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ON AN OPERATOR PRESERVING INEQUALITIES BETWEEN
POLYNOMIALS
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Abstract. Let &7, denote the space of all complex polynomials P(z) = Z?:o ajz? of degree n and B,
a family of operators that maps &7, into itself. In this paper, we consider a problem of investigating the

dependence of

R+kE\"
B[P(Rz)] — aB[P(rz)]+ { <k+r> - |a|} B[P(rz)]
on the maximum and minimum modulus of |P(z)| on |z| = k for arbitrary real or complex numbers

a,f € C with |a] < 1,|8] < 1,R > r > k and establish certain sharp operator preserving inequalities

between polynomials, from which a variety of interesting results follows as special cases.
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1. Introduction

Let &, denote the space of all complex polynomials P(z) = >_"_;a;2’ of degree n.
A famous result known as Bernstein’s inequality (for reference, see [8, p.531], [10, p.508]

or [11] states that if P € &, then
1) Moz |P'(2)| < ndfag |P(2)],
z|=1 z|=1
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whereas concerning the maximum modulus of P(z) on the circle |z| = R > 1, we have

(2) Max |P(2)] < R Max |P(z)|, R>1.

(for reference, see [7, p.442] or [8, vol.I, p.137] ).
If we restrict ourselves to the class of polynomials P € &, having no zero in |z| < 1,

then inequalities (1) and (2) can be respectively replaced by

(3) Maz |P'(2)] < 5 Maz |P(z)],
and
"+ 1
@) Maz |P(2)) < E M pran |P(2), B> 1

|z|=R 2 |z|=1

Inequality (3) was conjectured by Erdds and later verified by Lax [5], whereas inequality
(4) is due to Ankey and Ravilin [1]. Aziz and Dawood [2] further improved inequalities

(3) and (4) under the same hypothesis and proved that,

5) Maz ()] < 5 { Mag ()] - Minl (2] |
R"+1 R"—1
(6) Maz |P(2)] < 2 Maz |P(2)| - Min|P(z)], R> 1.

|z|=R 2 |z|=1 2 zl=1

As a compact generalization of Inequalities (1) and (2), Aziz and Rather [3] have shown

that if P € &2, then for o, € C with |o| <1, [5]| <1, R>1and |z| > 1,

P(Rz) — aP(2) + B { (%)n - |a|} P(z)

R" _a+ﬂ{(¥)n - |a|}‘]|\z4laifc|P(z)|

(7) < |2

The result is sharp and equality in (7) holds for the polynomial P(z) = az", a # 0.
As a corresponding compact generalization of Inequalities (3) and (4), they [3] have

also shown that if P € &, and P(z) does not vanish in |z| < 1, then for all o, f € C with
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la| < 1,]8] <1, R>1and |z| > 1,

P(R2) — aP(2) + 3 { (%) - yay} P(2)

e {(57) el

. T | e

|z[=1

2"

The result is best possible and equality in (8) holds for P(z) = az" + b, |a| = |b].
Q. I. Rahman [9] (see also Rahman and Schmeisser [10, p. 538]) introduced a class B,
of operators B that carries a polynomial P € &2, into

(9) BIPE)] = 2P(:) +h () UL, () 22,

where A\g, \; and )\, are such that all the zeros of

n—1)

(10) U(Z) = )\o + n)\lz + H(T)\QZZ

lie in half plane |z| < |z —n/2|.
As a generalization of the inequalities (1) and (3), Q. I. Rahman [9, inequalities 5.2 and
5.3] proved that if P € &, then

(11) BIPG)| < |Bl"][Maz|P(z)], for 2] 21,
and if P € &, P(z) # 0 in |z| < 1, then

(12) BIPEI < 3 IBE" + X} Magl PR, for |21 2 1,

where B € B,,.

