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Abstract. Let Pn denote the space of all complex polynomials P (z) =
∑n

j=0 ajz
j of degree n and Bn

a family of operators that maps Pn into itself. In this paper, we consider a problem of investigating the

dependence of ∣∣∣∣B[P (Rz)]− αB[P (rz)] + β

{(
R+ k

k + r

)n

− |α|
}
B[P (rz)]

∣∣∣∣
on the maximum and minimum modulus of |P (z)| on |z| = k for arbitrary real or complex numbers

α, β ∈ C with |α| ≤ 1, |β| ≤ 1, R > r ≥ k and establish certain sharp operator preserving inequalities

between polynomials, from which a variety of interesting results follows as special cases.
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1. Introduction

Let Pn denote the space of all complex polynomials P (z) =
∑n

j=0 ajz
j of degree n.

A famous result known as Bernstein’s inequality (for reference, see [8, p.531], [10, p.508]

or [11] states that if P ∈Pn, then

(1) Max
|z|=1

|P ′(z)| ≤ nMax
|z|=1

|P (z)| ,
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whereas concerning the maximum modulus of P (z) on the circle |z| = R > 1, we have

(2) Max
|z|=R

|P (z)| ≤ RnMax
|z|=1

|P (z)| , R ≥ 1.

(for reference, see [7, p.442] or [8, vol.I, p.137] ).

If we restrict ourselves to the class of polynomials P ∈ Pn having no zero in |z| < 1,

then inequalities (1) and (2) can be respectively replaced by

(3) Max
|z|=1

|P ′(z)| ≤ n

2
Max
|z|=1

|P (z)| ,

and

(4) Max
|z|=R

|P (z)| ≤ Rn + 1

2
Max
|z|=1

|P (z)| , R ≥ 1.

Inequality (3) was conjectured by Erdös and later verified by Lax [5], whereas inequality

(4) is due to Ankey and Ravilin [1]. Aziz and Dawood [2] further improved inequalities

(3) and (4) under the same hypothesis and proved that,

(5) Max
|z|=1

|P ′(z)| ≤ n

2

{
Max
|z|=1

|P (z)| −Min
|z|=1
|P (z)|

}
,

(6) Max
|z|=R

|P (z)| ≤ Rn + 1

2
Max
|z|=1

|P (z)| − Rn − 1

2
Min
|z|=1
|P (z)| , R ≥ 1.

As a compact generalization of Inequalities (1) and (2), Aziz and Rather [3] have shown

that if P ∈Pn then for α, β ∈ C with |α| ≤ 1, |β| ≤ 1, R > 1 and |z| ≥ 1,∣∣∣∣P (Rz)− αP (z) + β

{(
R + 1

2

)n
− |α|

}
P (z)

∣∣∣∣
≤ |z|n

∣∣∣∣Rn − α + β

{(
R + 1

2

)n
− |α|

}∣∣∣∣Max
|z|=1

|P (z)| .(7)

The result is sharp and equality in (7) holds for the polynomial P (z) = azn, a 6= 0.

As a corresponding compact generalization of Inequalities (3) and (4), they [3] have

also shown that if P ∈Pn and P (z) does not vanish in |z| < 1, then for all α, β ∈ C with
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|α| ≤ 1, |β| ≤ 1, R > 1 and |z| ≥ 1,∣∣∣∣∣P (Rz)− αP (z) + β

{(
R + 1

2

)n
− |α|

}
P (z)

∣∣∣∣∣
≤ 1

2

[ ∣∣∣∣Rn − α + β

{(
R + 1

2

)n
− |α|

}∣∣∣∣ |z|n
+

∣∣∣∣1− α + β

{(
R + 1

2

)n
− |α|

}∣∣∣∣
]
Max
|z|=1

|P (z)| .(8)

The result is best possible and equality in (8) holds for P (z) = azn + b, |a| = |b|.

Q. I. Rahman [9] (see also Rahman and Schmeisser [10, p. 538]) introduced a class Bn

of operators B that carries a polynomial P ∈Pn into

(9) B[P (z)] = λ0P (z) + λ1

(nz
2

) P ′(z)

1!
+ λ2

(nz
2

)2 P ′′(z)

2!
,

where λ0, λ1 and λ2 are such that all the zeros of

(10) U(z) = λ0 + nλ1z +
n(n− 1)

2
λ2z

2

lie in half plane |z| ≤ |z − n/2| .

