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1. Introduction

Given a bounded interval J = [t0, t0 + a) in R for some fixed t0, a ∈ R with a > 0,

consider the initial value problems of hybrid integro-differential equation (in short HIDE),

d

dt

[
x(t)− f(t, x(t))

]
=

∫ t

t0

g(s, x(s)) ds, t ∈ J

x(t0) = x0 ∈ R,

 (1.1)

where, f, g : J × R→ R are continuous.

By a solution of the HIDE (1.1) we mean a function x ∈ C(J,R) such that
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(i) the function t 7→ x− f(t, x) is continuous for each x ∈ R, and

(ii) x satisfies the equations in (1.1).

The importance of the investigations of hybrid integro-differential equations lies in the

fact that they include several classes of differential and integral equations as special cases.

The study of hybrid differential equations is implicit in the works of Krasnoselskii [9] and

extensively treated in the several papers on hybrid differential equations with different

perturbations. See Burton [1], Dhage [3] and the references therein. This class of hybrid

integro-differential equations includes the perturbations of original integro-differential e-

quations in different ways. A sharp classification of different types of perturbations of

integro-differential equations appears in Dhage [5] which can be treated with hybrid fixed

point theory (see Dhage [2, 4] and Dhage and Lakshmikantham [6]). In this paper, we

initiate the basic theory of hybrid integro-differential equations of linear perturbations

of second type involving two nonlinearities and prove some basic results such as integro-

differential inequalities, existence theorem and maximal and minimal solutions etc. We

claim that the results of this paper are basic and important contribution to the theory of

nonlinear ordinary integro-differential equations.

2. Strict and Nonstrict Inequalities

We need frequently the following hypothesis in what follows.

(A0) The function x 7→ x− f(t, x) is increasing in R for all t ∈ J .

We begin by proving the basic results dealing with hybrid integro-differential inequali-

ties.

Theorem 2.1. Assume that the hypothesis (A0) holds. Suppose that there exist y, z ∈

C(J,R) such that

d

dt

[
y(t)− f(t, y(t))

]
≤
∫ t

t0

g(s, y(s)) ds, t ∈ J (2.1)

and

d

dt

[
z(t)− f(t, z(t))

]
≥
∫ t

t0

g(s, z(s)) ds, t ∈ J. (2.2)
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If one of the inequalities (2.1) and (2.2) is strict and

y(t0) < z(t0), (2.3)

then

y(t) < z(t) (2.4)

for all t ∈ J .

Proof. Suppose that the inequality (2.4) is false. Then the set Z defined by

Z = {t ∈ J | y(t) ≥ z(t)} (2.5)

is non-empty. Denote t1 = inf Z. Without loss of generality, we may assume that

y(t1) = z(t1) and y(t) < z(t)

for all t < t1.

Assume that
d

dt

[
z(t)− f(t, z(t))

]
>

∫ t

0

g(s, z(s)) ds

for t ∈ J .

Denote

Y (t) = y(t)− f(t, y(t)) and Z(t) = z(t)− f(t, z(t)) (2.6)

for t ∈ J .

As hypothesis (A0) holds, it follows from (2.5) that

Y (t1) = Z(t1) and Y (t) < Z(t) (2.7)

for all t0 ≤ t < t1. The above relation (2.7) further yields

Y (t1 + h)− Y (t1)

h
>
Z(t1 + h)− Z(t1)

h

for small h < 0. Taking the limit as h→ 0, we obtain

Y ′(t1) ≥ Z ′(t1). (2.8)

Hence, from (2.7) and (2.8), we get∫ t1

t0

g(s, y(s)) ds ≥ Y ′(t1) ≥ Z ′(t1) >

∫ t1

t0

g(s, z(s)) ds.



64 BAPURAO C. DHAGE AND NAMDEV S. JADHAV

This is a contradiction and the proof is complete.

The next result is about the nonstrict inequality for the HIDE (1.1) on J which requires

a one-sided Lipschitz condition.

Theorem 2.2. Assume that the hypotheses of Theorem 2.1 hold. Suppose also that

there exists a real number L > 0 such that

g(t, y(t))− g(t, z(t)) ≤ L sup
t0≤s≤t

[
(y(s)− f(s, y(s)))− (z(s)− f(s, z(s)))

]
(2.9)

whenever y(s) ≥ z(s), t0 ≤ s ≤ t. Then,

y(t0) ≤ z(t0) (2.10)

implies

y(t) ≤ z(t) (2.11)

for all t ∈ J .

Proof. Let ε > 0 and let a real number L > 0 be given. Set

zε(t)− f(t, zε(t)) = z(t)− f(t, x(t)) + εe2L(t−t0) (2.12)

so that

zε(t)− f(t, zε(t)) > z(t)− f(t, x(t)).

