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1. Introduction

In 1938, A. Ostrowski proved an inequality concerning function with bounded derivative
which is known as Ostrowski inequality [10]. The inequality is stated as follows:

proposition 1.1. Let v : 7 C R — R be a differentiable function on (p,b) and let on (p,b),
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|y (v)| < M for some positive real number M. Then for all v € [p,b],

‘w(v)—i/pb W(T)dT‘ < —2)2] b—p)M. (1.1)

1
The constant 1 is the better possible in the sense that it cannot be replaced by the smaller one.

The explanation of Ostrowski inequality can be demonstrate in two ways as follows:

(1) Estimate the deviation from its average value to functional value.

(2) Estimate the approximating area under the curve of a rectangle.

In last few decades, some work has been done on the generalizations of Ostrowski’s inequality.
Some examples are mentioned in [4,7,11,2]. In [3], an integral inequality has established of
Ostrowski type by S. S. Dragomir et al. for mappings with bounded second derivatives. S. S.
Dragomir et al. in [5], established a similar inequality. In [5], S. S. Dragomir and N. S. Barnett,
an indicated Ostrowski type integral inequality give a same sense to that of [3] or [5].

In order to recall some results we need here some definitions which can be found in [15, pp.
125, 128].

Let L,[p,b](1 < p < 1) denotes the space of p-power integrable functions on the interval

[p,b] with the standard norm

Il = ( / b\w(T)l”dTY

and L;[p,b] denotes the space of all essentially bounded functions on [p,b] with the norm

lwllp = ess sup [y'(v)] <eo
velp b
In [12], S. S. Dragomir et al. proved the following generalization of Ostrowski in- equality:
proposition 1.2. Let y : [p,b] — R be a function continuous on [p,b] and differentiable on

(p,b). Assume that |y/'(v)| <M for v € (p,b) and M is positive real constant and denote

W |leo:= sup [y/(1)] <o
T€(p.p]
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Then the inequality

0-p) [1PX2LYE) 1 2yyn)] - [ i

b—p) p b\’ 2
< [T@%(l—mm (»-222) |1l
holds for all A € [0,1] and p + 252 < v <b— 1252,
According to [13] and [14]
’ oy (P
A(y) m/p ‘V(V)dv—llf( 7 )
1o ~ (V) +w()
Ax(y) o/, W(V)dV—< > )
b
As(y) _Lp/p llf(v)dv%%["'(p);ﬂ"(b)+2<’)Ter ]
1 3[w(p)+wy(b) 2p+b p+2b
As(y) Tp/p ‘I/(V)dvzg{ 3 +v T)Jﬂl/(T)]
b
As(v) _Lp/p w(v)dv=%{w(b)—w(p)ﬂw(%b))
b
astw) o [ 3 lwie) vy +2v (P17
b
walw): = [ v wip)
b
asw): 5= [ =y o)

In [16], Fiza Zafar and Nazir Ahmad Mir proved the following generalization of Ostrowski in
equality:
proposition 1.3. Let ¢ : [p,b] — R be a mapping whose first derivative is absolutely continuous

on [p,b] and suppose that the second derivative ¢” € L(p,b). Then, we have the inequality for

all v e [p,b].
‘(b_lp)/pbq)(’f)d’r—% [(1—A)¢(V)+(1+A> <¢’(”)+‘P(b>)
-2 (v=232) 00207200 - 0p)) (13)
< 19" ]]e E (V—T”f (b;£)3(3/1+2(1_z)3_1)].
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The objective of this paper is to further generalized Ostrowski inequality than inequality given

in Proposition (1.3).
2. Main results

Theorem 2.1. Let all the assumptions of Propositions (1.3) are valid. Then,

we have the inequality.