As a generalization of the inequalities (1) and (3), Q. I. Rahman [9, inequalities 5.2 and

5.3] proved that if P ∈Pn, then

(11) |B[P (z)]| ≤ |B[zn]|Max
|z|=1
|P (z)|, for |z| ≥ 1,

and if P ∈Pn, P (z) 6= 0 in |z| < 1, then

(12) |B[P (z)]| ≤ 1

2
{|B[zn]|+ |λ0|}Max

|z|=1
|P (z)|, for |z| ≥ 1,

where B ∈ Bn.

1. Preliminaries

For the proof of our results, we need the following Lemmas.
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Lemma 1.1. If P ∈ Pn and P (z) have all its zeros in |z| ≤ k where k ≥ 0, then for

every R ≥ r, Rr ≥ k2 and |z| = 1, we have

|P (Rz)| ≥
(
R + k

r + k

)n
|P (rz)| .

The above is due to Aziz and Zargar [4]. The next lemma follows from Corollary 18.3

of [6, p. 86].

Lemma 1.2. If P ∈Pn and P (z) has all zeros in |z| ≤ k, where k > 0 then all the zeros

of B[P (z)] also lie in |z| ≤ k.

Lemma 1.3. If P ∈ Pn and P (z) have no zero in |z| < k, where k > 0, then for all

α, β ∈ C with |α| ≤ 1, |β| ≤ 1 , R > r ≥ k and |z| ≥ 1,

∣∣B[P (Rz)]+Φk(R, r, α, β)B[P (rz)]
∣∣

≤ kn
∣∣B[Q(Rz/k2)] + Φk(R, r, α, β)B[Q(rz/k2)]

∣∣ ,(13)

where Q(z) = znP (1/z) and

(14) Φk(R, r, α, β) = β

{(
R + k

k + r

)n
− |α|

}
− α.

Proof. By hypothesis, the polynomial P (z) does not vanish in |z| < k. Therefore, all the

zeros of polynomial Q(z/k2) lie in |z| < k. As

|knQ(z/k2)| = |P (z)| for |z| = k,

applying Theorem 2.1 to P (z) with F (z) replaced by knQ(z/k2), we get for arbitrary real

or complex numbers α, β with |α| ≤ 1, |β| ≤ 1, R > r ≥ k and |z| ≥ 1,

|B[P (Rz)] + Φk(R, r, α, β)B[P (rz)]| ≤ kn
∣∣B[Q(Rz/k2)] + Φk(R, r, α, β)B[Q(rz/k2)]

∣∣ ,
This proves Lemma 1.3.

�
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Lemma 1.4. If P ∈ Pn and Q(z) = znP (1/z) then for α, β ∈ C ,with |α| ≤ 1, |β| ≤

1, R > r ≥ k, k ≤ 1 and |z| ≥ 1,∣∣B[P (Rz)] + Φk(R, r, α, β)B[P (rz)]
∣∣+ kn

∣∣B[Q(Rz/k2)] + Φk(R, r, α, β)B[Q(rz/k2)]
∣∣

≤
{
|λ0|
∣∣1 + Φk(R, r, α, β)

∣∣+
|B[zn]|
kn

|Rn + rnΦk(R, r, α, β)|
}
Max
|z|=k

|P (z)| ,(15)

where Φk(R, r, α, β) is given as (14).

Proof. Let M = Max|z|=k |P (z)| , then by Rouche’s theorem, the polynomial F (z) =

P (z)− µM does not vanish in |z| < k for every µ ∈ C with |µ| > 1. Applying Lemma 1.3

to polynomial F (z), we get for α, β ∈ C with |α| ≤ 1, |β| ≤ 1 and |z| ≥ 1,

|B[F (Rz)] + Φk(R, r, α, β)B[F (rz)]| ≤ kn
∣∣B[H(Rz/k2)] + Φk(R, r, α, β)B[H(rz/k2)]

∣∣ ,
where H(z) = znF (1/z) = Q(z) − µMzn. Replacing F (z) by P (z) − µM and H(z) by

Q(z)− µMzn, we have for |α| ≤ 1, |β| ≤ 1 and |z| ≥ 1,∣∣B[P (Rz)] + Φk(R, r, α, β)B[P (rz)]− µλ0 (1 + Φk(R, r, α, β))M
∣∣

≤ kn

∣∣∣∣∣B[Q(Rz/k2)] + Φk(R, r, α, β)B[Q(rz/k2)]

− µ

k2n
(Rn + rnΦk(R, r, α, β))MB[zn]

∣∣∣∣∣(16)

where Q(z) = znP (1/z).