1. Preliminaries

For the proof of our results, we need the following Lemmas.
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Lemma 1.1. If P € &, and P(z) have all its zeros in |z| < k where k > 0, then for
every R >r, Rr > k* and |z| = 1, we have

R+ Ek
r—+k

Pz (25 P

The above is due to Aziz and Zargar [4]. The next lemma follows from Corollary 18.3

of [6, p. 86].

Lemma 1.2. If P € &, and P(z) has all zeros in |z| < k, where k > 0 then all the zeros

of B[P(2)] also lie in |z| < k.

Lemma 1.3. If P € &, and P(z) have no zero in |z| < k, where k > 0, then for all
a,feCwith |a| <1, || <1, R>r>kand|z| > 1,
| BIP(R2)]+®x(R, 7, a, B) B[P(r2)]|

(13) < k" |BIQ(Rz/k*)] + ®u(R, 1, , B)B[Q(rz/K?)]]

where Q(z) = z"P(1/Z) and

(14 outra.p) = { (FEE) ~falf -a

k+r

Proof. By hypothesis, the polynomial P(z) does not vanish in |z| < k. Therefore, all the
zeros of polynomial Q(z/k?) lie in |z| < k. As

"Q(z/k*)| = [P(2)] for |2| =k,

applying Theorem 2.1 to P(z) with F(z) replaced by k"Q(z/k?), we get for arbitrary real

or complex numbers «, § with |a] <1, |f]| <1, R>r >k and |z| > 1,
|B[P(Rz)] + (R, 7, o, B)B[P(rz)]| < k™ |B[Q(Rz/k*)] + ®1(R, 7, o, B)B[Q(rz/k%)]|,

This proves Lemma 1.3.
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Lemma 1.4. If P € &, and Q(z) = 2"P(1/Z) then for a,f € C ,with |a] < 1,|8] <

LR>r>k, k<1land|z|>1,

[BIP(R2)] + ®(R. .0, ) BP(r2)]| + K" | BIQ(R/K)] + @ (R. .0, ) BQ(rz/ )|

(15) < {MoHl + (R, 0, B)| + % |R™ + 7" @y (R, 7, , 5)!} Maz |P(2)],

where O (R, 7, 5) is given as (14).

Proof. Let M = Max|, - |P(2)|, then by Rouche’s theorem, the polynomial F(z) =
P(z) — pM does not vanish in |z| < k for every u € C with |u| > 1. Applying Lemma 1.3

to polynomial F'(z), we get for o, 5 € C with |a] < 1,|5] <1 and |z] > 1,

|BIF(R2)] + ®x(R, 7,0, B)B[F(rz)]| < k" |B[H(Rz/k*)] + (R, 7,0, B) B[H (rz/k?)]

)

where H(z) = 2"F(1/Z) = Q(z) — pMz". Replacing F'(z) by P(z) — uM and H(z) by
Q(z) — M z", we have for |a| < 1,|5] <1 and |z| > 1,

|B[P(Rz)] + Oy (R, 7, 0, B)B[P(rz)] — pro (1 + P(R, 7,0, ) Z\/[‘

< k" BQ(Rz/k?*)] + ®1(R, 1, ., B) BIQ(rz/k?)]

(16) — L (R (R, 5) MY

where Q(z) = 2"P(1/%).
Now choosing argument of p in the right hand side of inequality (16) such that

E"|BIQ(Rz/k*)] + (R, 7, , B)B[Q(rz/k*)] — % (R" + 1" Ok (R, 1, ar, B)) M B[2"]

= PR (B, )| BN~ K [BIQUR=/K) + Bu( R, 6)BIQU/)]|

which is possible by applying Corollary 2.3 to polynomial Q(z/k?), and using the fact
Maxp, =, |Q(z/k*)| = M /K™, we get for |of < 1,]8] <1 and |z] > 1,

| B[P(Rz)] + ®4(R, 7, a, B)B[P(rz)]| — |uhol| (1 + ®x(R, 7, a, B)) M|

< s (0, BN — K [BIQUR: /K] + @R, 7., ) BIQ(r=/42)]
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Equivalently for || < 1,|8] <1 and |z| > 1,
| BIP(R2)] + ®u(R, 7,0, B) B[P (rz)]| + k" | B[Q(Rz/K*)] + ®1(R, 7, v, B) BIQ(rz/ k)|
< { a1+ @l )]+ Y 570, 6 BT

