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Abstract. In this paper, using P-η-proximal mapping, we study the existence and sensitivity analysis of solution

of a parametric generalized variational-like inequality problem in uniformly smooth Banach space. The approach

used in this paper may be treated as an extension and unification of approaches for studying sensitivity analysis

of solution for various important classes of variational inequalities (inclusions) given by many authors, see for

example [2-7,9-11,13-16,18,19].
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1. INTRODUCTION

In recent years, much attention has been given to develop general techniques for the sen-

sitivity analysis of solution of various classes of variational inequalities (inclusions). From the
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mathematical and engineering point of view, sensitivity properties of various classes of varia-

tional inequalities can provide new insight concerning the problem being studied and can stim-

ulate ideas for solving problems. The sensitivity analysis of solution for variational inequalities

have been studied extensively by many authors using quite different techniques. By using the

projection technique, Dafermos [3], Ding and Luo [6], Mukherjee and Verma [14], Parida et

al. [17], Park and Jeong [18] and Yen [19] studied the sensitivity analysis of solution of some

classes of variational inequalities with single-valued mappings. By using proximal (resolvent)

mapping technique, Adly [1], Agarwal et al. [2], Ding [4] and Noor [15] studied the sensitivity

analysis of solution of some classes of variational inclusions with single-valued mappings.

Recently, by using projection and proximal mapping techniques, Ding [5], Kazmi and

Bhat [9], Kazmi and Khan [10,11], Lim [12], Liu et al. [13] and Noor [16] studied the behavior

and sensitivity analysis of solution set for some important classes of parametric variational

inequalities (inclusions) with single and set-valued mappings. It is worth mentioning that most

of the results in this direction have been obtained in the setting of Hilber space.

Inspired by recent research works in this area, in this paper, we consider a parametric

generalized variational-like inequality problem (in short, PGVLIP) in uniformly smooth Banach

space. Further, using P-η-proximal mapping, we study the existence and sensitivity analysis of

solution of PGVLIP. Our results extend, improve, and unify the corresponding results given by

many authors, see for example [2-7,9-11,13-16,18,19].

2. PRELIMINARIES

We assume that E is a real Banach space equipped with norm ‖·‖. Let 〈·, ·〉 denote the dual

pair between E and its dual space E∗ and let J : E → 2E∗ be the normalized duality mapping

defined by

J(u) = { f ∈ E∗ : 〈u, f 〉 = ‖u‖2, ‖u‖ = ‖ f‖E∗}, u ∈ E. (2.1)

We note that if E is smooth, then J is single-valued and if E ≡ H, a Hilbert space, then J is the

identity map on H. In sequel, we shall denote a selection of normalized duality mapping J by

j.
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First, we recall the following concepts and results.

Definition 2.1[9]. Let P : E → E∗, g : E → E, and η : E×E → E be single-valued mappings.

Then

(i) P is said to be α-strongly η-monotone, if there exists a constant α > 0 such that

〈P(u)−P(v),η(u,v)〉 ≥ α‖u− v‖2, ∀u,v ∈ E;

(ii) g is said to be β -strongly accretive, if there exists a constant β > 0 and for any u,v ∈ E,

j(u− v) ∈ J(u− v) such that

〈g(u)−g(v), j(u− v)〉 ≥ β‖u− v‖2;

(iii) η is said to be τ-Lipschitz continuous, if there exists a constant τ > 0 such that

‖η(u,v)‖ ≤ τ‖u− v‖, ∀u,v ∈ E.

Definition 2.2[4]. Let η : E×E→ E be a single-valued mapping. A proper functional φ : E→

R∪{+∞} is said to be η-subdifferentiable at a point u ∈ E, if there exists a point f ∗ ∈ E∗ such

that

φ(v)−φ(u)≥ 〈 f ∗,η(v,u)〉, ∀v ∈ E,

where f ∗ is called η-subgradient of φ at u. The set of all η-subgradients of φ at u is denoted by

∂ηφ(u). The mapping ∂ηφ : E→ 2E∗ defined by

∂ηφ(u) = { f ∗ ∈ E∗ : φ(v)−φ(u)≥ 〈 f ∗,η(v,u)〉, ∀v ∈ E} (2.2)

is said to be η-subdifferential of φ at u.