Now choosing argument of µ in the right hand side of inequality (16) such that

kn
∣∣∣∣B[Q(Rz/k2)] + Φk(R, r, α, β)B[Q(rz/k2)]− µ

k2n
(Rn + rnΦk(R, r, α, β))MB[zn]

∣∣∣∣
=
|µ|
kn
|Rn + rnΦk(R, r, α, β)| |B[zn]|M − kn

∣∣B[Q(Rz/k2)] + Φk(R, r, α, β)B[Q(rz/k2)]
∣∣

which is possible by applying Corollary 2.3 to polynomial Q(z/k2), and using the fact

Max|z|=k |Q(z/k2)| = M/kn, we get for |α| ≤ 1, |β| ≤ 1 and |z| ≥ 1,∣∣B[P (Rz)] + Φk(R, r, α, β)B[P (rz)]
∣∣− |µλ0|∣∣ (1 + Φk(R, r, α, β))M

∣∣
≤ |µ|
kn
|Rn + rnΦk(R, r, α, β)| |B[zn]|M − kn

∣∣B[Q(Rz/k2)] + Φk(R, r, α, β)B[Q(rz/k2)]
∣∣
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Equivalently for |α| ≤ 1, |β| ≤ 1 and |z| ≥ 1,

∣∣B[P (Rz)] + Φk(R, r, α, β)B[P (rz)]
∣∣+ kn

∣∣B[Q(Rz/k2)] + Φk(R, r, α, β)B[Q(rz/k2)]
∣∣

≤ |µ|
{
|λ0|
∣∣1 + Φk(R, r, α, β)

∣∣+
1

kn
|Rn + rnΦk(R, r, α, β)| |B[zn]|

}
M

Letting |µ| → 1 , we get the conclusion of Lemma 1.4 and this completes proof of Lemma

1.4. �

2. Main results

Theorem 2.1. If F ∈Pn and F (z) has all its zeros in the disk |z| ≤ k where k > 0 and

P (z) is a polynomial of degree at most n such that

|P (z)| ≤ |F (z)| for |z| = k,

then for |α| ≤ 1, |β| ≤ 1, R > r ≥ k and |z| ≥ 1,

(17) |B[P (Rz)] + Φk(R, r, α, β)B[P (rz)]| ≤ |B[F (Rz)] + Φk(R, r, α, β)B[F (rz)]| ,

where

(18) Φk(R, r, α, β) = β

{(
R + k

k + r

)n
− |α|

}
− α.

The result is best possible and the equality holds for the polynomial P (z) = eiγF (z) where

γ ∈ R.

Proof of Theorem 2.1. Since polynomial F (z) of degree n has all its zeros in |z| ≤ k

and P (z) is a polynomial of degree at most n such that

(19) |P (z)| ≤ |F (z)| for |z| = k,

therefore, if F (z) has a zero of multiplicity s at z = keiθ0 , 0 ≤ θ0 < 2π, then P (z) has a

zero of multiplicity at least s at z = keiθ0 . If P (z)/F (z) is a constant, then inequality (17)

is obvious. We now assume that P (z)/F (z) is not a constant, so that by the maximum
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modulus principle, it follows that

|P (z)| < |F (z)| for |z| > k .

Suppose F (z) has m zeros on |z| = k where 0 ≤ m < n, so that we can write

F (z) = F1(z)F2(z)

where F1(z) is a polynomial of degree m whose all zeros lie on |z| = k and F2(z) is a

polynomial of degree exactly n−m having all its zeros in |z| < k. This implies with the

help of inequality (19) that

P (z) = P1(z)F1(z)

where P1(z) is a polynomial of degree at most n − m. Again, from inequality (19), we

have

|P1(z)| ≤ |F2(z)| for |z| = k

where F2(z) 6= 0 for |z| = k. Therefore for every real or complex number λ with |λ| > 1,

a direct application of Rouche’s theorem shows that the zeros of the polynomial P1(z)−

λF2(z) of degree n−m ≥ 1 lie in |z| < k hence the polynomial

G(z) = F1(z) (P1(z)− λF2(z)) = P (z)− λF (z)

has all its zeros in |z| ≤ k with at least one zero in |z| < k, so that we can write

G(z) = (z − teiδ)H(z)

where t < k and H(z) is a polynomial of degree n − 1 having all its zeros in |z| ≤ k.