‘ - /</> \dt— %[ ( v)+¢ p+b—v))
~-2) (- ””) P =t)) LR 6) - o')
+(142) < b))H @1

. (nbcp"nw [ (p+b >
p b

2
+% (O=p)BA=1)+4(v+p)) (T—V> ]

37L+2(1—7L)3—1)

or equivalently,

[ ottnn 520 [y (B30 -0)

x(9'(b) = 9'(p) + (1+2) (¢(p);¢(b))] ‘

1 b\ (b—p)?
< 19" [§ (%—Q n 4;) (BA+2(1-1) 1)

2
45 (=)A= 1) +a+p)) (P17 ) ] -

We [p+k(b_2p),b—l(b_2p)}



GENERALIZED OSTROWSKI INEQUALITY 5

Proof. Consider the kernel X : [p,b]? — R, as defined in [4],

[ = (p+al2), it telpa]

K(v )= T— (B8, if temp+d—v],

f—(-A52), i e (p+b—v))

which gives,

which can be written as,

{‘I’(W%—‘I/gp%-b—v)} _ (1_1}‘) [(b_lp)/l)dly(T)dT

}4 1 b !
—E(W(P)ﬂL‘I’(b))} +m/p K(v, T)y (T)dT,
this implies that,

2 o (2.4)
)dt— = b d
= /p 0N =5 P)+yO) + s [ K1) (e
forallv € [p —HLTP,%] A € [0,1] (provided v is absolutely continuous on [p,b]).
Now, we substitute
b
v = (v-237) o)
in (2.4) to get
—-A
Ul K—"T”) (¢'0)+(p+5-)]
b A / /
( P Y ) i~ 56— p)(0'6) — o/(p)) 25)
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Integrating by parts, we have

/: (’f— p_+b> ¢'()dt=(b—p) (q)(p)—zwp(b)) —/pbd)(T)dT. (2.6)

2

Using (2.3) and (2.6) in (2.5), we get:

(-7 s te )

= 21000 +00) - 2P0 0) (o)

(1-2)
2

)
- (b—2—p)/p ¢(F)dt+

which can be written as

_|_

[O()+¢(p+b—v)]

= K1) (T— ”T”) 0" (1)dt

b .
5o [ o= o) 901 -2 (252 ) 106) - 0/

-2
H(52) o +oto+s— -2 (-2 )

4

b
+¢’(p+b—v)]—2(b1_p)/pK(v,T) (T—pTer>¢ (T)dt

[ (5°)
x[w) ¢<p>]+ﬂ[¢<>+¢<p+b O+ (52) 1060+ 00

2
A (2R )W+t )

e fron (12557

1 | p+b
20-) Jp

and we obtain,

<

9" (1)ld,

K( ,T>|\+—

also

p+b

116" "
/!K r'T_P+ 107 (1)]dT < (19| /‘K |‘T__dT

(2.8)
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where

10"l = sup € [9"] < oo,
TE(pb)

now, we let

b
1—/ K, |’T—& ar,

FIO-2)lI0 (e (557))
+/p+bv(f—p—+b>

(= CA P27

or

V

dt (2.9)

= (o0 (52)) ) (252
Lo () e
L) (B )an

After some simple calculations,we get

3
1= % <p—+b—v) +M[3A+2(1—A)3—1]

2 24
2

+%((b—p)(3l —1)+4(v+4)) (pTJ“b —v) (2.10)

Vye [pH(b—zp)’ (p;rb)] ’
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Using (2.8), (2.9), and (2.10) in (2.7), we get

L [etnai—3 [y (SR

b—p
rten (2200
" 3 —n)3
A ) e
2
+55(O=p)EA =D+ p) (22 ] -
" 3 —p)3
(5 (55 e

2
+%((b—p)(37L —1)+4(v+p)) (pTH —V> ] -

This completes the proof.

Remark 2.2. Putting L = 0 in (2.2), then we get.