Definition 2.3[8]. A functional φ : E×E→R∪{+∞} is said to be 0-diagonally quasi-concave

(0-DQCV) in u, if for any finite set {u1, ...,un} ⊂ E and for any v = ∑
n
i=1 λiui with λi ≥ 0 and

∑
n
i=1 λi = 1, min1≤i≤n φ(ui,v)≤ 0 holds.

Definition 2.4[9]. Let η : E×E → E be a single-valued mapping. Let φ : E → R∪{+∞} be

a lower semicontinuous, η-subdifferentiable (may not be convex) and proper functional and let
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P : E → E∗ be a nonlinear mapping. If for any given point u∗ ∈ E∗ and ρ > 0, there exists a

unique point u ∈ E satisfying

〈P(u)−u∗,η(v,u)〉+ρφ(v)−ρφ(u)≥ 0, ∀v ∈ E,

then the mapping u∗ 7→ u, denoted by P∂η φ

ρ (u∗), is called P-η-proximal mapping of φ . Clearly,

u∗−P(u) ∈ ρ∂ηφ(u) and then it follow that

P∂η φ

ρ (u∗) = (P+ρ∂ηφ)−1(u∗). (2.3)

Remark 2.1[9].

(i) If η(v,u) = v−u, for all u,v ∈ E and φ is a lower semicontinuous and proper functional

on E, then the P-η-proximal mapping of φ reduces to the P-η-proximal mapping of φ

discussed by Ding and Xia [7].

(ii) If E = H, a Hilbert space, η(v,u) = v− u, for all u,v ∈ H and φ is a convex, lower

semicontinuous and proper functional on E, and P is the identity mapping on H, then

the P-η-proximal mapping of φ reduces to the usual proximal (resolvent) mapping of φ

on Hilbert space.

Lemma 2.1[9]. Let E be a real reflexive Banach space; let η : E ×E → E be a continuous

mapping such that η(v,v
′
)+η(v

′
,v), for all v,v

′ ∈ E; let P : E→ E∗ be α-strongly η-monotone

continuous mapping; let, for any given u∗ ∈ E∗, the function h(v,u) = 〈u∗−P(u),η(v,u)〉 be

0-DQCV in v and let φ : E → R∪{+∞} be a lower semicontinuous, η-subdifferentiable and

proper functional on E. Then for any given constant ρ > 0 and u∗ ∈ E∗, there exists a unique

u ∈ E such that

〈P(u)−u∗,η(v,u)〉 ≥ ρφ(u)−ρφ(v), ∀v ∈ E, (2.4)

that is, u = P∂η φ

ρ (u∗).

Remark 2.2[9]. Lemma 2.1 shows that for any strongly monotone continuous mapping P :

E → E∗ and ρ > 0, the P-η-proximal mapping P∂η φ

ρ : E∗→ E of a lower semicontinuous, η-

subdifferentiable and proper functional φ is well defined and for each u∗ ∈ E∗, u = P∂η φ

ρ (u∗) is

the unique solution of the problem (2.4).
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Lemma 2.2[9]. Let E be a real reflexive Banach space and let η : E×E→E be τ-Lipschitz con-

tinuous such that η(v,v
′
)+η(v

′
,v), for all v,v

′ ∈ E; let P : E → E∗ be α-strongly η-monotone

continuous mapping; let, for any given u∗ ∈ E∗, the function h(v,u) = 〈u∗−P(u),η(v,u)〉 be

0-DQCV in v; let φ : E→R∪{+∞} be a lower semicontinuous, η-subdifferentiable and proper

functional on E and let ρ > 0 be any given constant. Then P-η-proximal mapping P∂η φ

ρ of φ is
τ

δ
-Lipschitz continuous.

Throughout the rest of the paper unless otherwise stated, let E be a real uniformly smooth

Banach space with ρE(q) ≤ cq2 for some c > 0, where the modulus of smoothness of E is the

function ρE : [0,∞)→ [0,∞), defined below in the Lemma 2.3.