Define

Zε(t) = zε(t)− f(t, zε(t)) and Z(t) = z(t)− f(t, z(t))

for t ∈ J .

Now using the one-sided Lipschitz condition (2.9), we obtain

g(t, zε(t))− g(t, z(t)) ≤ L sup
t0≤s≤t

[Zε(s)− Z(s)] = Lεe2L(t−t0).
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Now,

Z ′ε(t) = Z ′(t) + 2Lεe2L(t−t0)

≥
∫ t

t0

g(s, z(s)) ds+ 2Lεe2L(t−t0)

≥
∫ t

t0

g(s, zε(s)) + 2Lεe2L(t−t0) − Lεe2L(t−t0)

=

∫ t

t0

g(s, zε(s)) ds+ Lεe2L(t−t0)

>

∫ t

t0

g(s, zε(s)) ds

for all t ∈ J . Also, we have

Zε(t0) > Z(t0) ≥ Y (t0).

Now we apply Theorem 2.1 with z = zε to yield

Y (t) < Zε(t)

for all t ∈ J . On taking ε→ 0 in the above inequality, we get

Y (t) ≤ Z(t)

which further in view of hypothesis (A0) implies that (2.11) holds on J . This completes

the proof.

Remark 2.1. The conclusion of Theorems 2.1 and 2.2 also remains true if we replace

the derivative in the inequalities (2.1) and (2.2) by Dini-derivative D− of the function

x(t)− f(t, x(t)) on the bounded interval J .

3. Existence Result

In this section, we prove an existence result for the HIDE (1.1) on a closed and bounded

interval J = [t0, t0 + a] under mixed Lipschitz and compactness conditions on the non-

linearities involved in it. We place the HIDE (1.1) in the space C(J,R) of continuous

real-valued functions defined on J and use a hybrid fixed point of Dhage [2]. Define a
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supremum norm ‖ · ‖ in C(J,R) defined by

‖x‖ = sup
t∈J
|x(t)|.

Clearly C(J,R) is a Banach space with respect to the above supremum norm. We prove

the existence of solution for the HIDE (1.1) via a hybrid fixed point theorem in Banach

space due to Dhage [2].

Theorem 3.1. Let S be a closed convex and bounded subset of the Banach space E and

let A : E → E and B : S → E be two operators such that

(a) A is nonlinear contraction,

(b) B is compact and continuous, and

(c) x = Ax+By for all y ∈ S =⇒ x ∈ S.

Then the operator equation Ax+Bx = x has a solution in S.

We consider the following hypotheses in what follows.

(A1) There exists a constant L > 0 such that

|f(t, x)− f(t, y)| ≤ L|x− y|
M + |x− y|

for all t ∈ J and x, y ∈ R. Moreover, L ≤M .

(A2) There exists a continuous function h : J → R such that

|g(t, x)| ≤ h(t), t ∈ J

for all x ∈ R.

The following lemma is useful in the sequel.

Lemma 3.1. Assume that hypothesis (A0) holds. Then for any continuous function

h : J → R, the function x ∈ C(J,R) is a solution of the HIDE

d

dt
[x(t)− f(t, x(t))] =

∫ t

t0

h(s) ds t ∈ J

x(0) = x0 ∈ R

 (3.1)
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if and only if x satisfies the hybrid integral equation (HIE)

x(t) = x0 − f(t0, x0) + f(t, x(t)) +

∫ t

t0

(t− s)h(s) ds, t ∈ J. (3.2)

Proof. Let h ∈ C(J,R). Assume first that x is a solution of the HIDE (3.1). By definition,

x(t)−f(t, x(t)) is continuous on J , and so, differentiable there, whence d
dt

[
x(t)−f(t, x(t))

]
is integrable on J . Applying integration to (3.1) from t0 to t, we obtain the HIE (3.2) on

J .

Conversely, assume that x satisfies the HIE (3.2). Then by direct differentiation we

obtain the first equation in (3.1). Again, substituting t = t0 in (3.2) yields

x(t0)− f(t0, x(t0)) = x0 − f(t0, x0).

Since the mapping x 7→ x − f(t, x) is increasing in R for all t ∈ J , the mapping x 7→

x−f(t0, x) is injective in R, whence x(t0) = x0. Hence the proof of the lemma is complete.

Now we are in a position to prove the following existence theorem for the HIDE (1.1)

on J .

Theorem 3.2. Assume that the hypotheses (A0)-(A2) hold. Then the HIDE (1.1) has a

solution defined on J .