Letting || — 1, we get the conclusion of Lemma 1.4 and this completes proof of Lemma

1.4. U

2. Main results

Theorem 2.1. If FF € &, and F(z) has all its zeros in the disk |z| < k where k > 0 and

P(z) is a polynomial of degree at most n such that
[P(2)] < [F(2)| for |z =k,
then for |a| < 1,8 <1, R>r >k and |z| > 1,
(17)  |B[P(Rz)] + ®«(R, 7, «, B) B[P(rz)]| < [B[F(R2)] + ®x(R, 7, v, B) B[F (r2)]],

where

(18) %(R,r,a,ﬁ):ﬁ{(}”k)n—!a|}—a.

k+r

The result is best possible and the equality holds for the polynomial P(z) = €' F(z) where
v e R.

Proof of Theorem 2.1. Since polynomial F(z) of degree n has all its zeros in |z| < k

and P(z) is a polynomial of degree at most n such that
(19) |P(z)| < |F(2)] for [z| =k,

therefore, if F'(z) has a zero of multiplicity s at z = kei® 0 < §y < 2, then P(2) has a
zero of multiplicity at least s at z = kei®. If P(z)/F(z) is a constant, then inequality (17)

is obvious. We now assume that P(z)/F(z) is not a constant, so that by the maximum
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modulus principle, it follows that

|P(2)] < |F(z)| for |2] >k .

Suppose F'(z) has m zeros on |z| = k where 0 < m < n, so that we can write

F(2) = Fi(2)Fy(z)

where Fj(z) is a polynomial of degree m whose all zeros lie on |z| = k and F,(z) is a
polynomial of degree exactly n —m having all its zeros in |z| < k. This implies with the

help of inequality (19) that

P(z) = Pi(2)Fi(z)

where Pj(z) is a polynomial of degree at most n — m. Again, from inequality (19), we

have
|PL(2)| < [Fa(2)| for |z] =k

where Fy(2) # 0 for |z| = k. Therefore for every real or complex number A with |A| > 1,
a direct application of Rouche’s theorem shows that the zeros of the polynomial P;(z) —

AFy(z) of degree n —m > 1 lie in |z| < k hence the polynomial
G(2) = Fi(2) (Pi(2) = AFa(2)) = P(2) = AF(2)

has all its zeros in |z| < k with at least one zero in |z| < k, so that we can write

G(2) = (2 — te®)H(2)

where ¢t < k and H(z) is a polynomial of degree n — 1 having all its zeros in |z| < k.

Applying Lemma 1.1 to the polynomial H(z), we obtain for every R > r > k and
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0<60<2m,

IG(Re™)

:|Rei9 — tei(SHH(Reieﬂ
R+ k

n—1
H 0
) e

R+k\""" |Re® — te?|
k+r |rei? — tei]

n—1
> <R+k:> (R+t) Gre)|.
k+r r+t

This implies for R >r > k and 0 < 0 < 27,

(20) (755 ) 16re) = (R““)"_l Gre®).

R+t k+r

Z|R6i9 o t€i6| (

](rew — tei‘s)H(reie)],

Since R > r > k so that G(Re) # 0 for 0 < § < 27 and ,:ﬁ% > 1’;:;, from inequality

(20), we obtain

. R4 E\" .
(21) |G(Re™)| > <k 1—7‘> |G(re®)), R>r>k and 0<6<2r.
Equivalently,
R+k\"
o) > (35 166

for |[z| =1 and R > r > k. Hence for every real or complex number « with |o| < 1 and

R > r >k, we have

(22) |G(Rz) — aG(rz)| = [G(Rz)[ — |a] |G(rz)]

R+E\"
> {(/{?——FT) - |a|} |G(rz)|, for |z| =1.

