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Abstract. In this paper, generalizations of weighted Ostrowski inequality are derived by using moment generating
functions in bounded variation, L., and L, spaces. Applications to composite quadrature formulae are developed

in which % Simpson’s, 3 Simpson’s, trapezoidal and midpoint inequalities are derived.
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1. INTRODUCTION

In 1938 Ostrowski developed an important inequality [11] which states that:
Theorem 1.1. Let ¢ : I C R — R be differentiable mapping on /° the interior of interval / such

that ¢’ € L[u,v], where u,v € I with u < v. If |¢'(y)| < M, then the following inequality holds

L < (v—u) ;ﬁ(y(——— " (1)

o0)- 2 [o0a

which holds V' y € [u,v] and }t is the best possible constant in a sense that it cannot be replaced
by a smaller constant.
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In [6], Dragomir, et. al. proved the generalization of the Ostrowski inequality for L., space
using some parameter A.
Proposition 1.2. Let a function ¢ : [u,v] — R is continuous on [u, v] and differentiable on (u,v),
assume that its derivative is bounded on (u,v) and denote

10']|..:= sup [9/(r)] < co.

t€[u,v]
Then

(v—u

)22 - 2000 - [ otwa

v—u2 u-rv
gl%(xu(l_;ﬁw(y— i )

¥V A €[0,1] and the Peano kernel defined as:

t—(u+ A", 1€ uyl,

where y € [u+7LV’T”,v—7LV’T”}.
We should also know the definition of bounded variation.
Definition 1.3. If a function ¢ : [a,b] — R and [c,d] be any closed subinterval of [a,b] and if

the set
n
S = {Z |@(xi) — @ (x;—1)| : x; : 1 <i < nis a partition of[c,d]} (1.4)
i=1

is bounded then the variation of ¢ on [c,d] is defined to be \/?(¢) = supS. If S is unbounded
then the variation of ¢ is said to be infinite. A function ¢ is of bounded variation on [c,d] if
Ve(9).

Also according to [7, p.318]
Definition 1.4. Let w : (u,v) — [0,00) is integrable, i.e., [} w(r)dt < c. We denote the first two

moments to be m and M, where
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In this paper our aim is to give generalization of Preposition 1.2 by using moment generating
function and to study three different cases namely ¢ is bounded variation, ¢’ € Lo[u,v] and

¢’ € L,[u,v]. We use first two moments of weighted function.

2. IF ¢ IS FUNCTION OF BOUNDED VARIATION

Theorem 2.1. Let a function ¢ : [u,v] — R is bounded variation on [u,v] and y € [u, ¥], then

the following inequality holds

' [xwﬂl —?L)q)(y)} - /qu)(t)dt

2 vV—u

(2.1)

< 2(v1—u) max {4 (v—u),2y —[(2—A)u+Av],[Au+ (2= A)v 2y}\/

here \/!(¢) is the total variation of ¢ over [u,v].
Proof. We now use the fact from [1], for a continous function p : [¢,d] — R and a function

f:[e,d] — R of bounded variation, the following inequality holds

d
[ 0ar] = s b1V

Applying the above inequality for p(t) = K(y,t) and f(t) = ¢(¢), we have

[ &G /y

y v
sup K(»,1)\/(9) < sup K(y,1) \/(¢)+ sup K(y,1).\/(9)
u y

<

| kGnao()

Now we us the fact to get

el ) r€fuy] 1€(y,v]
- y
pap(0)| < max {3250y BRI v
_'_max{lv_u,lu—i_ 2 A, }
2
<l max A —w) 2y [2— At A

2(v—u)

JAu+(2— ) 2y}\/

To proof our next theorem we need the following lemma.
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Lemma 2.2. Let a function ¢ : [u,v] — R is absolutely continuous and let weighted function

w: [u,v] — [0,00) is integrable and [ w(s)ds = m(u,v) < o then

[ P9 0t = (1, 9)6 () +m(B.)00) — o)~ [ wowar  (22)

where
Juw(s)ds =m(u,1), 1€ [uy],
Py(y,1) = (2.3)
[sw(s)ds =m(0,t), t € (y,v].
and
u:u+lv;u , ﬁ:v—lv;u
for

u<p<y<o<v

Proof. Use Integration-by-parts on kernal (2.3), we get

Y Y
[ mlan.do(6) =m(n)o ()~ m(w.u)g ()~ [ o)) 24)
and
[ mio.0d0(0) = m(®,1)90) = m(®.1)00) - [ 910 (25)
y y

By adding equations (2.4) and (2.5), we get (2.2).
Theorem 2.3. If ¢ : [u,v] — R is a function of bounded variation on [u,v] and y € [u+ A 5%, v —

A ¥5%], then the following weighted inequality holds

0014, 9) + 0 ) + 0 m(0.) ~ [ 0w
: 2.6
< max {m(u, ) m(p. ). m(3,9),m(9,1)}V/ (0).