Lemma 2.3[4,11]. Let E be a real uniformly smooth Banach space and let J : E → E∗ be the

normalized duality mapping. Then, for all u,v ∈ E, we have

(a) ‖u+ v‖2 ≤ ‖u‖2 +2〈v,J(u+ v)〉;

(b) 〈u− v,J(u)− J(v)〉 ≤ 2d2ρE(4‖u− v‖/d), where d =
√

(‖u‖2 +‖v‖2)/2,

ρE(q) = sup
{

(‖u‖+‖v‖)
2 −1 : ‖u‖= 1, ‖v‖= q

}
.

3. FORMULATION OF PROBLEM

Let T,A,S : E → E∗, g : E → E, η : E ×E → E, N : E∗×E∗×E∗ → E∗ be nonlinear

mappings. Assume that φ : E×E→ R∪{+∞} is a lower semicontinuous, η-subdifferentiable

(may not be convex) and proper functional such that g(u) ∈ ∂ηφ(u,z), for all u,z ∈ E, then we

consider the following generalized variational-like inequality problem (in short, GVLIP): find

u ∈ E such that

〈N(T (u),A(u),S(u)),η(v,g(u))〉+φ(v,u)−φ(g(u),u)≥ 0, ∀v ∈ E. (3.1)

For a suitable choices of mappings T,A,S,N,P,g,P ◦ g,φ ,η and the space E, it is easy to

see that GVLIP (3.1) includes a number of known classes of variational inequalities studied by

many authors as special cases, see for example [3,6,11,12,14,17-19].

Next, we consider the parametric problem corresponding to GVLIP (3.1).
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Let Ω be a nonempty open subset of E in which the parameter λ takes the values. Let

T,A,S : E×Ω→ E∗, g : E×Ω→ E, η : E×E → E, N : E∗×E∗×E∗×Ω→ E∗ be single-

valued mappings. Assume that φ : E × E ×Ω→ R∪ {+∞} is a lower semicontinuous, η-

subdifferentiable (may not be convex) and proper functional such that g(u,λ )∈ ∂ηφ(u,v,λ ), for

all u,v∈E, λ ∈Ω. We consider the following parametric generalized variational-like inequality

problem (in short, PGVLIP): find u ∈ E such that

〈N(T (u,λ ),A(u,λ ),S(u,λ ),λ ),η(v,g(u,λ ))〉+φ(v,u,λ )−φ(g(u,λ ),u,λ )≥ 0, ∀v ∈ E. (3.2)

The aim of this paper is to study the existence and sensitivity analysis of the solution for

PGVLIP (3.2), and the conditions on these mappings T,A,S,N,P,g,P◦g,φ ,η , under which the

solution of PGVLIP (3.2) is nonempty and Lipschitz continuous with respect to the parameter

λ ∈Ω.

4. EXISTENCE AND SENSITIVITY ANALYSIS OF SOLUTION

First, we prove the following technical lemma.

Lemma 4.1. u ∈ E is the solution of PGVLIP (3.2) if and only if it satisfies the relation

g(u,λ ) = P∂η φ(·,u,λ )
ρ [P◦g(u,λ )−ρN(T (u,λ ),A(u,λ ),S(u,λ ),λ )], (4.1)

where P∂η φ(·,u,λ )
ρ = (P + ρ∂ηφ(·,u,λ ))−1 is the P-η-proximal mapping of φ for each fixed

u ∈ E, λ ∈Ω, P : E→ E∗, P◦g(·,λ ) denotes P composition g(·,λ ), and ρ > 0 is a constant.

Proof. Assume that u ∈ E satisfies (4.1), that is,

g(u,λ ) = P∂η φ(·,u,λ )
ρ [P◦g(u,λ )−ρN(T (u,λ ),A(u,λ ),S(u,λ ),λ )]. (4.2)

Since P∂η φ(·,u,λ )
ρ = (P+ρ∂ηφ(·,u,λ ))−1, the above relation holds if and only if

P◦g(u,λ )−ρN(T (u,λ ),A(u,λ ),S(u,λ ),λ ) ∈ P◦g(u,λ )+ρ∂ηφ(g(u,λ ),u,λ ). (4.3)

By the definition of η-subdifferential of φ(g(u,λ ),u,λ ), the above inclusion holds if and only

if

φ(v,u,λ )−φ(g(u,λ ),u,λ )≥ 〈N(T (u,λ ),A(u,λ ),S(u,λ ),λ ),η(v,g(u,λ ))〉, ∀v ∈ E, (4.4)

that is, u ∈ E is the solution of PGVLIP (3.2). This completes the proof.



