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Abstract. In this paper, we present the best possible two Sándor-Yang means bounds by the one-parameter contra-

harmonic mean. As applications, we find new bounds for the second Seiffert and Neuman-Sándor means.
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1. INTRODUCTION

Let p ∈ [0,1], x,y > 0 with x 6= y and M (x,y) be a one-parameter symmetric bivariate mean.

Then the one-parameter mean M (x,y; p), arithmetic mean A(x,y), quadratic mean Q(x,y),

contra-harmonic mean C (x,y), Neuman-Sándor mean NS (x,y) and second Seiffert mean T (x,y)
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are respectively defined by

M (x,y; p) = M [px+(1− p)y, py+(1− p)x]

A(x,y) =
x+ y

2
,Q(x,y) =

√
x2 + y2

2
,C (x,y) =

x2 + y2

x+ y
,(1.1)

NS (x,y) =
x− y

2sinh−1
(

x−y
x+y

) ,T (x,y) =
x− y

2tan−1
(

x−y
x+y

) .
It is well known that inequalities

(1.2) A(x,y)< NS (x,y)< T (x,y)< Q(x,y)<C (x,y)

hold for all x,y > 0 with x 6= y, and the one-parameter mean M (x,y; p) is continuous and strictly

increasing with respect to p ∈ [0,1] for fixed x,y > 0 with x 6= y.

In[1], Yang introduced the Sándor-Yang mean RAQ (x,y) and RQA (x,y) as follows:

RAQ (x,y) = Q(x,y)eA(x,y)/T (x,y)−1,(1.3)

RQA (x,y) = A(x,y)eQ(x,y)/NS(x,y)−1.(1.4)

Recently, the bivariate means bounds and inequalities have been attracted attention of many

scholars. In particular, many remarkable inequalities involving the Sándor-Yang mean can been

found in the literature[4, 5, 6, 7, 8, 9, 10, 11].

Neuman[2] proved that the inequalities

(1.5) A(x,y)< RAQ (x,y)< RQA (x,y)< Q(x,y)

for all x,y > 0 with x 6= y.

Xu and Qian[3] found that p1 ≤ 1/2 +
√

2eπ/2−2−1/2,q1 ≥ 1/2 +
√

3/6 , p2 ≤ 1/2 +√(
3+2

√
2
)√2
− e2/(2e) and q2 ≥ 1/2+

√
6/6 are the best possible constants such that the

double inequalities

Q(x,y; p1)< RAQ (x,y)< Q(x,y;q1) ,Q(x,y; p2)< RQA (x,y)< Q(x,y;q2)

for all x,y > 0 with x 6= y.
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From (1.1), (1.2) and (1.5) we clearly see that the function r 7→C (x,y;r) is strictly increasing

on [1/2,1] and

(1.6) C (x,y;1/2) = A(x,y)< RAQ (x,y)< RQA (x,y)<C (x,y) =C (x,y;1)

for all x,y > 0 with x 6= y.

Motivated by inequalities (1.6), it is natural to ask “what are the best possible parameters

λ1,λ2,µ1,µ2 ∈ [1/2,1] such that the double inequalities

C (x,y;λ1)< RAQ (x,y)<C (x,y; µ1) ,C (x,y;λ2)< RQA (x,y)<C (x,y; µ2)

for all x,y > 0 with x 6= y?” the main purpose of this paper is to answer this question.

2. LEMMAS

In order to prove the desired theorems we need following eight Lemmas, which we present

in this section.

Lemmas 2.1. (See [12, Theorem 1.25]) For −∞ < a < b < +∞, let f ,g : [a,b]→ R be

continuous on [a,b] and differentiable on (a,b), and g′ (x) 6= 0 on (a,b). If f ′ (x)/g′ (x) is

increasing (decreasing) on (a,b), then so are f (x)− f (a)
g(x)−g(a) and f (x)− f (b)

g(x)−g(b) . If f ′ (x)/g′ (x) is strictly

monotone, then the monotonicity in the conclusion is also strict.

Lemmas 2.2. (See [13, Lemma 1.1]) Suppose that the power series f (x) =
∞

∑
n=0

anxn and

g(x) =
∞

∑
n=0

bnxn have the radius of convergence r > 0 and an,bn > 0 for all n≥ 0. If the sequence

{an/bn} is (strictly) increasing (decreasing) for all n ≥ 0, then the function f (x)/g(x) is also

(strictly) increasing (decreasing) on (0,r).

Lemmas 2.3. The function

f (t) = et cot(t)−1

is strictly decreasing from (0,π/4) onto
(

eπ/4−1,1
)

.

Proof Simple computations yields

(2.1) f (0) = 1, f
(

π

4

)
= eπ/4−1

log f (t) = t cot(t)−1,
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(2.2)
f ′ (t)
f (t)

=
t

sin2 (t)

[
sin(2t)

2t
−1
]

Since the function t 7→ sin(t)/t is strictly decreasing from (0,π/2) onto (2/π,1), hence (2.2)

lead to the conclusion that

(2.3) f ′ (t)< 0

for t ∈ (0,π/4).