[ ot - CRL[(20)20(p b))
(1B (HLht#G o) (86)00))

2 2 2
3 ) (2.11)
<ol |3 (252 ) + 02T
2
g 0= 0-p) (257 ) ]

Remark 2.3. In (1.3), if we examine the estimates for the end points v = p,v = b and the

midpoint v = p%'b, we find that the midpoint which gives the better approximation, so that from
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inequality (2.2), we have
/b¢(T)dT_ (b—p) [(1 ) (¢(V)+‘P(P+b—v))
0

2 2

—(1=2) (V_P;rb) <¢/(V)+¢'§p+b—v) )

Y (b;p)@,/(b) —¢'(p)) +(1+2) (w)] ’

(2.12)

h— 3
< 10”122 3a 21~ 2) - )

Remark 2.4.Choosing A = % in the inequality (2.12) gives the better approximation:

[ otnar—L22 20 (B22) - L Phig/) o'

+ 2 (0(p) 400 >>H

" b— :
<o) PE

which has a new and a better approximation than the three-point quadrature inequalities. .

Remark 2.5.If we select A = 1 in the inequality (2.12), we get a perturbed trapezoid inequality

as follows

b . 2
| ¢(T)dT—(b—P)(¢(p)+¢(b)>—(b P (o' (5)— /()

2
b—p)

(2.13)
<[¢"]|e

which has a better approximation than the perturbed trapezoid quadrature inequalities men-

tioned in [5] and [12] for || - ||cc nOrm.

Remark 2.6.f we select A = % in the inequality (2.12), we get a perturbed trapezoid inequality

/pb¢(T)dT— b-0) [3¢ (’Hb) +5 (M)

(I?—p) ! /
2P0 (2.14)

19(b—p)?
1536

as follows

< (19"l
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which has a new and a better approximation than the perturbed trapezoid quadrature inequali-

ties..

Remark 2.7.If we select A = % in the inequality (2.12), we get a perturbed trapezoid inequality

as follows

[ otoar- L2 2o (222) 20 Phigr) o'

, e AL —p)3
. §<¢(p)+¢(b))} ‘ < 9"l

which has a new and a better approximation than the perturbed trapezoid quadrature inequali-

ties. .

Remark 2.8.1f we select A = 13—0 in the inequality (2.12), we get a perturbed trapezoid inequality

as follows

b _ _
[oi=C22 70 (257) 2020~ 06p)
13

293(h —p)?

+ 7(<p(,o)+¢(b))] ‘ <19"1-—%4000

which has a better approximation than the perturbed trapezoid quadrature inequalities present-

ed in 2] and [5] ||.||e norm.

3. Applications in numerical Integration

Using the inequality (2.1), we get the approximation of composite quadrature rules with

smaller error found by the classical results.

Theorem 3.1. Letl,:p=vop<vi <vy < :----- < v, — 1 < v, =b be a partition of the interval
[p,0],
i =Vig1 = Vi, A €[0,1],vi+ A <& <vi+1-A%,i=0,----- ,n—1, then

b
/p¢<T>d*:S<¢,¢',1n,é77t>+R<¢,¢',1n,5,x),
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where

S(9,9"1,,8,1)
_ 1”21 [ (¢(5i)+¢(vi+w+1—§i))

2

_(1-2) (é‘i Vi +2Vi+1> (Q)'(ﬁi) +¢)’(v2,~+v,~+1 - @'))

- RO -0+ 12 (HEREE)

and

|R(¢7¢lvlnvéaﬂ‘)‘
Zl 1 (él V1+Vl+1>3

i= O

< [19"]|es

2
48

4(&i+vi)) (5: i +v’+l ) 2]

SL(3A4+2(1—A)+1) +%(zi(3l —1)

R(9,9",1,,8,1)]

. ' v ) BA+2(1—2)3 —1)nd
=1|¢" | [Z3<§i_v +2v+1) +< + (148 ) )ZZ? 52
i=0 :

i=0

1 ol vitvier )
g5 (L 3= 1) (G (&= 5 )]

Proof. Applying inequality (2.10) on &; € [v; +A%,vi11 — A5] and summing over i from 0 to
n— 1 and using triangular inequality, we get (3.2).
Remark 3.2.By choosing A = 0 gives as a special case [10], the modified version of approxi-

mations of composite quadrature rules.