PARAMETRIC GENERALIZED VARIATIONAL-LIKE INEQUALITY PROBLEM 7

Now, assume that for some λ̄ ∈Ω, PGVLIP (3.2) has a solution ū and K is a closed sphere

in E centered at ū. We are interested in investigating those conditions under which, for each λ

in a neighborhood of λ̄ , PGVLIP (3.2) has a unique solution u(λ ) near ū and the solution u(λ )

is Lipschitz continuous.

Next, we define the following concepts.

Definition 4.1. A mapping g : K×Ω→ E is said to be

(i) locally β -strongly accretive, if there exists a constant β > 0 such that

〈g(u,λ )−g(v,λ ),J(u− v)〉 ≥ β‖u− v‖2, ∀u,v ∈ K, λ ∈Ω;

(ii) locally (Lg, lg)-mixed Lipschitz continuous, if there exist constants Lg, lg > 0 such that

‖g(u,λ )−g(v, λ̃ )‖ ≤ Lg‖u− v‖+ lg‖λ − λ̃‖, ∀u,v ∈ K, λ , λ̃ ∈Ω.

Definition 4.2. Let P : E→ E∗, g : K×Ω→ E, T,A,S : K×Ω→ E∗, N : E∗×E∗×E∗×Ω→

E∗. Then N is said to be

(i) locally α-strongly P ◦ g-accretive with respect to T , A and S, if there exists a constant

α > 0 such that

〈N(T (u,λ ),A(u,λ ),S(u,λ ),λ )−N(T (v,λ ),A(v,λ ),S(v,λ ),λ ),J∗(P◦g(u,λ )−P◦g(v,λ ))〉

≥ α‖u− v‖2, ∀u,v ∈ K, λ ∈Ω,

where J∗ : E∗→ E is a normalized duality mapping;

(ii) locally (L(N,1),L(N,2),L(N,3), lN)-mixed Lipschitz continuous, if there exist constants

L(N,1),L(N,2),L(N,3), lN > 0 such that

‖N(u1,v1,w1,λ )−N(u2,v2,w2, λ̃ )‖ ≤ L(N,1)‖u1−u2‖+L(N,2)‖v1− v2‖+L(N,3)‖w1−w2‖

+lN‖λ − λ̃‖|, ∀u1,u2,v1,v2,w1,w2 ∈ K, λ , λ̃ ∈Ω.

Using the technique of Dafermos [3], we consider the mapping F(·,λ ) : K×Ω→E defined

by

F(u,λ ) := u−g(u,λ )+P∂η φ(·,u,λ )
ρ [P◦g(u,λ )−ρN(T (u,λ ),A(u,λ ),S(u,λ ),λ )]. (4.5)
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Remark 4.1. It follows from Lemma 4.1 that the fixed point of the mapping F defined by (4.5)

is the solution of PGVLIP (3.2).

Now, we show that the mapping F(u,λ ) defined by (4.5) is a contraction mapping with

respect to u uniformly in λ ∈Ω.

Theorem 4.1. Let E be a real uniformly smooth Banach space with ρE(q) ≤ cq2 for some

c > 0. Let the mapping g : K×Ω→ E be locally β -strongly accretive and locally (Lg, lg)-mixed

Lipschitz continuous. Let T,A,S : K×Ω→ E∗ be the mappings such that T,A and S are locally

Lipschitz continuous in the first argument with constants LT ,LA and LS, respectively; let η : E×

E→ E be τ-Lipschitz continuous such that η(u,v)+η(v,u) = 0, for all u,v∈ E and let P : E→