Therefore, Lemma2.3 follows easily from (2.1) and (2.3).

Lemmas 2.4. The function

g(t) = sech(t)et coth(t)−1

is strictly decreasing from
(

0, log
(

1+
√

2
))

onto
((

1+
√

2
)√2

/(2e) ,1
)

.

Proof Straightforward computations yields

(2.4) g
(
0+
)
= 1,g

(
log
(

1+
√

2
))

=

(
1+
√

2
)√2

√
2e

,

logg(t) = t coth(t)− log [cosh(t)]−1,

(2.5)
g′ (t)
g(t)

=
t

sinh2 (t)

[
tanh(t)

t
−1
]

It is not difficult to verify that the function t 7→ tanh(t)/t is strictly decreasing from
(

0, log
(

1+
√

2
))

onto
(√

2/
(

2log
(

1+
√

2
))

,1
)

, hence equation (2.5) lead to the conclusion that

(2.6) g′ (t)< 0

for t ∈
(

0, log
(

1+
√

2
))

.

Therefore, part (2) follows easily from (2.4) and (2.6).

Lemmas 2.5. The function

h(t) =
tan(t)− t

2sin(t) tan2 (t)

is strictly decreasing from (0,π/4) onto
(√

2(1−π/4)/2,1/6
)

.
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Proof Let h1 (x) = tan(t)− t and h2 (x) = 2sin(t) tan2 (t).Then elaborated computations

lead to

(2.7) h(x) =
h1 (x)
h2 (x)

=
h1 (x)−h1 (0)
h2 (x)−h2 (0)

,

h′1 (x)
h′2 (x)

=
cos(t)

2 [2+ cos2 (t)]
,

and

(2.8)
[

h′1 (x)
h′2 (x)

]′
=−

sin(t)
[
1+ sin2 (t)

]
2[2+ cos2 (t)]2

< 0

for (0,π/4).

It follows from (2.8) imply that the function h′1 (x)/h′2 (x) is strictly decreasing on (0,π/4).

Note that

(2.9) h
(
0+
)
= lim

t→0+

h′1 (x)
h′2 (x)

=
1
6
,h
(

π

4

)
=

√
2

2

(
1− π

4

)
.

Therefore, Lemma 2.5 follows easily from (2.7), (2.9) and Lemma 2.1 together with the mono-

tonicity of h′1 (x)/h′2 (x).

Lemmas 2.6. The function

k (t) =
sinh(2t)−2t

sinh(3t)−3sinh(t)

is strictly decreasing from
(

0, log
(

1+
√

2
))

onto
((√

2− log
(

1+
√

2
))

/2,1/3
)

.

Proof Making use of power series expansion we get

(2.10) k (t) =

∞

∑
n=0

22n+1

(2n+1)!t
2n+1−2t

∞

∑
n=0

32n+1

(2n+1)!t
2n+1−3

∞

∑
n=0

1
(2n+1)!t

2n+1
=

∞

∑
n=0

22n+3

(2n+3)!t
2n

∞

∑
n=0

32n+3−3
(2n+3)! t2n

Let

(2.11) an =
22n+3

(2n+3)!
,bn =

32n+3−3
(2n+3)!

.

Then

(2.12) an > 0,bn > 0,
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and

(2.13)
an+1

bn+1
− an

bn
=−

22n+3 (5×32n+1 +1
)

(32n+2−1)(32n+4−1)
< 0

for all n≥ 0.

Note that

(2.14) k
(
0+
)
=

a0

b0
=

1
3
,k
[
log
(

1+
√

2
)]

=

√
2− log

(
1+
√

2
)

2
.

Therefore, Lemma 2.6 follows from Lemma 2.2 and (2.10)-(2.14).

Lemmas 2.7. The function

F (t) =
sec(t)et cot(t)−1−1

tan2 (t)

is strictly decreasing from (0,π/4) onto
(√

2eπ/4−1,1/6
)

.

Proof Let F1 (t) = sec(t)et cot(t)−1−1 and F2 (t) = tan2 (t). Then simple computations lead

to

(2.15) F (t) =
F1 (t)
F2 (t)

=
F1 (t)−F1 (0+)
F2 (t)−F2 (0)

,

F ′1 (t)
F ′2 (t)

= et cot(t)−1 cos(t) [sin(t)− t cos(t)]
2sin3 (t)

= et cot(t)−1 tan(t)− t
2sin(t) tan2 (t)

= f (t)h(t)(2.16)

where the functions f (t) and h(t) are defined as in Lemma 2.3 and 2.5, respectively.

Note that

(2.17) F (0) = lim
t→0+

F ′1 (t)
F ′2 (t)

= lim
t→0+

f (t) lim
t→0+

h(t) =
1
6
,

and

(2.18) F
(

π

4

)
=
√

2eπ/4−1−1.