Applying Lemma 1.1 to the polynomial H(z), we obtain for every R > r ≥ k and
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0 ≤ θ < 2π,

|G(Reiθ)| =|Reiθ − teiδ||H(Reiθ)|

≥|Reiθ − teiδ|
(
R + k

k + r

)n−1
|H(reiθ)|,

=

(
R + k

k + r

)n−1 |Reiθ − teiδ|
|reiθ − teiδ|

|(reiθ − teiδ)H(reiθ)|,

≥
(
R + k

k + r

)n−1(
R + t

r + t

)
|G(reiθ)|.

This implies for R > r ≥ k and 0 ≤ θ < 2π,

(20)

(
r + t

R + t

)
|G(Reiθ)| ≥

(
R + k

k + r

)n−1
|G(reiθ)|.

Since R > r ≥ k so that G(Reiθ) 6= 0 for 0 ≤ θ < 2π and r+k
k+R

> r+t
R+t

, from inequality

(20), we obtain

(21) |G(Reiθ)| >
(
R + k

k + r

)n
|G(reiθ)|, R > r ≥ k and 0 ≤ θ < 2π.

Equivalently,

|G(Rz)| >
(
R + k

k + r

)n
|G(rz)|

for |z| = 1 and R > r ≥ k. Hence for every real or complex number α with |α| ≤ 1 and

R > r ≥ k, we have

|G(Rz)− αG(rz)| ≥ |G(Rz)| − |α| |G(rz)|(22)

>

{(
R + k

k + r

)n
− |α|

}
|G(rz)|, for |z| = 1.

Also, inequality (21) can be written in the form

(23) |G(reiθ)| <
(
k + r

R + k

)n
|G(Reiθ)|

for every R > r ≥ k and 0 ≤ θ < 2π. Since G(Reiθ) 6= 0 and
(
k+r
R+k

)n
< 1, from inequality

(23), we obtain for 0 ≤ θ < 2π and R > r ≥ k,

|G(reiθ)| < |G(Reiθ)|.

That is,

|G(rz)| < |G(Rz)| for |z| = 1.
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Since all the zeros of G(Rz) lie in |z| ≤ (k/R) < 1, a direct application of Rouche’s

theorem shows that the polynomial G(Rz)− αG(rz) has all its zeros in |z| < 1 for every

real or complex number α with |α| ≤ 1. Applying Rouche’s theorem again, it follows from

(22) that for arbitrary real or complex numbers α, β with |α| ≤ 1, |β| ≤ 1 and R > r ≥ k,

all the zeros of the polynomial

T (z) =G(Rz)− αG(rz) + β

{(
R + k

k + r

)n
− |α|

}
G(rz)

=

[
P (Rz)− αP (rz) + β

{(
R + k

k + r

)n
− |α|

}
P (rz)

]
− λ

[
F (Rz)− αF (rz) + β

{(
R + k

k + r

)n
− |α|

}
F (rz)

]
lie in |z| < 1.

Applying Lemma 1.3 to the polynomial T (z) and noting that B is a linear operator, it

follows that all the zeros of polynomial

B[T (z)] =

[
B[P (Rz)]− αB[P (rz)] + β

{(
R + k

k + r

)n
− |α|

}
B[P (rz)]

]
− λ

[
B[F (Rz)]− αB[F (rz)] + β

{(
R + k

k + r

)n
− |α|

}
[F (rz)]

]
lie in |z| < 1. This implies

|B[P (Rz)] + Φk(R, r, α, β)B[P (rz)]| ≤ |B[P (Rz)] + Φk(R, r, α, β)B[P (rz)]| ,(24)

for |z| ≥ 1 and R > r ≥ k. If inequality (24) is not true, then there a point z = z0 with

|z0| ≥ 1 such that∣∣{B[P (Rz)] + Φk(R, r, α, β)B[P (rz)]}z=z0
∣∣ ≥ ∣∣{B[F (Rz)] + Φk(R, r, α, β)B[F (rz)]}z=z0