E∗ be δ -strongly η-monotone continuous mapping; the function h(v,u) = 〈u∗−P(u),η(v,u)〉

be 0-DQCV in v. Let φ : E×E→R∪{+∞} be a lower semicontinuous, η-subdifferentiable and

proper functional such that g(u,λ )∈ ∂ηφ(u,v,λ ), for all u,v∈ E, λ ∈Ω; let P◦g : K×Ω→ E∗

be locally (LP◦g, lP◦g)-mixed Lipschitz continuous. Let N : E∗×E∗×E∗×Ω→E∗ be locally α-

strongly P◦g-accretive with respect to T , A and S, and locally (L(N,1),L(N,2),L(N,3), lN)-mixed

Lipschitz continuous. Suppose that there exist some real constants k1 > 0 and ρ > 0 such that

‖P∂η φ(·,u1,λ )
ρ (z)−P∂η φ(·,u2,λ )

ρ (z)‖ ≤ k1‖u1−u2‖, ∀u1,u2 ∈ E,z ∈ E∗,λ ∈Ω. (4.6)

Then for each u1,u2 ∈ E, λ ∈Ω,

‖F(u1,λ )−F(u2,λ )‖ ≤ θ‖u1−u2‖, (4.7)

where θ := l + τ

δ
t(ρ) ∈ (0,1) ; l := k1 +

√
1−2β +64cL2

g ;

t(ρ) :=
√

L2
P◦g−2ρα +64cρ2L2

N ; LN := (L(N,1)LT +L(N,2)LA +L(N,3)LS), that is,

F is θ -contraction uniformly in λ ∈Ω.

Proof. For all u1,u2 ∈ E, λ ∈ Ω, using condition(4.6), locally (LP◦g, lP◦g)-mixed Lipschitz

continuity of P◦g and locally LT -Lipschitz continuity of T , we have

‖F(u1,λ )−F(u2,λ )‖

= ‖u1−g(u1,λ )+P∂η φ(·,u1,λ )
ρ [P◦g(u1,λ )−ρN(T (u1,λ ),A(u1,λ ),S(u1,λ ),λ )]
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−
[
u2−g(u2,λ )+P∂η φ(·,u2,λ )

ρ [P◦g(u2,λ )−ρN(T (u2,λ ),A(u2,λ ),S(u2,λ ),λ )]
]∥∥∥

≤‖u1−u2−(g(u1,λ )−g(u2,λ ))‖

+
∥∥∥P∂η φ(·,u1,λ )

ρ [P◦g(u1,λ )−ρN(T (u1,λ ),A(u1,λ ),S(u1,λ ),λ )]

−P∂η φ(·,u2,λ )
ρ [P◦g(u1,λ )−ρN(T (u1,λ ),A(u1,λ ),S(u1,λ ),λ )]

∥∥∥
+
∥∥∥P∂η φ(·,u2,λ )

ρ [P◦g(u1,λ )−ρN(T (u1,λ ),A(u1,λ ),S(u1,λ ),λ )]

−P∂η φ(·,u2,λ )
ρ [P◦g(u2,λ )−ρN(T (u2,λ ),A(u2,λ ),S(u2,λ ),λ )]

∥∥∥
≤‖u1−u2−(g(u1,λ )−g(u2,λ ))‖+k1‖u1−u2‖+

τ

δ

[∥∥∥P◦g(u1,λ )−P◦g(u2,λ )

−ρ[N(T (u1,λ ),A(u1,λ ),S(u1,λ ),λ )−N(T (u2,λ ),A(u2,λ ),S(u2,λ ),λ )]
∥∥∥]. (4.8)

Using Lemma 2.3, locally β -strongly accretiveness and locally (Lg, lg)-mixed Lipschitz conti-

nuity of g, we have

‖u1−u2−(g(u1,λ )−g(u2,λ ))‖2

≤‖u1−u2‖2−2〈g(u1,λ )−g(u2,λ ),J(u1−u2−(g(u1,λ )−g(u2,λ )))〉

≤ ‖u1−u2‖2−2〈g(u1,λ )−g(u2,λ ),J(u1−u2)〉

+2〈g(u1,λ )−g(u2,λ ),J(u1−u2)− J(u1−u2− (g(u1,λ )−g(u2,λ )))〉

≤ (1−2β )‖u1−u2‖2+64c‖g(u1,λ )−g(u2,λ )‖2

≤ (1−2β +64cL2
g)‖u1−u2‖2. (4.9)