Proof. By using the same fact we used in the previous theorem

d

< sup [p(n)]\/ (/).

t€lc,d| c

d
/c p()df(r)
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Applying the above inequality for p(¢t) = P,,(y,t) and f(t) = ¢(¢), we have

| Bnaot)
y Vv
< | [ Btendo@|+| [ Ao
By using the same fact
y v
< sup Pu(nt) \V/(9) + sup Pu(r.1) \/(9)
t€lu,y] u t€(y,v] y
< max{m(u,p),m(u,y }\/ ) +max {m y,ﬁ),m(ﬁav)}\/(fb)
y
y v
< max {m(u,p),m(p,y),m(y,9),m(d,v)} [\/(¢)+\/(¢)]
u y
<

max {m(uau)am(uay)7m(y7 19)7m(197v)}\/(¢)

which implies

0 0m(,0)+ ¢ wm{u, )+ () (9.0) — [ (0wle)dr

v

< max {m(u, 1),m(i,y),m(y, 8),m(3,v)} \/ (9).
Corollary 2.4. By replacing w(s) = ﬁ and the values of y and ¥ in (2.6), we will get the
inequality (2.1).
Corollary 2.5. By replacing A = 0 in (2.1), we will get the following inequality

v

00~ [ w00 < max ). ) V(o). 27)

Remark 2.6. By replacing w(s) = in (2.7), we will get the following inequality

v

< ﬁ lmaX{(y—u%(v—y)}\/((P) : (2.8)

u

'¢<y>— Lo

V—u
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Corollary 2.7. By replacing y = “TJ“’ in (2.7), we will get the following inequality

szﬂpzm(””)} v_u/¢ Ddi

1 r %
<5 |max {2, (1 —M}\/w)] (2.9)

u

-4 feop- e

the inequality (2.9) is the result of Corollary 1 of [1].
Corollary 2.8. In (2.9)

1. by replacing A = 0, we will get midpoint inequality

"P (u+v> B Viu/Mvcb(t)dt

2. by replacing A = i we will get % Simpson’s inequaity

B[ () 2 s

vV—u

<1Ve) 2.10)

<ve en

3. by replacing A = %, we will get % Simpson’s inequaity

o0 ra0 (“F0) o] - L [ owar

4. by replacing A = %, we will get perturbad trapezoidal inequality

o) 2y o

5. by replacing A = 1, we will get trapezoidal inequality

AN =

Vo) en)

1V
SZY (2.13)

1 Vv
Siy (2.14)

The inequalities (2.10), (2.12), (2.13) and (2.14) are the results of Corollary 2 of [1].
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3. FOR THE CASE ¢’ € Loo[u,V]
Theorem 3.1. Let a function ¢ : [, v] — R is absolutely continuous and ¢’ is bounded on [u, V]
1.e.,

197]|.. = sup |¢'(t)] < oo.

t€[u,v]

Then the following inequality holds

0(m(1,9)+ 0wl 1) + 0 (m(D.) ~ [ o(Ow(e)ds

< [um(p,u) +y(m(p,y) +m(8,y)) +vm(9,v) (3.1)
+M (u, 1) + My, ) +M(y, 0) +M (v, )] |||,

Proof. By using the identity (2.2), kernal (2.3) and the fact

/cd (/atw(s)dS) dt = /Cdm(a,t)dt = tm(a,t)|? — M(c,d)

we have

00m(31.9) + 9 () + 0(Im(0.3) - [ SO

| B’

u
\4
< / [Py 0)lde |9,

s v
< [—/M”m(,u,t)dt—k/uym(u,t)dt—/y m(ﬁ,t)dtJr/ﬁm(ﬁ,t)dt] 19']I
< fum(p,u) +y(m(p,y) +m(d,y)) +vm(0,v) +M(u, 1) +M(y, 1)

+M(y,9)+M(v,9)]||¢’||..

Corollary 3.2. By replacing w(s) = ﬁ, u and ¢ in (3.1), we will get the inequality of Propo-
sition 1.2.

