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1. Introduction and Preliminaries 

In 1986, G. Jungck [1] introduced the concept of compatible maps as follows. 

1.1 Compatible mappings [1]: Two self maps E and F of a metric space (X, d) are said to be 

compatible mappings if lim ( , ) 0n n
n

d EFx FEx
→

= , whenever { }nx  is a sequence in X such that 

lim limn n
n n

Ex Fx t
→ →

= = for some t X . 

Further Jungck and Rhoades [4] defined weaker class of maps called weakly compatible maps 

and is defined as follows. 

1.2 Weakly Compatible mappings [4]: Two self maps E and F of a metric space (X, d) are said 

to be weakly compatible if they commute at their coincidence point. i.e, if Eu = Fu for some 

u X  then EFu = FEu. 

It is clear that every pair of compatible maps is weakly compatible but not conversely. 
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1.3 Example: Let X= (-1, 1] with the usual metric ( , )d x y x y= −   for all x, yX. Define self 

mappings E and F of X by  

1 1
1

9 8
( )

1 1
1

8 8

if x

E x

if x


−  

=
  


,      

1 1
1

8 8
( )

1 1
1

9 8

if x

F x

if x


−  

= 
  


 

1 1 1

8 8 8
E F
     

= =     
     

,      
1 1 1 1 1 1

and
8 8 8 8 8 8

EF E FE F
       

= = = =       
       

 

Hence E and F are weakly compatible. 

Hence ( ) ( )n nEF x FE x therefore E and F are but not 

compatible.

1 1 1 1 1 1 1 1
lim ( ) lim lim ( ) lim

8 2 9 9 8 2 8 8
n n

n n n n
EF x EF E and FE x FE F

n n→ → → →

       
= + = = = + = =       

       
 

 

1.4 Associated sequence[6]: Suppose E,F,G,H,I and J are six self maps of a metric 

space ( , )X d such that ( ) ( ) ( ) ( )E X IJ X and F X GH X  .Then for an arbitrary 0x X  we 

have 
0 ( ).Ex E X  since ( ) ( )E X IJ X , there exists

1
x X  such that 

0 1.Ex IJx=  for this 

point 1x , there is a point 
2x X  such that 

1 2Fx GHx=  and so on. Repeating this process to 

obtain a sequence { }ny in X such that 2 2 2 1 2 1 2 1 2 2n n n n n ny Ex IJx and y Fx GHx+ + + += = = =  for 

0n  we shall call this sequence{ }ny  an associated sequence of 0x  relative to the six self maps 

E,F,G,H,I and J. 

2. Lemma:Let E, F, G, H, I and J are six self maps of a metric space ( , )X d  satisfying 

( ) ( ) ( ) ( )E X IJ X and F X GH X       (2.1) 

( , )[1 ( , )]
( , ) ( , )

[1 ( , )]

d IJy Fy d GHx Ex
d Ex Fy d GHx IJy

d GHx IJy
 

+
 +

+
   (2.2) 

for all x,y in X where , 0, 1.    + 
 

Furtherif X is complete, then for any 0x X and for any of its associated sequence 

0 1 2 3 2 2 1, , , ,......... , .....n nEx Fx Ex Fx Ex Fx +
converges to some point p in X . 

Proof: From the conditions (2.1) and (2.2) we have 
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2 2 1 2 2 1

2 1 2 1 2 2

2 2 1

2 2 1

2 2 1 2 1 2

2 1 2

2 1 2

2 , 2 1 2 1 2

( , ) ( , )

( , )[1 ( , )]
( , )

[1 ( , )]

( , )[1 ( , )]
( , )

[1 ( , )]

( ) ( , )  and so tha

n n n n

n n n n

n n

n n

n n n n

n n

n n

n n n n

d y y d Ex Fx

d IJx Fx d GHx Ex
d GHx IJy

d GHx IJy

d y y d y y
d y y

d y y

d y y d y y

 

 

 

+ +

+ +

+

+

+ −

−

−

+ −

=

+
 +

+

+
= +

+

= + t

 