Also, inequality (21) can be written in the form

(23) Glre)l < () 6t
for every R > r >k and 0 < @ < 27. Since G(Re') # 0 and (ﬁfl;)n < 1, from inequality

(23), we obtain for 0 < 0 < 2w and R > r > k,
(G (re”)] < |G(Re")|.

That is,
|G(rz)| < |G(Rz)| for |z| =1.
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Since all the zeros of G(Rz) lie in |z| < (k/R) < 1, a direct application of Rouche’s
theorem shows that the polynomial G(Rz) — aG(rz) has all its zeros in |z| < 1 for every
real or complex number a with |o| < 1. Applying Rouche’s theorem again, it follows from
(22) that for arbitrary real or complex numbers «, 5 with |a| < 1,|8]| <1 and R > r >k,
all the zeros of the polynomial

R+k

T(2) =G(R2) — aG(rz) + B { (m>n = ya|} G(rz)

— [P(Rz) —aP(rz)+ { (%)n a |a|} P(m}

Y {F(Rz) —aF(rz)+ 8 { (R+ k)n - |a|} F(rz)}

k+r
lie in |z] < 1.
Applying Lemma 1.3 to the polynomial T'(z) and noting that B is a linear operator, it

follows that all the zeros of polynomial

BTG = [Blp(re)] - asiPea] + 5 { (35 ) ol Blr(2)]
—A {B[F(Rz)] —aB[F(rz)|+ 6 { <€:T+f>n — |a|} [F(TZ)]:|

lie in |z] < 1. This implies
(24)  |B[P(R2)] + ®4(R, 7,0, B) B[P(rz)]| < |B[P(R2)] + ®4(R, 7, c, B) B[P(rz)][

for |z] > 1 and R > r > k. If inequality (24) is not true, then there a point z = 2z, with

|z0| > 1 such that

[{B[P(Rz)] + ®(R,r,a, )B[P(rz)},_, | = {B[F(R2)] + ®x(R, 7, o, ) B[F (rz)]}

z=z0|"’

But all the zeros of F(Rz) lie in |z| < (k/R) < 1, therefore, it follows (as in case of G(z))

that all the zeros of F(Rz) — aF(rz) + 8 { (%)n — |a|} F(rz) lie in |z] < 1. Hence, by

Lemma 1.3,
[BIF(R2)] + @(R,r,, B)BIF(r2)]}._,, #0

with |z9| > 1.We take
{B[P(Rz)| + ®x(R,r,«, B)B[P(rz)|}

- 2=z
)\ - ’

{B[P(Rz)| + ®x(R,r,«, B)B[P(rz)|}

z2=2z0
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then A is a well defined real or complex number with |[A| > 1 and with this choice of A,
we obtain {B[T(2)]}.=., = 0 where |z| > 1. This contradicts the fact that all the zeros
of B[T(z)] lie in |z| < 1. Thus (24) holds for |a] <1, |5| <1, |z| > 1, and R > r > k.

UJ

For a = 0 in Theorem 2.1, we obtain the following result.

Corollary 2.2. If FF € &, and F(z) has all its zeros in the disk |z| < k, where k > 0

and P(z) is a polynomial of degree at most n such that
|P(2)| < |F(2)] for |2] =k,

then for |f]| <1, R>r >k and|z| > 1,

R+k

ek < 'B[F(Rz)] + 8 (m) BIF(r2)] .

@) |etrwa) s (FE) Bpee)

The result is sharp, and the equality holds for the polynomial P(z) = €' F(z) where v € R.

If we choose F(z) = 2"M/k", where M = Max|,— |P(2)| in Theorem 2.1, we get the

following result.

Corollary 2.3. If P € &, then for a, € C with |a] <1, |f| <1, R>r >k >0 and
|Z| =1,

| B[P(R2)|+®x(R, 7, o, ) B[P(r)]]

1
(26) < |R" + "0 (R, 1, a, B)| | B[2"||Max | P(z)],

|z|=k

where ®p(R, 1, v, B) is given by (18). The result is best possible and equality in (26) holds
for P(z) = az", a # 0.