Corollary 3.3. By replacing A = 0, we will get the following inequality

‘¢(y)m(u,V)—/uVW(t)¢(t)dt < [ym(u,y) +ym(v,y) + M(y,u) + M(y,v)di] ||¢'[| .. (3.2)
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Remark 3.4. By replacing w(s) = in (3.2), we will get the following inequality

u+v\?  (v—u)?
Sviu [(y— ; ) +( 4 ) ] 7. (3:3)

Corollary 3.5. By replacing y = ”+V in Corollary 3.2, we will get following inequality

0()——— [ o(t)ar
oo

v—u

A2 e (50)] - L [ o] < C3 2 - 12
2 V—u °°
(3.4)
This inequality is a result of Corollary 4 in [1].
Corollary 3.6. In (3.4)
1. by replacing A = 0, we get mid-point inequality
u+v 1 1
e e K B LI 35
2. by replacing A = %, we get % Simpson’s inequality
2RO o (I L o) < S-wllell. 69)
8 3 2 v—uJu — 32 ° '
3. by replacing A = %, we get % Simpson’s inequality
1 u+v 1 v 5 ,
- 40 [ == _ < Z(y—
5|00 a0 (57 o0 - 1 [owar| < ol 6
4. by replacing A = %, we get perturbed trapezoidal inequality
1 u+v 1 v 1
o2 (5 o0 - L [lowal < go-ufoll, @8)
5. by replacing A = 1, we get trapezoidal inequality
1 /
31900+ 00— —— [“o(ar| < ;0—1)[|¢']... (39)

The inequalities (3.5), (3.7), (3.8) and (3.9) are the results of Corollary 5 of [1].
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4. FOR THE CASE ¢’ € Ly[u,V]

Theorem 4.1. Let ¢ : I C R — R is absolutely continuous mapping on /°, the interior of the

interval 7, where u,v € I with u <v. If ¢’ € Lp[u,v], p > 1. Then the following inequality holds

[ e R0

v—u

z(lv;u)q+{+( _(2—z§k+av>q“ a

1

stz

1 1
VU (g 1)

<

+

VAelo,1] and%+%1:l,p>1and

vV—u

u+lK%E§y§v—l

Proof. We have

v—u

I e R0

1

vV—u

| kg war

Applying Holder’s Inequality

1 v i/ ’
< ([ woaora) ([Noopa)
< ! [/y — (MU) i [ (v_au) th]hw
— v—u |Ju 2 y 2 p
< 1 1 1 2<lv—u)q+l+(y_(2—l)u+?tv)q+l
v—u(q+l)§ 2 2

Au+(2—A)v a1] ,
(HEEEEE ) e,
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Theorem 4.2. Let a function ¢ : [#,v] — R is absolutely continuous and ¢’ is bounded on [u, v].

If ¢’ belongs to Ly[u,v], p > 1, then the following inequality holds

0012, + 0m(a, ) + 0m(9.) ~ [ 0

1

1 u y 9 v y /
< D {/u [m(t,lzl)]thnt/” [m(ll,t)]th+/y [m(t,0))%dt +/19 [m(ﬁ,t)]th} }q)(p.)
4.2

Proof. By using the identity (2.2) and kernel (2.3) and applying Holder’s Inequality

P (0)ds

< | [ mooral e,

< / m(u. 1) \th+/ m(,1) Wr} 1o'],

< /”[m(t,u)]th+/[ (1) th+/ (1, 9))4dt
u u

+ [ (o.0) th] o'l

which completes the proof.

Corollary 4.3 By replacing w(s) = ﬁ and the values of u and ¥ in (4.1), we will get the

following inequality

2o +om)]+(1-2)00) — L ["o(w
1 2= Autav)! v—u\"(Aut 2=y N\
: (g 1)i(v—u)s [<y 2 > +2<7L 2 ) +( 2 y) ]H‘PHP-

(4.3)

Corollary 4.4 By replacing A =0 in (4.1), we will get the following inequality

< [/My(m(u,t))u/yv(m(t,v))q};||¢’Hp. (4.4)

Remark 4.5 By replacing w(s) = Vl—u in (4.4), we will get the following inequality

o0) - [ olnar] <

o)~ [ woa

— =0T+ (=)t o], (4.5)
T g+ 1)
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Corollary 4.6 By replacing y = “T” in (4.3), we will get the following inequality

Hz‘”(“);"’(”mm(“”ﬂ — o0 ‘ ( lfif““)‘l’(vu>;|,¢f,,p
(4.6)

The inequality (4.6) is the result of Corollary 7 in [1].
Corollary 4.7 In (4.6)

1. by replacing A = 0, we get mid-point inequality

‘¢ (””) —— o)< 5 (q%);(v—u)}! o'l @.7)

2. by replacing A = %, we get % Simpson’s inequality

HECHEERWEES [ e

(3q+1+1>é(v_u);H¢,Hp 48)

