorem 3.1 holds if — < q¢(3,1,3,1j <qt
15-%\153'15'3) 93

This is possible by choosing q > 0such that §< g< %

Proving that the condition (iii) of the Theorem 3.1 satisfied in this case
Case (ii): If x=y=0,andz < (0,1] then

G(fx,gy,hz) =¢,G(Tx,Ry,Sz) =2,G(Tx, Ry, gy) =3,G(Ry, Sz,hz) <5, G(Sz,Tx, fx)<2
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2112 2
=< AV AV A A ~
q¢(3 3’3 3j<q3

Hence the condition (iii) of the Theorem 3.1 holds with g satisfying %< q< %

D=

Case (iii): If x=z=0,andy e(0,1] then

G(fx,gy,hz) = E G(Tx, Ry, Sz)<g G(Tx, Ry, gy)<g G(Ry, Sz, hz)<—5 G(Sz,Tx, fx) = 25

Hence the condition (iii) of the Theorem 3.1 holds with g satisfying 2% <g< %

Case (iv): If y=z=0,andx (0,1] then
G(fx,gy,hz) = :?) G(Tx, Ry, Sz)<— G(Tx, Ry, gy)<— G(Ry, Sz, hz)——5 G(Sz,Tx, fx)<—
G(fx,gy,hz) < q¢(G(Tx, Ry, Sz),G(Tx, Ry, ay),G(Ry, Sz,hz),G(Sz, Tx, fx))
3 22 2 2
< - - = -
‘q¢(3’3’ 3j<q

Hence the condition (iii) of the Theorem 3.1 hold with g > Osatisfying 2% <q< %

Case (v): If x=0,ye(0,1]andz €(0,1] then
1 2 2 1 2
G(fx,gy,hz) =5 G(Tx,Ry, Sz) 35’ G(Tx,Ry, gy) gg, G(Ry,Sz,hz) Sé’ G(Sz,Tx, fX) 35

G(fx,gy,hz) < q¢(G(Tx, Ry, Sz),G(Tx, Ry, ay),G(Ry, Sz,hz),G(Sz, Tx, fx))

Hence the condition (iii) of the Theorem 3.1 hold with g > Ossatisfying % <q <%

Case (vi): If y=0,xe(0,1]and z €(0,1] then
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G(fx,gy,hz) :%, G(Tx,Ry, Sz) s%, G(Tx,Ry, gy) g%, G(Ry,Sz,hz) s%, G(Sz,Tx, x) :2
G(fx,gy,hz) < q¢(G(Tx, Ry, Sz),G(Tx, Ry, ay),G(Ry, Sz,hz),G(Sz, Tx, fx))

212 2
VAV A A <q_
333 3

Hence the condition (iii) of the Theorem 3.1 hold with g > Osatisfying %< q< %

wilnN

%sqezs(

Case (vii): If z=0,xe(0,1]and y € (0,1] then
G(fx, gy hz):i G(Tx,Ry Sz)<ﬂ G(Tx,Ry gy)<g G(Ry, Sz hz)<l G(Sz,Tx fx)<g
1 ) 10! k) H - 5l H ) —_— 3l H ) —_ 15l H ) —_— 3

G(fx,gy,hz) < q¢(G(Tx, Ry, Sz),G(Tx, Ry, ay),G(Ry, Sz,hz),G(Sz, Tx, fx))

(535159

Hence the condition (iii) of the Theorem 3.1 hold with q > 0 satisfying g <g< %

Case (viii): If x=y=0,andz=0 then G(fx,gy,hz)=0

G(fx,gy,hz) =0< q¢(G(Tx,Ry,Sz),G(Tx, Ry, gy),G(Ry, Sz,hz),G(Sz,Tx, X))
Hence the condition (iii) of the Theorem 3.1 hold with q> Osatisfying 0<(qg< %

From above all cases if we choose ¢ > 0such that 2%3 q <% then the condition (iii) of the

Theorem 3.1 holds
From the above all cases all the conditions of the Theorem 3.1 hold

Hence the selfmaps f,h,g,R,Sand T have a uniqgue common fixed pointin X

1
Moreover, = is the unique fixed point for all mappings  f.h,g,R,Sand T

Corollary3.3: Let f,g,h,R,Sand T be self maps of a complete G -metric space (X,G) with

following conditions
(i) F(X) = R(X),9(X) = S(X),h(X) =T(X).
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@i)oneof f(X),g(X)and h(X) isclosed subset of X

(i)

G(fx, gy, hz) < q¢(G(Tx, Ry, Sz),G(Tx, Ry, gy),G(Ry, Sz,hz),G(Sz,Tx, fx))  for  every

X,¥,ze X some 0<q<% and ¢ged

(iii) fT =Tf,gR=Rg and hS =Sh

Then f,g,h,R,Sand T have a unique common fixed pointin X.

Proof: from the fact that the commutativity implies the weakly compatibility of a pair of
selfmaps, proof of this corollary follows from the Theorem 3.1
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