Next, we take P(z) = 2"m/k", where m = Min,, - |P(z)| in Theorem 2.1, we get the

following result.
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Corollary 2.4. If F € &, and F(z) have all its zeros in the disk |z| < k, where k > 0
then for a, p € C with |o| <1, [B| <1, R>r >k >0

Min| B[F(R2)]+®x(R, 7, a, 8) B[F (r2)]|

|z|=1
|B[="]

(27) >

B (B, )] Mip 1P,
where O (R, T, «, 8) is given by (18). The result is Sharp.
If we take = 0 in (26), we get the following result.
Corollary 2.5. If P € &, then for a,f € C with |a| <1, R>r >k >0 and |z| > 1,
(29) [BIP(R)] — aBIP(2))| < 1 |B” — ar”| [Bl") Maz | P(2)].

The result is best possible as shown by P(z) = az",a # 0.

For polynomials P € &2, having no zero in |z| < k, we establish the following result

which leads to the compact generalization of inequalities (3),(4),(8) and (12).

Theorem 2.6. If P € &, and P(z) does not vanish in the disk |z| < k, where k < 1,
then for all o, p € C with |a| < 1, |f| <1, R>r >k >0 and |z| > 1,

|B="]]

\BIP(R2)] + Bp(R, 1, 0, B) BIP(r2)]| < % B R (R a, )

(29) + |14+ (R, 7, a0, B)] | No| | Max | P(2)]

2=k

where O (R, T, 5) is given by (18).

Proof of Theorem 2.6. Since P(z) does not vanish in |z| < k, k£ < 1, by Lemma 1.3,

we have for all o, 8 € C with |a| <1, || <1, R>1and |z| > 1,

| B[P(R2)|+®k(R, T, c, B) B[P (r2)]|

(30) < k" |BIQ(Rz/k*)] + ®u(R, 7, o, B)B[Q(rz /K],
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where Q(z) = 2"P(1/Z). Inequality (30) in conjunction with Lemma 1.4 gives for all

a,peCwith |of <1, |5| <1, R>r>kand |z]| > 1,

2|B[P(Rz)] + ®u(R, 7, o, B)B[P(r2)]|

< |BIP(R2)] + ®u(R, 7, ., B)B[P(rz)]| + k" | BQ(Rz/k*)] + ®u(R, 7, o, B) B[Q(rz /)|

B n
< {Wallt+ outrrna,0) + B e s ol 1atag P

This completes the proof of Theorem 2.6.

We finally prove the following result, which is the refinement of Theorem 2.6.

Theorem 2.7. If P € &2, and P(z) does not vanish in the disk |z| < k, where k < 1,
then for all o, B € C with |a] <1, |B| <1, R>r>k>0and|z| =1,

‘B[pmz)]m(fz, r,a, B)B[P(r2)]

1| f|B[z"
< {! 5] |Rn+rn<pk(3,r,a,5)|+|1+c1>k<R,r,a,ﬁ)||AO|}M|9%~|P(Z)|
JIBE pn _ .
(31) e |R" + 1" ®p(R, 1,0, B)] — |1 + ®r(R, r, a, B)| | Mo %EQ|P(Z)| ,

where @ (R, 1, a, B) is given by (18).

Proof of Theorem 2.7. Let m = Min).—; |P(2)|. If P(z) has a zero on |z| = k, then
the result follows from Theorem 2.6. We assume that P(z) has all its zeros in |z| > k
where k < 1 so that m > 0. Now for every § with |§] < 1, it follows by Rouche’s theorem
h(z) = P(z) — ém does not vanish in |z| < k. Applying Lemma 1.3 to the polynomial
h(z), we get for all o, 5 € C with |o| < 1,|5| <1, R>r >k and |z| > 1

Y

|B[h(R2)] + k(R 7, a0, B)Blh(rz)]] < k" |Blq(Rz/k?*)] + @x(R, 7, v, B) Bla(rz/k)]
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where ¢(2) = 2"h(1/Z) = 2" P(1/Z) — dmz". Equivalently,

|B[P(R2)]+®k(R, 7, o, B)B[P(rz)] — 6Xo (1 + @ (R, 7, ax, ) m|

<k"|BIQ(Rz/k*)] + ®1(R, 7, a, B) B[Q(rz/k?)]