2 2 1 2 1 2(1 ) ( , ) ( , )n n n nd y y d y y + −− 

2 2 1 2 1 2 2 1 2( , ) ( , ) ( , ),
(1 )

n n n n n nd y y d y y hd y y



+ − − =

−
where

1
h




=

−
 

That is 2 , 2 1 2 1 2  ( ) ( , )n n n nd y y h y y+ −   (2.3) 

Similarly, we can prove that 2 1 2 2 2 2 1( , ) ( , )n n n nd y y hd y y+ + + .  (2.4) 

Hence, from (2.3) and (2.4), we get 

2

1 1 2 1 0 1( , ) ( , ) ( , ) ....... ( , ).n

n n n n n nd y y hd y y h d y y h d y y+ − − −   
 (2.5)

 
Now for any positive integer k, we have

 

1 1 2 1

1 1

0 1 0 1 0 1

1 1

0 1

2 1

0 1

( , ) ( , ) ( , ) ........ ( , )

( , ) ( , ) ........ ( , )

( ......... ) ( , )

(1 ....... ) ( , )

n n k n n n n n k n k

n n n k

n n n k

n k

d y y d y y d y y d y y

h d y y h d y y h d y y

h h h d y y

h h h h d y y

+ + + + + − +

+ + −

+ + −

−

 + + +

 + + +

= + + +

= + + + +

 

0 1( , ) 0   as  n ,since h<1
1

nh
d y y

h
 → →

−
. 

So that ( , ) 0.n n kd y y + →
 

Thus the sequence { }ny is a Cauchy sequence in X.  Since X is a complete, it converges to some 

pointp in X. 

2.6 Remark: The converse of the above Lemma is not true.  That is, if E, F, G, H, I and J are self 

maps of metric space(X, d) satisfying (2.1), (2.2) and even if for any 0x  in X and for any of its 

associated sequence of converges. The metric space need not be complete. This can be seen from 

the following example. 

2.7 Example: Let X=(-1, 1] with the usual metric ( , )d x y x y= −   for all x, yX.Define self 

mappings E, F, G, H, I and J of  X by 
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1 1 1 1
1 1

8 8 9 8
( ) ( ) , ( )

1 1 1 1
1 1

9 8 4 8

1 1
1

9 8
( ) ( ) 1 1 , ( )

8 7 1
1

64 8

if x if x

E x F x J x

if x x if x

if x

I x G x x if x H x
x

if x

 
−   −    

= = = 
   −  
  


−  

= = −   = 
+  


 

1 1 1 1
1 1

9 8 9 8
( ) , ( ) .

1 1 8 7 1
1 1

4 8 64 8

1 1 3 1 3 1
( ) ( ) , , ( ) , , ( ) ,

8 9 4 8 4 8

Then

if x if x

IJ x GH x
x

x if x if x

E x F x J x IJ x

 
−   −    

= = 
+ −    

  

− −     
= = = =     

     

 

and

1 3 1 1 3 1
H(x)= , , ( ) ,

9 4 8 9 4 8
GH x

− −       
=      

       

 

Clearly ( ) ( ), ( ) ( ).E X IJ X F X GH X   Also the inequality (2.2) can easily be verified for 

appropriate values of , 0, 1.    +   Moreover if we take
1 1

8 2
nx

n
= +  for 1n   then the 

associated sequence
0 1 2 3 2 2 1, , , ,.... , .....n nEx Fx Ex Fx Ex Fx +

 converges to
1

8
. Note that (X, d) is not 

complete. 

The following theorem was proved in [5]. 

2.8 Theorem: Let P, Q, S and T be self mappings from a complete metric space ( , )X d into itself 

satisfying the following conditions  

( ) ( ) ( ) ( )S X Q X and T X P X        (2.8.1) 

( , )[1 ( , )]
( , ) ( , )

[1 ( , )]

d Qy Ty d Px Sx
d Sx Ty d Px Qy

d Px Qy
 

+
 +

+
    (2.8.2)  

for all , , 0, 1.x y in X where    +   

one of P, Q, S and T is continuous and      (2.8.3) 

the pairs (S, P) and (T, Q) are compatible on X.      (2.8.4) 

Then P, Q, S and T have a unique common fixed point in X. 
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Now we extend and generalize the above Theorem to six self maps as follows. 