Proof. Set E = C(J,R) and define a subset S of E defined by

S = {x ∈ E | ‖x‖ ≤ N} (3.3)

where,

N = |x0 − f(t0, x0)|+ L+ F0 + ‖h‖ a(t0 + a),

and F0 = sup{|f(t, 0)| | t ∈ J}.

Clearly S is a closed, convex and bounded subset of the Banach space E. Now, using the

hypotheses (A0) and (A2) it can be shown by an application of Lemma 3.1 that the HIDE

(1.1) is equivalent to the nonlinear HIE

x(t) = x0 − f(t0, x0) + f(t, x(t)) +

∫ t

t0

(t− s)g(s, x(s)) ds (3.4)
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for t ∈ J .

Define two operators A : E → E and B : S → E by

Ax(t) = f(t, x(t)), t ∈ J, (3.5)

and

Bx(t) = x0 − f(t0, x0) +

∫ t

t0

(t− s)g(s, x(s)) ds, t ∈ J. (3.6)

Then, the HIE (3.5) is transformed into an operator equation as

Ax(t) +Bx(t) = x(t), t ∈ J. (3.7)

We shall show that the operators A and B satisfy all the conditions of Theorem 3.1.

First, we show that A is a Lipschitz operator on E with the Lipschitz constant L1. Let

x, y ∈ E. Then, by hypothesis (A1),

|Ax(t)− Ay(t)| = |f(t, x(t))− f(t, y(t))| ≤ L|x(t)− y(t)|
M + |x(t)− y(t)|

≤ L‖x− y‖
M + ‖x− y‖

for all t ∈ J . Taking supremum over t, we obtain

‖Ax− Ay‖ ≤ L‖x− y‖
M + ‖x− y‖

for all x, y ∈ E. This shows that A is a nonlinear contraction E with D-function ψ defined

by ψ(r) =
L r

M + r
.

Next, we show that B is a compact and continuous operator on S into E. First we

show that B is continuous on S. Let {xn} be a sequence in S converging to a point x ∈ S.

Then by dominated convergence theorem for integration, we obtain

lim
n→∞

Bxn(t) = lim
n→∞

[
x0 − f(t0, x0) +

∫ t

t0

(t− s)g(s, xn(s)) ds

]
= x0 − f(t0, x0) + lim

n→∞

∫ t

t0

(t− s)g(s, xn(s)) ds

= x0 − f(t0, x0) +

∫ t

t0

[
lim
n→∞

(t− s)g(s, xn(s))
]
ds

= x0 − f(t0, x0) +

∫ t

t0

(t− s)g(s, x(s)) ds

= Bx(t)
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for all t ∈ J . Moreover, it can be shown as below that {Bxn} is an equicontinuous

sequence of functions in X. Now, following the arguments similar to that given in Granas

et al. [7], it is proved that B is a continuous operator on S.

Next, we show that B is compact operator on S. It is enough to show that B(S) is

a uniformly bounded and equi-continuous set in E. Let x ∈ S be arbitrary. Then by

hypothesis (A2),

|Bx(t)| ≤ |x0 − f(t0, x0)|+
∫ t

t0

|t− s||g(s, x(s))| ds

≤ |x0 − f(t0, x0)|+
∫ t

t0

(t0 + a)h(s) ds

≤ |x0 − f(t0, x0)|+ ‖h‖ a(t0 + a)

for all t ∈ J . Taking supremum over t,

‖Bx‖ ≤
∣∣x0 − f(t0, x0)

∣∣+ ‖h‖ a(t0 + a)

for all x ∈ S. This shows that B is uniformly bounded on S.

Again, let t1, t2 ∈ J . Then for any x ∈ S, one has

|Bx(t1)−Bx(t2)| =
∣∣∣∣∫ t1

t0

(t1 − s)g(s, x(s)) ds−
∫ t2

t0

(t2 − s)g(s, x(s)) ds

∣∣∣∣
≤
∣∣∣∣∫ t1

t0

(t1 − s)g(s, x(s)) ds−
∫ t1

t0

(t2 − s)g(s, x(s)) ds

∣∣∣∣
+

∣∣∣∣∫ t1

t0

(t2 − s)g(s, x(s)) ds−
∫ t2

t0

(t2 − s)g(s, x(s)) ds

∣∣∣∣
≤
∣∣∣∣∫ t0+a

t0

|t1 − t2|h(s) ds

∣∣∣∣+

∣∣∣∣∫ t2

t1

(t0 + a)h(s) ds

∣∣∣∣
≤ a |t1 − t2| ‖h‖+ (t0 + a)|p(t1)− p(t2)|

where, p(t) =
∫ t
t0
h(s) ds. Since the function p is continuous on compact J , it is uniformly

continuous. Hence, for ε > 0, there exists a δ > 0 such that

|t1 − t2| < δ =⇒ |Bx(t1)−Bx(t2)| < ε
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for all t1, t2 ∈ J and for all x ∈ S. This shows that B(S) is an equi-continuous set in E.