Since N is locally α-strongly P ◦ g-accretive with respect to T , A and S, and locally

(L(N,1),L(N,2),L(N,3), lN)-mixed Lipschitz continuous; T,A,S are locally LT -Lipschitz contin-

uous, locally LA-Lipschitz continuous and locally LS-Lipschitz continuous, respectively, we

have

‖N(T (u1,λ ),A(u1,λ ),S(u1,λ ),λ )−N(T (u2,λ ),A(u2,λ ),S(u2,λ ),λ )‖

≤ L(N,1)‖T (u1,λ )−T (u2,λ )‖+L(N,2)‖A(u1,λ )−A(u2,λ )‖+L(N,3)‖S(u1,λ )−S(u2,λ )‖

≤ L(N,1)LT‖u1−u2‖+L(N,2)LA‖u1−u2‖+L(N,3)LS‖u1−u2‖

≤ (L(N,1)LT +L(N,2)LA +L(N,3)LS)‖u1−u2‖. (4.10)
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Since P◦g is locally (LP◦g, lP◦g)-mixed Lipschitz continuous, using Lemma 2.3, we have

‖P◦g(u1,λ )−P◦g(u2,λ )−ρ[N(T (u1,λ ),A(u1,λ ),S(u1,λ ),λ )−N(T (u2,λ ),A(u2,λ ),S(u2,λ ),λ )]‖2

≤‖P◦g(u1,λ )−P◦g(u2,λ )‖2

−2ρ〈N(T (u1,λ ),A(u1,λ ),S(u1,λ ),λ )−N(T (u2,λ ),A(u2,λ ),S(u2,λ ),λ ),J∗(P◦g(u1,λ )−P◦g(u2,λ ))〉

+2ρ〈N(T (u1,λ ),A(u1,λ ),S(u1,λ ),λ )−N(T (u2,λ ),A(u2,λ ),S(u2,λ ),λ ),J∗(P◦g(u1,λ )−P◦g(u2,λ ))

−J∗(P◦g(u1,λ )−P◦g(u2,λ )−ρ[N(T (u1,λ ),A(u1,λ ),S(u1,λ ),λ )−N(T (u2,λ ),A(u2,λ ),S(u2,λ ),λ )])〉

≤ (L2
P◦g−2ρα)‖u1−u2‖2

+64cρ
2‖N(T (u1,λ ),A(u1,λ ),S(u1,λ ),λ )−N(T (u2,λ ),A(u2,λ ),S(u2,λ ),λ )‖2. (4.11)

Now, from (4.8)-(4.11), we have

‖F(u1,λ )−F(u2,λ )‖ ≤ θ‖u1−u2‖, (4.12)

where θ := l + τ

δ
t(ρ) ; l := k1 +

√
1−2β +64cL2

g ;

t(ρ) :=
√

L2
P◦g−2ρα +64cρ2L2

N ; LN :=(L(N,1)LT +L(N,2)LA+L(N,3)LS).

Next, we have to show that θ < 1. It is clear that t(ρ) assumes its minimum value for ρ̃ =

α/64cL2
N with t(ρ̃) =

√
L2

P◦g− (α2/64cL2
N), where LN := (L(N,1)LT + L(N,2)LA + L(N,3)LS).

For ρ = ρ̃, l + τ

δ
t(ρ)< 1→ l < 1, then it follows that θ < 1 for all ρ satisfying (4.7). Hence,

it follows that F defined by (4.5) is a θ -contraction mapping uniformly in λ ∈ Ω. Therefore,

invoking Banach contraction principle, F admits a unique fixed point, say u(λ ), which in turn

is a solution of PGVLIP (3.2). This completes the proof.

Remark 4.2. From Theorem 4.1, it is clear that the mapping F defined by (4.5) has a unique

fixed point u(λ ), that is, u(λ ) = F(u,λ ).