 

3. Main result 

3.1 Theorem: If E, F, G, H, I and J are self maps of a metric space ( , )X d satisfying the 

conditions 

( ) ( ) ( ) ( )E X IJ X and F X GH X        (3.1.1) 

( , )[1 ( , )]
( , ) ( , )

[1 ( , )]

d IJy Fy d GHx Ex
d Ex Fy d GHx IJy

d GHx IJy
 

+
 +

+
   (3.1.2)  

for all , , 0, 1.x y in X where    + 
 

IJ=JI, GH=HG, HE=EH, FJ=JF, (GH)E=E(GH) and (IJ)F=F(IJ)    (3.1.3) 

the pairs (E, GH) and (F, IJ) are  weakly compatible  on X    (3.1.4) 

IJ(x) and GH(x) are closed in X       (3.1.5) 

Further if there is a point 0x X and its associated sequence 

0 1 2 3{ } { , , , ..............}ny Ex Fx Ex Fx= relative to six self maps E, F, G, H, I and J converges to some 

point pX, then p is a unique common fixed point of E, F, G, H, I and J.  (3.1.6) 

Proof: From (3.1.6), we 

have 2 2 1 2 1 2 2, , , .n n n nEx p IJx p Fx p and GHx p asn+ + +→ → → → →   (3.1.7) 

Suppose IJ(x) is closed in X. Then there exists u X  such that 

p = IJu = 
2 1lim n

n
IJx +

→
         (3.1.8) 

Now from (3.1.2), we obtain 

 
 

2 2

2 2

2

( , ) 1 ( , )
( , ) ( , )

1 ( , )

n n

n n

n

d IJu Fu d GHx Ex
d Ex Fu d GHx IJu

d GHx IJu
 

+
 +

+
 

 
 

( , ) 1 ( , )
( , ) ( , )

1 ( , )

d p Fu d p p
d p Fu d p p

d p p
 

+
 +

+
 

(1 - α) ( , )d p Fu  0 

( , )d p Fu  0 since α, β   0, α + β < 1 and this implies Fu = p. 

Hence p = Fu = IJu.          (3.1.9) 

Since (F, IJ) is weakly compatible, we have (IJ)Fu = F(IJ)u. Thus IJp =Fp.          (3.1.10) 

Again from (3.1.2), we obtain 
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 
 

2 2

2 2

2

( , ) 1 ( , )
( , ) ( , )

1 ( , )

n n

n n

n

d IJp Fp d GHx Ex
d Ex Fp d GHx IJp

d GHx IJp
 

+
 +

+
 

 
 

( , ) 1 ( , )
( , ) ( , )

1 ( , )

d p Fp d p p
d p Fp d p Fp

d p Fp
 

+
 +

+
 

(1 - β) d (p, Fp)   0, 

(p, Fp)   0, since α, β   0, α + β < 1 and this implies Fp = p. 

Hence p= Fp = IJp.          (3.1.11) 

So from equation (3.1.2), we obtain 

 
 

2 2

2 2

2

(( ) , ) 1 ( , )
( , ) ( , ( ) )

1 ( , ( ) )

n n

n n

n

d IJ Jp FJp d GHx Ex
d Ex FJp d GHx IJ Jp

d GHx IJ Jp
 

+
 +

+
 

 
 

( , ) 1 ( , )
( , ) ( , )

1 ( , )

d Jp Jp d p p
d p Jp d p Jp

d p Jp
 

+
 +

+
 

(1 ) ( , ) 0d p Jp−  , 

( , ) 0d p Jp  , since α, β   0, α + β < 1 and this implies Jp = p. 