Corollary 3.3.For & = "L (=0, ,n— 1), then we have the following quadrature
rule:

S(60,01,2) = ;’,120[(1_“ (H%) (3.3)

B Zi%((l)/("iﬂ) —¢/(Vi))+(1+2') (‘P(V:) +2¢(Vi+l))] Zi
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and
R(¢, 0" 11, 4)]
19"]]- TS S e
§< 73 )(37L+2(1—)L) +1);)(z,) A €1[0,1].
Remark 3.4.If we select AL =0 in (3.3) and (3.4), (i=0,------ ,n—1), then
1 (vit i POvi)+o(vir1)\]| .
som=3 B [(5) - () -
and

=

S(¢,1,) is an arithmetic mean of the midpoint and trapezoidal quadrature rules.

Remark 3.5./f we select A = 1in (3.3) and (3.4), (i=0,------ ,n—1), then
1) 1
S(¢,9".1,) = 5 Y o)+ ¢(vig1)lzi— g[‘P'(W) —0'(vis1))zi
i=0
and

R, _Qﬂwmza,

Which is a perturbed composite trapezoid inequality.

Remark 3.6.If we select A = % in(3.3)and (3.4), (i=0,------ ,n—1), then
1712 (vitvis
oo =3 1[50 (*5)
S( n) = 2;() 3 2
4 i i 1 I /
+ 5 (¢<V +)—|2_¢<V+1)>} Zi_ﬁ[q) (Vi>_¢ (Vi—i-l)]zi
and
R |
(0.1 < g 10"l L ¢

which is a perturbed composite trapezoid inequality.

Remark 3.7.If we select A = % in(3.3)and (3.4), (i=0,------ ,n—1), then
1173 Vi+ Vit
S, 1) ==2) |50 ——

#3000+ 00w 5 - 161000 - 00l

(3.4)

(3.10)

(3.11)
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and
"
R( )— 1536H¢ H‘X’Zzl’

which is a perturbed composite trapezoid inequality.

Remark 3.8.If we select A = 4 in(3.3)and (3.4), (i=0,------ ,n—1), then
1% (v
==Y [ae (Y

+ 400+ 0011 1= 1000 - 0 0u )l

and

R( )— 1536||¢//H°°ZZ”

which is a perturbed composite trapezoid inequality.

Remark 3.9.If we select A = % in(3.3)and (3.4), (i=0,------ ,n—1), then

Vit Vit

S(9,9" 1) = 21()” 1[705( > >+§¢(Vi)+¢(vi+l) Zi

and
1

This is Simpson’s type perturbed composite three point quadrature inequality.

4. Applications for Probability Density Function

Let X be a continuous random variable having the probability density function

¢ : [p,b] — R4 and the cumulative distribution function

®:[p,] = [0, 1, i,

13

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)
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is the expectation of the random variable x on the interval [p;b].

b—p b—p
T—V+T<V<T—V—T

is the expected of the random variable X on the interval [p,b]. Then we may have the following
theorem.
Theorem 4.1. Let the assumptions of Theorem (2.1) valid if probability density function belongs

to Ly[p,b] space, then we get the following inequality

‘(b—E(X)) 1 {(1 ) <¢(V)+¢(P+b—V))

b—p) 2 2
(-2 (v_p;rb> (¢’(v)+¢/§l)+b—v)) +(1;A)>} '
G R S I

2
+¢%<w—+wox—1»+4v+p»(Bgﬁ—v)]

forall & € [p,b].
Proof. Put ¢ = ® in (3) we get (4.1), by using these two identities

b
/p ®(t) =b—E(X)
5. Applications for some Special Mean

The inequality (2.1) may some written as

‘1;z (¢(v)+¢(2p+b—v) _(1;/1)(V_A(p,b))
(=) AL ) - o)
(14+2) (9(p)+6(
R0 s [ ochan
19" [1 (—p)’
< b =p) {g(A(p,b)—v) + 2 (BA+2(1-1)3+1)