∣∣ ,
But all the zeros of F (Rz) lie in |z| < (k/R) < 1, therefore, it follows (as in case of G(z))

that all the zeros of F (Rz)− αF (rz) + β
{(

R+k
k+r

)n − |α|}F (rz) lie in |z| < 1. Hence, by

Lemma 1.3,

{B[F (Rz)] + Φk(R, r, α, β)B[F (rz)]}z=z0 6= 0

with |z0| ≥ 1.We take

λ =
{B[P (Rz)] + Φk(R, r, α, β)B[P (rz)]}z=z0
{B[P (Rz)] + Φk(R, r, α, β)B[P (rz)]}z=z0

,
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then λ is a well defined real or complex number with |λ| > 1 and with this choice of λ,

we obtain {B[T (z)]}z=z0 = 0 where |z0| ≥ 1. This contradicts the fact that all the zeros

of B[T (z)] lie in |z| < 1. Thus (24) holds for |α| ≤ 1, |β| ≤ 1, |z| ≥ 1, and R > r ≥ k.

�

For α = 0 in Theorem 2.1, we obtain the following result.

Corollary 2.2. If F ∈ Pn and F (z) has all its zeros in the disk |z| ≤ k, where k > 0

and P (z) is a polynomial of degree at most n such that

|P (z)| ≤ |F (z)| for |z| = k,

then for |β| ≤ 1, R > r ≥ k and |z| ≥ 1,

(25)

∣∣∣∣B[P (Rz)] + β

(
R + k

k + r

)n
B[P (rz)]

∣∣∣∣ ≤ ∣∣∣∣B[F (Rz)] + β

(
R + k

k + r

)n
B[F (rz)]

∣∣∣∣ .
The result is sharp, and the equality holds for the polynomial P (z) = eiγF (z) where γ ∈ R.

If we choose F (z) = znM/kn, where M = Max|z|=k |P (z)| in Theorem 2.1, we get the

following result.

Corollary 2.3. If P ∈ Pn then for α, β ∈ C with |α| ≤ 1, |β| ≤ 1, R > r ≥ k > 0 and

|z| = 1,

∣∣B[P (Rz)]+Φk(R, r, α, β)B[P (rz)]
∣∣

≤ 1

kn
|Rn + rnΦk(R, r, α, β)| |B[zn]|Max

|z|=k
|P (z)| ,(26)

where Φk(R, r, α, β) is given by (18). The result is best possible and equality in (26) holds

for P (z) = azn, a 6= 0.

Next, we take P (z) = znm/kn, where m = Min|z|=k |P (z)| in Theorem 2.1, we get the

following result.
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Corollary 2.4. If F ∈ Pn and F (z) have all its zeros in the disk |z| ≤ k, where k > 0

then for α, β ∈ C with |α| ≤ 1, |β| ≤ 1, R > r ≥ k > 0

Min
|z|=1

∣∣B[F (Rz)]+Φk(R, r, α, β)B[F (rz)]
∣∣

≥ |B[zn]|
kn

|Rn + rnΦk(R, r, α, β)|Min
|z|=k
|P (z)| ,(27)

where Φk(R, r, α, β) is given by (18). The result is Sharp.

If we take β = 0 in (26), we get the following result.

Corollary 2.5. If P ∈Pn then for α, β ∈ C with |α| ≤ 1, R > r ≥ k > 0 and |z| ≥ 1,

(28) |B[P (Rz)]− αB[P (rz)]| ≤ 1

kn
|Rn − αrn| |B[zn]|Max

|z|=k
|P (z)| ,

The result is best possible as shown by P (z) = azn, a 6= 0.

For polynomials P ∈ Pn having no zero in |z| < k, we establish the following result

which leads to the compact generalization of inequalities (3),(4),(8) and (12).

Theorem 2.6. If P ∈ Pn and P (z) does not vanish in the disk |z| < k, where k ≤ 1,

then for all α, β ∈ C with |α| ≤ 1, |β| ≤ 1 , R > r ≥ k > 0 and |z| ≥ 1,

|B[P (Rz)] + Φk(R, r, α, β)B[P (rz)]| ≤ 1

2

[
|B[zn]|
kn

∣∣Rn + rnΦk(R, r, α, β)
∣∣

+ |1 + Φk(R, r, α, β)| |λ0|
]
Max
|z|=k

|P (z)|(29)

where Φk(R, r, α, β) is given by (18).