Thus IJp = p  Ip =p. 

Hence Fp = Jp = Ip = p.          (3.1.12) 

Now since GH(X) is closed, we can find v X  such that 

P = GHv = 
2 1n

n
lin GHx +
→

         (3.1.13) 

So from (3.1.2), we obtain 

 
 

2 1 2 1

2 1 2 1

2 1

( , ) 1 ( , )
( , ) ( , )

1 ( , )

n n

n n

n

d IJx Fx d GHv Ev
d Ev Fx d GHv IJx

d GHv IJx
 

+ +

+ +

+

+
 +

+
 

 
 

( , ) 1 ( , )
( , ) ( , )

1 ( , )

d p p d p Ev
d Ev p d p p

d p p
 

+
 +

+
 

( , )d Ev p   0, 

( , )d Ev p   0 since α, β   0, α + β < 1 and so that Ev = p. 

Hence p = Ev = GHv.          (3.1.14) 

Since (E, GH) is weakly compatible, we have (GH)Ev = E(GH)v. Thus GHp =Ep.  (3.1.15) 

Therefor from (3.1.2), we obtain 

 
 

2 1 2 1

2 1 2 1

2 1

( , ) 1 ( , )
( , ) ( , )

1 ( , )

n n

n n

n

d IJx Fx d GHp Ep
d Ep Fx d GHp IJx

d GHp IJx
 

+ +

+ +

+

+
 +

+
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 
 

( , ) 1 ( , )
( , ) ( , )

1 ( , )

d p p d Ep Ep
d Ep p d Ep p

d Ep p
 

+
 +

+  

(1 ) ( , )d Ep p−  0, 

( , ) 0d Ep p  ,since α, β   0, α + β < 1 and  so that Ep = p. 

Hence p = Ep = GHp.         (3.1.16) 

So from equation (3.1.2), we obtain 

 
 

2 1 2 1

2 1 2 1

2 1

( , ) 1 (( ) , )
( , ) (( ) , )

1 (( ) , )

n n

n n

n

d IJx Fx d GH Hp EHp
d EHp Fx d GH Hp IJx

d GH Hp IJx
 

+ +

+ +

+

+
 +

+
 

 
 

( , ) 1 ( , )
( , ) ( , )

1 ( , )

d p p d Hp Hp
d Hp p d Hp p

d Hp p
 

+
 +

+
 

( , ) ( , )d Hp p d Hp p  

(1 ) ( , ) 0d Hp p−  ,  

( , ) 0d Hp p  ,since α , β   0, α + β < 1 and   so that Hp = p. 

Thus GHp = p  Gp = p. 

Hence Ep = Hp = Gp = p. 

Therefore Ep = Fp = Gp = Hp = Ip = Jp =p, showing that p is a common fixed point of E, F, G, 

H, I and J. The uniqueness of fixed point can be proved easily. 

 

If I = J and G = H, we get the following result. 

3.2 Corollary: Let E, F, G and I be self mappings from a metric space(X, d) into it self 

satisfying the following conditions. 

( ) ( ) ( ) ( )E X I X and F X G X         (3.2.1) 

( , )[1 ( , )]
( , ) ( , )

[1 ( , )]

d Iy Fy d Gx Ex
d Ex Fy d Gx Iy

d Gx IJy
 

+
 +

+
     (3.2.2)  

for all , , 0, 1.x y in X where    +   

the pairs (E, G) and (F, I) are  weakly compatible  on X     (3.2.3) 

I(x) and G(x) are closed in X         (3.2.4) 

Further if there is a point 0x X and its associated sequence 

0 1 2 3{ } { , , , ..............}ny Ex Fx Ex Fx= relative to four self maps E, F, G and I converges to some 

point pX, then p is a unique common fixed point of E, F, G and I. 
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3.3 Remark 

  In the example (2.7), the self maps E, F, G, H, I and J satisfy all the conditions of the Theorem 

(3.1). It may be noted that '
1

8
' is the unique common fixed point of E, F, G, H, I and J. 
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