1

g (0=P)(B3A —1)+4(v+p))(A(p,?) —V)z} :

_|_
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where A(p,b) = pTer. Choosing A =0 gives a special case, the modified version of the inequality

in [10] as follows,

% K¢(v)+¢(2p+b—V)> (= A(p.5)) (¢’(V)+¢/§P+b—V))
(TPt /pb"’(”‘”‘

RV
<107l | 55257 A0 -+ £

+ g (0-) — 6= (AR5 v

applying (4.1), to infer some inequalities for special means using some particular mappings.
The results of the special means are therefore as follows

Example no 1: Consider

¢(t) =Int,9 : (0,00) — R, then

1 b
/p 0(1)dt = Inl(p.5),

b—p
d(V)+d(p+b—v) — InGi(v,p +5 —v),

2
P(p)+00) _
# - ll’lG(p,b),
0'0)-0'(p) = - 30

9'(vV)+9'(p+b—v) _A(p,p)—v
2 G2(p,b)

G(p.b) = v/pb

and

1
02

19"l = sup [|¢"[(T)Il =

te(p,h) p
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From (4.1), we have:

_ _ (b-p) _
(1= M)InG(v,p +b v)+(1+),)lnG(p,b)+7L4G2(p 5 20nl(p,b)
2 1 (b—p)?
< o [Tmpy e -+ 32
v+c

x(3A+2(1-2) + 1)+%((3/l - 1)+4( ) (A(p,b) —V)Z}

b—p
from which we obtain the approximation at the centre v = pT“Lb =A(p,b), so that

(b—p)?

‘(1 —)InG(v,p+b—v)+ (1+21)InG(p,b) +lm

—2lnl(p,b)‘

o 2
< [(2452) (BA+2(1-2)3 — 1)}

or

—2
" G(1+)L)G§1 ) a (b—p)?
2 4G2

< {(bzz,fz)z (BA+2(1-2)3 + 1)}

from which we obtain the better approximation if we select A = 13—0, that is

13 A2 _ A2
In GG, Jr3(b p) < 293(b—p)
I? 40G? 12000p2

()| [

()

For A =0, we have

For A =1, we have

For A = zlw we have

2] ]

s 3
GiG{\  (-p)
<
ln( )-i— 768p2

For A = %, we have

For A = %, we have

2]

g 2
GiGlY | (—p)?
<
ln( )+ 324p?
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Example no 2: Consider

¢(T):%,¢ (0,00) — (0,00),then
b
ﬁ/p ¢(t)dt=L""(p,b)

9'(V) +9'(p+>—v) _A(p.b)(A(p,>) —v)
2 Givp+b—v) ’
0(p)+00) _ 1

2 H’
, , _(bz_pz)
0'0)~4'(0) = Gty

o) +o(p+b—v) _ A(p.b)

2 G%(v,p%—b—v)
2pb
(Pab)=p—ij

and

2
10"l = sup [|¢" ()] = =
te(p.b) p’

From (4.1), we have:

- —A
eI 7 v

2A(A — h—p)? _

‘(I—A)A (1+4) (1-2)

<% B(A—v)3+ (b;£)3 GA+2(1—2P 1)
+ 35 (0=PIGA= 1440+ p) (A~ )

and the approximation at the centre v = pTJ“b = A(p,b), so that

(b+p)—L"

(1-)A  (1+2)  b—p)
262 2H 8G*

. 3
< (b—i);ﬁ [(b 45’) (3x+2(1—/1)3_1)}
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from which we obtain the better approximation if we select A = 13—0, that is