It also follows from our assumption that the function ũ for λ = λ̃ is a solution of PGVLIP

(3.2). Again by using Theorem 4.1, we observe that for λ = λ̃ , ũ is a fixed point of F(u,λ ) and

it is a fixed point of F(u, λ̃ ). Consequently, we conclude that

u(λ̃ ) = ũ = F(u(λ̃ ), λ̃ ). (4.13)
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Next, using Theorem 4.1, we show the Lipschitz continuity of the solution u(λ ) of PGVLIP

(3.2).

Theorem 4.2. Let the mappings T,A,S,N,P,g,h,P◦g be same as in Theorem 4.1 and let condi-

tions (4.6)-(4.7) of Theorem 4.1 hold. Suppose that λ → P∂η φ(·,u,λ )
ρ is k2-Lipschitz continuous

at λ = λ̃ , then the function u(λ ) is Lipschitz continuous at λ = λ̃ .

Proof. For all λ , λ̃ ∈Ω, using (4.13) and Theorem 4.1, we have

‖u(λ )−u(λ̃ )‖= ‖F(u(λ ),λ )−F(u(λ̃ ), λ̃ )‖

≤ ‖F(u(λ ),λ )−F(u(λ̃ ),λ )‖+‖F(u(λ̃ ),λ )−F(u(λ̃ ), λ̃ )‖

≤ θ‖u(λ )−u(λ̃ )‖+‖F(u(λ̃ ),λ )−F(u(λ̃ ), λ̃ )‖, (4.14)

where θ is given by (4.7). Using (4.5), Lemma 2.2 and the conditions on mappings

T,A,S,N,P,g,h,P◦g and P∂η φ(·,u,λ )
ρ , we have

‖F(u(λ̃ ),λ )−F(u(λ̃ ), λ̃ )‖

=
∥∥∥u(λ̃ )−g(u(λ̃ ),λ )+P∂η φ(·,u(λ̃ ),λ )

ρ [P◦g(u(λ̃ ),λ )−ρN(T (u(λ̃ )),A(u(λ̃ )),S(u(λ̃ )),λ )]

−
[
u(λ̃ )−g(u(λ̃ ), λ̃ )+P∂η φ(·,u(λ̃ ),λ̃ )

ρ [P◦g(u(λ̃ ), λ̃ )−ρN(T (u(λ̃ )),A(u(λ̃ )),S(u(λ̃ )), λ̃ )]
]∥∥∥

≤ lg‖λ− λ̃‖+k2‖λ− λ̃‖+ τ

δ

[
‖P◦g(u(λ̃ ),λ )−P◦g(u(λ̃ ), λ̃ )‖

+ρ‖N(T (u(λ̃ )),A(u(λ̃ )),S(u(λ̃ )),λ )−N(T (u(λ̃ )),A(u(λ̃ )),S(u(λ̃ )), λ̃ )
∥∥∥]

≤ (lg+k2)‖λ− λ̃‖+ τ

δ
[lP◦g‖λ− λ̃‖+ρlN‖λ− λ̃‖]

≤
[
lg + k2 +

(lP◦g +ρlN)τ
δ

]
‖λ − λ̃‖. (4.15)

Combining (4.14) and (4.15), we have

‖u(λ )−u(λ̃ )‖= θ‖u(λ )−u(λ̃ )‖+
[
lg + k2 +

(lP◦g +ρlN)τ
δ

]
‖λ − λ̃‖, (4.16)

which implies

‖u(λ )−u(λ̃ )‖ ≤
[(lg + k2)δ +(lP◦g +ρlN)τ

δ (1−θ)

]
‖λ − λ̃‖. (4.17)

Since θ ∈ (0,1), by the condition (4.7), θ1 := ((lg+k2)δ +(lP◦g+ρlN)τ)/δ (1−θ)> 0. Hence,

it follows from (4.17) that u(λ ) is θ1-lipschitz continuous at λ = λ̃ . This completes the proof.
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Remark 4.3. Since the PGVLIP (3.2) includes many known classes of parametric variational

inequalities as special cases, Theorems 4.1-4.2 improve and generalize the known results given

in [3,6,11,14,17-20].
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