(32) o (B (R, 6) B[]

where Q(z) = 2"P(1/Z). Since all the zeros of Q(z/k?) lie in |z| < k, k < 1 by Corollary
2.4 applied to Q(z/k?), we have for R > 1 and |z| = 1,
|BIQ(Rz/k*)] + ®u(R, 1,0, B) B[Q(rz/k?)]]

%‘R" + 7" ®(R, 7, a, B)|| B[" |MmQ(z/k2)
(3) = o R0, 9)] Bl

Now, choosing the argument of § on the right hand side of inequality (32) such that

)

K"\ BIQ(Rz/k?)] + ®x(R, 7, 0, B)BIQ(rz/K)] — -5

(R" + 1" Py (R, 7, v, B)) mBIz"]
1
k" [ BIQR=/K)] + Du(R, 1, )BIQU2/K)] | — 1| R" + @R, 7,0, 8)] [ BL="]m
for |z| = 1, which is possible by inequality (33). We get for |z| =1,

’B[P(Rz)] + Oy (R, 7,0, B)B[P(rz | — 18] Ao||1 4+ Pr(R, r, ﬁ)‘
Sk”\B[Q(RZ/k2)] + ®x(R, 7,0, B)BQ(rz/k)]|

)
(34) R+ (R, 8) 1B m
Equivalently for |z| =1, R > r > k, we have

|B[P(Rz)] + ®(R, r,a, B) B[P(rz)]| — k"|BIQ(Rz/k*)] + ®(R,7, o, B) B[Q(rz/k?)]]

(35) < || {|)\0||1 + (R, B)] — WR” + 1Py (R, r,a,ﬁ)HB[z"H} m
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Letting |§| — 1 in inequality (35), we obtain for all a, 8 € C with |o| < 1,|8] < 1,R >

r>kand |z| =1,

|B[P(Rz)] 4+ ®i(R, r,a, B)B[P(r2)]| — k"| BIQ(Rz/k*)] + ®k(R, 7, v, B) B[Q(rz/k?)]|

(36) < {|/\0||1 + (R, 7, B)| — E‘Rn + 1" P (R, T, a,6)||B[zn]!} m.

Inequality (36) in conjunction with Lemma 1.4 gives for all a, 8 € C with |a] < 1,

1Bl <1,R>1and |z| =1,

Q‘B[P(Rz)] + Op(R, T, ﬁ)B[P(rz)H

1
< {DollL+ @m0 5] + g 1B+ 1R, ) B 1l PC)

1 .

which is equivalent to inequality (31) and thus completes the proof of theorem 2.7.

If we take a = 0, we get the following.

Corollary 2.8. If P € &, and P(z) does not vanish in |z| < k where k < 1, then for all

BeCwith|B|<1,R>r>kand|z|=1,

P+ () Bipo=)

_g{ B s (L)' |+ | (B8 v bt o)
o~ B s (FEEY s (22 ot e

For g = 0, Theorem 2.6 reduces to the following result.
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Corollary 2.9. If P € &, and P(z) does not vanish in |z| < k where k < 1, then for all

a€Cwith|a| <1, R>r>kand |z| =1,

l2l=

BIP(RE)] - aBlPE] < 5 [ {2 1R = ar]+ 1L ol Il | Maz [P(o)

9 B e~ art = 1= alal{ atin | Ge)

The result is sharp and extremal polynomial is P(z) = az" + b, |a| = |b| # 0.
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