71A 13 3(b—p)? | 293(b—p)?
‘m@+ﬂm_(®02®+m 1—1$m3
; P
For A =0, we have
A 1 4] _(b-p)
o <
'2G%+2H' LT
For A =1, we have
1L (b—-p)? b—p)
S <
8GR = T,
For A = %wehave
3 5 (b—p)? 1| 190 —p)
Sl T VN — <
sc? Tgr 3Gt VTP TES Tgep
Forl:%,wehave
A 5 3b-p) 1| _20—p)°
I A A <
‘36%*_8H‘ 36t UTPITL S ey
For),:%,wehave
A 2 (-p) | _416-p)?
S 4= Y Sl Y P Qi S
52 T3m 2t TP =" 768p3

Example no 3: Consider
¢(T) =7l ¢: (07°°) — (O7°°)7

where p € R\{—1,0} then for p <b

bp)/¢ di = Lb(p.b).

') —9'(p) = p(p—1)(>6—p)LL3(p.b),

o )+¢(2p+b—v) A1(p”,(p+b—v)"),

O(p)+000) _
2

A(p?,bP)
and
P2, if pe[2,0)
19”0 =
pr=2, if pe (—=,2)\{~1,0}.
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From (4.1), we obtain

_ -1 _ o —1
‘“z“{mﬂv-mp(x" P Xl )}
T P S
<Ip(p— 1 oy O-p) v
<P =Dl 355y A=)+ T BAF2(1-4) 1)
where

P2 i pe2,)
Ap(p,b) =
pp—27 if pe(—oo,Z]\{—LO},

Aty = pTer =A(p,b), we get

Ay —A

’(1—A)Al+(1+/l)

(b—p)?
2 2 8

plp—DLE 512
—A)3
< Iptp - DA, | U2 1201 -2 - 1)

or

(b—p)° -2
2 p(p—1Ly~5 2L

’(I—A)Ari—(l—f—l)Az—?L

_n\3
<Iplp =11y | P52 0242002 1)

which gives the better approximation at A = 13—0

7A1 134, 3(b—p)? =2 orp

‘10 t0 ~ a0 Pp—DO-p)L, 520
293(b —p)?

< — i SO

Moreover, at A =0

plp—1)(—p)LE 3 —2LE

A 134 3(-p)
10 10 40

(0—p)
24

<I|p(p— 1)Mp
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For A = ‘l‘, we have

‘3A1 N 54, (b—p)?

_ _ 1P 2 _oyp
19 —p)?

For A = %, we have

-2
2Pl pp- e -ou

2(0—p)?
<Ip(p—1ia 2P

‘2§1+4A2_<b—p)2

For A = %, we have

A TAy 41(b—p)? =2 arp
‘4 T3 768 PP DL, 2L
2(0—p)?
< _ S
<|p(p—1)|A, o1
Moreover, at A = 1
b—p)? _
‘2A1—( J ) p(p—1)LI=3—2Lp
(b—p)?
< —1

6. Conclusion

In this paper, modified Peano Kernels are used for some remarkable Ostrowski type inequal-
ities depending on the second derivatives are mentioned. Ostrowski type inequalities for twice
differentiable functions have been lengthily mentioned. in the research paper [6] and [7]. We
have mentioned a generalization and extension of the inequalities mentioned in [6] and [7]. we
have mentioned a generalization (4) of the inequality (2) acquired in [1] for twice differen-
tiable functions whose first derivatives are absolutely continuous and second derivative belong
to L (p,b) by introducing a parameter A € [0,1]. This generalization also results in attaining
a three-point inequality for a specific value of A as mentioned in remarks (2.4) to (2.8). The
three-point inequality thus acquired has a useful bound than the three-point inequalities men-
tioned in [6] and [7] for ||.|| -norm. Remarks (2.4) to (2.8) also shows that the perturbed

trapezoid inequality that can be acquired from (2.1)is useful than the perturbed inequalities
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mentioned in [6] and [7] of perturbed trapezoid type for ||.|| - norm. The inequality is then
functional for a Divider of the interval [p,b] to acquire many composite quadrature rules. The
inequality is also functional to special means by Appropriately choosing selecting the function
involved to get Certain direct association between different means.
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