3. by replacing A = % we get % Simpson’s inequality

’é {¢(u>+4¢ (”;V) +¢(v>] - viu/uv(]b(t)dt (2"“+1>§(v_u); o], @9

4. by replacing A = % we get perturbed trapezoidal inequality

MM) 2¢(”+V) }——/¢ ‘ (i);(\/—u);”qj"‘p (4.10)

5. by replacing A = 1, we get trapezoidal inequality

1
1 q 1
_Z(q—l-l) (v—u)qH(p’Hp. (4.11)
The inequalities (4.7), (4.9), (4.10) and (4.11) are the results of Corollary 8 in [1].

300000~ [owar

vV—u

5. APPLICATION TO QUADRATURE FORMULA

If I, : u=yy <y <ys <..<y,=vbe apartition of the interval [u,v] and let h; = y; 1| — y;
forie {0,1,2,....n—1}
Consider a general Quadrature Formula

n—1

On(ln,9) = Y [#(E)m(pi; O) + @ (yi)m(yi, wi)ds + @ (yir1)m(Si,yirr)]  (5.1)

i=0
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VA €]0,1] and
hi h;
Hi=yi+As <& <yy1—As =1
2 2
and

Rlln:0) = [ 6(0w(0)dt = 0, (1,.0)

which yields following theorems.

Theorem 5.1. Let ¢ be as defined in Theorem 3.1 and we have

fwmwm=m%m+%wm

where Q,(I,,,¢) is given in (5.1), then the remainder satisfies the estimation

Yit+1

IR:(In,0)| < i)max{m(yi,ui),m(ui7é),m(éuﬁi)am(ﬁiayiﬂ)} \ (9). (5.2)
1= Yi

Proof. Applying inequality (2.1) on the interval [y;,yi+1], we get
1 i+l n
Ri(l;,9) = " o ()w(t)dr — Y [0 (&)m (Wi, ) + 0 (yi)m(yi, ti)ds + ¢ (vir1)m(Dy, yiy1)] .
iJyi i=0
Sum the equalities presented above over i from O to n, we get

n Vit1

Ry(l,9) = ;)h_i ! o (t)w(t)dt

_ i()[ﬁb(fz’)m(ui, Gi) + ¢ (xi)m(yi, i) ds + ¢ (yie1)m(D;, yig1)]

which implies

|Rn(lna ¢)| =

—Z [0 (&) m(ui, %) + ¢ (yi)m(yi, ti)ds + @ (yig1)m(, yit1)]

fzfmﬂmemem@&mwwM»Qm

i=0

Theorem 5.2. Let ¢ be as defined in Theorem 4.1 and we have

[ oot =Ro(1.0)+ 0,1:0)
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where Q,(I,,,¢) is given in (5.1), then the remainder satisfies the estimation

(R (In; @) < [yim (g, yi) + & (m(wi, &) +m(9:, &)

+yi+1m(19hyl+1)+M(ylmul)+M(§l7ul) +M(§lv )+M Yi+l, O H¢ Hoo

(5.3)

Proof. By using the similar technique use in Theorem 5.1, we get

|Rn(lna ¢)| =

i I /lyl+1 w(t)dt

—ZW’ m(i, O;) + @ (yi)m(yi, i)ds + ¢ (yir1)m( 0, yiy1)]
< [yim(pi,yi) + & (m(i, &) +m(9:, &) + yiim(0i,yiv1)

(ylaul)+M<§laul)+M(§l7 )+M yl“‘l’ H¢ Hoo

Theorem 5.3. Let ¢ be as defined in Theorem 5.1 and we have

/ "0 (Ow(t)dt = Ro(l, §) + Oull, )

where O, (I, ¢) is given in (5.1), then the remainder satisfies the estimation

1
(g+1)s

[ o [ o] o1,

Proof By using the similar technique use in Theorem 5.1, we get

i &i
Ralt0)) < —— | [ g a-+ [ i)

Hi
(5.4)

f%/%wwmmh

i=0

n

—Z[(P m(U;, ;) + ¢ (yi)m (Yialfli)ds+¢(Yi+1)m(0i;yi+l)]‘
i=0

1
1
(g+1)4

/ m(E, O m+/ S, yir1) Mﬂ}wu

IN

i Si
[ [ tssyrarcs [ i 2y

Hi
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6. CONCLUSION

We have derived three different versions of Ostrowski type inequality, namely for bounded
variation, L, and L., space involving weights in terms of moment generating functions and by

using them we also discussed their few applications in numerical integration.
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