Proof of Theorem 2.6. Since P (z) does not vanish in |z| < k, k ≤ 1, by Lemma 1.3,

we have for all α, β ∈ C with |α| ≤ 1, |β| ≤ 1, R > 1 and |z| ≥ 1,

∣∣B[P (Rz)]+Φk(R, r, α, β)B[P (rz)]
∣∣

≤ kn
∣∣B[Q(Rz/k2)] + Φk(R, r, α, β)B[Q(rz/k2)]

∣∣ ,(30)
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where Q(z) = znP (1/z). Inequality (30) in conjunction with Lemma 1.4 gives for all

α, β ∈ C with |α| ≤ 1, |β| ≤ 1, R > r ≥ k and |z| ≥ 1,

2
∣∣B[P (Rz)] + Φk(R, r, α, β)B[P (rz)]

∣∣
≤
∣∣B[P (Rz)] + Φk(R, r, α, β)B[P (rz)]

∣∣+ kn
∣∣B[Q(Rz/k2)] + Φk(R, r, α, β)B[Q(rz/k2)]

∣∣
≤
{
|λ0|
∣∣1 + Φk(R, r, α, β)

∣∣+
|B[zn]|
kn

|Rn + rnΦk(R, r, α, β)|
}
|Max
|z|=k

|P (z)| .

This completes the proof of Theorem 2.6.

�

We finally prove the following result, which is the refinement of Theorem 2.6.

Theorem 2.7. If P ∈ Pn and P (z) does not vanish in the disk |z| < k, where k ≤ 1,

then for all α, β ∈ C with |α| ≤ 1, |β| ≤ 1 , R > r ≥ k > 0 and |z| = 1,

∣∣∣∣B[P (Rz)]+Φk(R, r, α, β)B[P (rz)]

∣∣∣∣
≤1

2

[{
|B[zn]|
kn |Rn + rnΦk(R, r, α, β)|+ |1 + Φk(R, r, α, β)| |λ0|

}
Max
|z|=k

|P (z)|

−
{
|B[zn]|
kn |Rn + rnΦk(R, r, α, β)| − |1 + Φk(R, r, α, β)| |λ0|

}
Min
|z|=k
|P (z)|

]
,(31)

where Φk(R, r, α, β) is given by (18).

Proof of Theorem 2.7. Let m = Min|z|=k |P (z)| . If P (z) has a zero on |z| = k, then

the result follows from Theorem 2.6. We assume that P (z) has all its zeros in |z| > k

where k ≤ 1 so that m > 0. Now for every δ with |δ| < 1, it follows by Rouche’s theorem

h(z) = P (z) − δm does not vanish in |z| < k. Applying Lemma 1.3 to the polynomial

h(z), we get for all α, β ∈ C with |α| ≤ 1, |β| ≤ 1, R > r ≥ k and |z| ≥ 1

|B[h(Rz)] + Φk(R, r, α, β)B[h(rz)]| ≤ kn
∣∣B[q(Rz/k2)] + Φk(R, r, α, β)B[q(rz/k2)]

∣∣ ,
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where q(z) = znh(1/z) = znP (1/z)− δmzn. Equivalently,

∣∣B[P (Rz)]+Φk(R, r, α, β)B[P (rz)]− δλ0 (1 + Φk(R, r, α, β))m
∣∣

≤kn
∣∣∣∣B[Q(Rz/k2)] + Φk(R, r, α, β)B[Q(rz/k2)]

− δ

k2n
(Rn + rnΦk(R, r, α, β))mB[zn]

∣∣∣∣(32)

where Q(z) = znP (1/z). Since all the zeros of Q(z/k2) lie in |z| ≤ k, k ≤ 1 by Corollary

2.4 applied to Q(z/k2), we have for R > 1 and |z| = 1,

∣∣B[Q(Rz/k2)] + Φk(R, r, α, β)B[Q(rz/k2)]
∣∣

≥ 1

kn
∣∣Rn + rnΦk(R, r, α, β)

∣∣|B[zn]|Min
|z|=k

Q(z/k2)

=
1

k2n
∣∣Rn + rnΦk(R, r, α, β)

∣∣|B[zn]|m.(33)

Now, choosing the argument of δ on the right hand side of inequality (32) such that

kn
∣∣∣∣B[Q(Rz/k2)] + Φk(R, r, α, β)B[Q(rz/k2)]− δ

k2n
(Rn + rnΦk(R, r, α, β))mB[zn]