Therefore, Lemma 2.7 follows from Lemma 2.1, 2.3 and 2.5 together with (2.15)-(2.18).

Lemmas 2.8. The function

G(t) =
et coth(t)−1−1

sinh2 (t)



SHARP CONTRA-HARMONIC MEAN BOUNDS FOR THE SÁNDOR-YANG MEANS 7

is strictly decreasing from
(

0, log
(

1+
√

2
))

onto
((

1+
√

2
)√2

/e−1,1/3
)

.

Proof Let G1 (t) = et coth(t)−1−1 and G2 (t) = sinh2 (t).Then elaborated computations lead

to

(2.19) G(t) =
G1 (t)
G2 (t)

=
G1 (t)−G1 (0+)
G2 (t)−G2 (0)

,

G′1 (t)
G′2 (t)

= et coth(t)−1 sinh(t)cosh(t)− t
2sinh3 (t)cosh(t)

= sech(t)et coth(t)−1 sinh(2t)−2t
sinh(3t)−3sinh(t)

= g(t)k (t)(2.20)

where the functions g(t) and k (t) are defined as in Lemma 2.4 and 2.6, respectively.

Note that

(2.21) G(0) = lim
t→0+

G′1 (t)
G′2 (t)

= lim
t→0+

g(t) lim
t→0+

k (t) =
1
3
,

and

(2.22) G
[
log
(

1+
√

2
)]

=
(

1+
√

2
)√2

/e.

Therefore, Lemma 2.8 follows from Lemma 2.1, 2.4 and 2.6 together with (2.19)-(2.22).

3. MAIN RESULTS

Theorem 3.1. Let λ1,µ1 ∈ [1/2,1]. Then the double inequality

C (x,y;λ1)< RAQ (a,b)<C (x,y; µ1)

holds for all x,y > 0 with x 6= y if and only if λ1 ≤ 1/2+
√√

2eπ/4−1−1/2 = 0.6878 · · · and

µ1 ≥ 1/2+
√

6/12 = 0.7041 · · · .

Proof Since RAQ (x,y) and C (x,y) are symmetric and homogenous of degree 1, we assume

that x > y > 0.Let v = (x− y)/(x+ y) ∈ (0,1),t = tan−1 (v) ∈ (0,π/4) and p ∈ [1/2,1].Then
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from (1.1) and (1.3) we have

C (x,y; p)−RAQ (x,y) =C [px+(1− p)y, py+(1− p)x]−RAQ (x,y)

= A(x,y)
[
1+(2p−1)2v2

]
−A(x,y)

√
1+ v2e

tan−1(v)
v −1

= A(x,y) tan2 (t)

[
(2p−1)2− sec(t)et cot(t)−1−1

tan2 (t)

]
.(3.1)

Therefore, Theorem 3.1 follows easily from (3.1) and Lemma 2.7.

Theorem 3.2. Let λ2,µ2 ∈ [1/2,1]. Then the double inequality

C (x,y;λ2)< RQA (a,b)<C (x,y; µ2)

holds for all x,y > 0 with x 6= y if and only if λ2 ≤ 1/2+

√(
1+
√

2
)√2

/e−1/2 and µ2 ≥

1/2+
√

3/6 = 0.7886 · · · .

Proof Since RQA (x,y) and C (x,y) are symmetric and homogenous of degree 1, we assume

that x > y > 0.Let v = (x− y)/(x+ y) ∈ (0,1),t = sinh−1 (v) ∈
(

0, log
(

1+
√

2
))

and q ∈

[1/2,1].Then from (1.4) one has

C (x,y;q)−RQA (x,y) =C [qx+(1−q)y,qy+(1−q)x]−RQA (x,y)

= A(x,y)
[
1+(2q−1)2v2

]
−A(x,y)e

√
1+v2sinh−1(v)

v −1

= A(x,y)sinh2 (t)

[
(2q−1)2− et coth(t)−1−1

sinh2 (t)

]
.(3.2)

Therefore, Theorem 3.2 follows easily from (3.2) and Lemma 2.8.

As an application, then from Theorems 3.1 and 3.2 we get the following Corollary 3.3 imme-

diately.

Corollary 3.3. Let

α (x,y;θ) = logC (x,y;θ)− logQ(x,y)+1,

β (x,y;θ) = logC (x,y;θ)− logA(x,y)+1,

The double inequalities
A(x,y)

α (x,y; µ1)
< T (x,y)<

A(x,y)
α (x,y;λ1)

,
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Q(x,y)
β (x,y; µ2)

< NS (x,y)<
Q(x,y)

β (x,y;λ2)

hold for all x,y > 0 with x 6= y,λ1 = 1/2+
√√

2eπ/4−1−1/2 and µ1 = 1/2+
√

6/12,λ2 =

1/2+

√(
1+
√

2
)√2

/e−1/2 and µ2 = 1/2+
√

3/6.
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