∣∣∣∣
=kn

∣∣B[Q(Rz/k2)] + Φk(R, r, α, β)B[Q(rz/k2)]
∣∣− 1

kn
∣∣Rn + rnΦk(R, r, α, β)

∣∣|B[zn]|m.

for |z| = 1, which is possible by inequality (33). We get for |z| = 1 ,

∣∣B[P (Rz)] + Φk(R, r, α, β)B[P (rz)]
∣∣− |δ||λ0||1 + Φk(R, r, α, β)

∣∣m
≤kn

∣∣B[Q(Rz/k2)] + Φk(R, r, α, β)B[Q(rz/k2)]
∣∣

− |δ|
kn
∣∣Rn + rnΦk(R, r, α, β)

∣∣|B[zn]|m.(34)

Equivalently for |z| = 1, R > r ≥ k, we have

∣∣B[P (Rz)] + Φk(R, r, α, β)B[P (rz)]
∣∣− kn∣∣B[Q(Rz/k2)] + Φk(R, r, α, β)B[Q(rz/k2)]

∣∣
≤ |δ|

{
|λ0||1 + Φk(R, r, α, β)

∣∣− 1

kn
∣∣Rn + rnΦk(R, r, α, β)

∣∣|B[zn]|
}
m.(35)
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Letting |δ| → 1 in inequality (35), we obtain for all α, β ∈ C with |α| ≤ 1, |β| ≤ 1, R >

r ≥ k and |z| = 1,

∣∣B[P (Rz)] + Φk(R, r, α, β)B[P (rz)]
∣∣− kn∣∣B[Q(Rz/k2)] + Φk(R, r, α, β)B[Q(rz/k2)]

∣∣
≤
{
|λ0||1 + Φk(R, r, α, β)

∣∣− 1

kn
∣∣Rn + rnΦk(R, r, α, β)

∣∣|B[zn]|
}
m.(36)

Inequality (36) in conjunction with Lemma 1.4 gives for all α, β ∈ C with |α| ≤ 1,

|β| ≤ 1, R > 1 and |z| = 1,

2
∣∣B[P (Rz)] + Φk(R, r, α, β)B[P (rz)]

∣∣
≤
{
|λ0|
∣∣1 + Φk(R, r, α, β)

∣∣+
1

kn
|Rn + rnΦk(R, r, α, β)| |B[zn]|

}
|Max
|z|=k
|P (z)|

+

{
|λ0||1 + Φk(R, r, α, β)

∣∣− 1

kn
∣∣Rn + rnΦk(R, r, α, β)

∣∣|B[zn]|
}
Min
|z|=k
|P (z)|.

which is equivalent to inequality (31) and thus completes the proof of theorem 2.7.

�

If we take α = 0, we get the following.

Corollary 2.8. If P ∈Pn and P (z) does not vanish in |z| < k where k ≤ 1, then for all

β ∈ C with |β| ≤ 1 , R > r ≥ k and |z| = 1,

∣∣∣∣B[P (Rz)] + β

(
R + k

k + r

)n
B[P (rz)]

∣∣∣∣
≤1

2

[{
|B[zn]|
kn

∣∣∣∣Rn + rnβ

(
R + k

k + 1

)n∣∣∣∣+

∣∣∣∣1 + β

(
R + k

k + 1

)n∣∣∣∣ |λ0|}Max
|z|=k

|B[P (z)]|

−
{
|B[zn]|
kn

∣∣∣∣Rn + rnβ

(
R + k

k + 1

)n∣∣∣∣− ∣∣∣∣1 + β

(
R + k

k + 1

)n∣∣∣∣ |λ0|}Min
|z|=k
|B[P (z)]|

]
.(37)

For β = 0, Theorem 2.6 reduces to the following result.
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Corollary 2.9. If P ∈Pn and P (z) does not vanish in |z| < k where k ≤ 1, then for all

α ∈ C with |α| ≤ 1, R > r ≥ k and |z| = 1,

|B[P (Rz)]− αB[P (z)]| ≤ 1

2

[{
|B[zn]|
kn

|Rn − αrn|+ |1− α| |λ0|
}
Max
|z|=k

|P (z)|

−
{
|B[zn]|
kn

|Rn − αrn| − |1− α| |λ0|
}
Min
|z|=k
|P (z)|

]
.(38)

The result is sharp and extremal polynomial is P (z) = azn + b, |a| = |b| 6= 0.
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