Now the set B(S) is uniformly bounded and equicontinuous set in E, so it is compact by

Arzelá-Ascoli theorem. As a result, B is a continuous and compact operator on S.

Next, we show that hypothesis (c) of Theorem 3.1 is satisfied. Let x ∈ E and y ∈ S be

arbitrary such that x = Ax+By. Then, by assumption (A1), we have

|x(t)| ≤ |Ax(t)|+ |Bx(t)|

≤ |x0 − f(t0, x0)|+ |f(t, x(t))|+
∫ t

t0

|t− s||g(s, y(s))| ds

≤ |x0 − f(t0, x0)|+
[
|f(t, x(t))− f(t, 0)|+ |f(t, 0)|

]
+

∫ t

t0

(t0 + a)|g(s, y(s))| ds

≤ |x0 − f(t0, x0)|+ L+ F0 +

∫ t

t0

(t0 + a)h(s) ds

≤ |x0 − f(t0, x0)|+ L+ F0 + ‖h‖a(t0 + a).

Taking supremum over t,

‖x‖ ≤ |x0 − f(t0, x0)|+ L+ F0 + ‖h‖a(t0 + a).

Thus, all the conditions of Theorem 3.1 are satisfied and hence the operator equation

Ax + Bx = x has a solution in S. As a result, the HIDE (1.1) has a solution defined on

J . This completes the proof.

4. Maximal and Minimal Solutions

In this section, we shall prove the existence of maximal and minimal solutions for the

HIDE (1.1) on J = [t0, t0 + a]. We need the following definition in what follows.

Definition 4.1. A solution r of the HIDE (1.1) is said to be maximal if for any other

solution x to the HIDE (1.1) one has x(t) ≤ r(t), for all t ∈ J. Again, a solution ρ of the

HIDE (1.1) is said to be minimal if ρ(t) ≤ x(t), for all t ∈ J, where x is any solution of

the HIDE (1.1) existing on J.
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We discuss the case of maximal solution only, as the case of minimal solution is similar

and can be obtained with the similar arguments with appropriate modifications. Given

a arbitrary small real number ε > 0, consider the the following initial value problem of

HIDE,

d
dt

[x(t)− f(t, x(t))] =
∫ t
0
g(s, x(s)) ds+ ε, t ∈ J

x(t0) = x0 + ε

 (4.1)

where, f, g ∈ C(J × R,R).

An existence theorem for the HIDE (4.1) can be stated as follows:

Theorem 4.1. Assume that the hypotheses (A0)-(A2) hold. Then for every small number

ε > 0, the HIDE (4.1) has a solution defined on J .

Proof. The proof is similar to Theorem 3.1 and we omit the details.

Our main existence theorem for maximal solution for the HIDE (1.1) is

Theorem 4.2. Assume that the hypotheses (A0)-(A2) hold. Further, if L ≤M , then the

HIDE (1.1) has a maximal solution defined on J .

Proof. Let
{
εn
}∞
0

be a decreasing sequence of positive real numbers such that

limn→∞ εn = 0. Then for any solution u of the HIDE (1.1), by Theorem 2.1, one has

u(t) < r(t, εn) (4.2)

for all t ∈ J and n ∈ N ∪ {0}, where r(t, εn) is a solution of the HIDE,

d
dt

[x(t)− f(t, x(t))] =
∫ t
0
g(s, x(s)) ds+ εn, t ∈ J

x(t0) = x0 + εn

 (4.3)

defined on J .

Since, by Theorems 3.1 and 3.2, {r(t, εn)} is a decreasing sequence of positive real

numbers, the limit

r(t) = lim
n→∞

r(t, εn) (4.4)

exists. We show that the convergence in (4.4) is uniform on J . To finish, it is enough

to prove that the sequence {r(t, εn)} is equi-continuous in C(J,R). Let t1, t2 ∈ J be
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arbitrary. Then,

|r(t1, εn)− r(t2, εn)|

≤
∣∣f(t1, r(t1, εn))− f(t2, r(t2, εn))

∣∣
+

∣∣∣∣∫ t1

t0

(t1 − s)g(s, rεn(s)) ds−
∫ t2

t0

(t2 − s)g(s, rεn(s)) ds

∣∣∣∣
+

∣∣∣∣∫ t1

t0

(t1 − s)εn ds−
∫ t2

t0

(t2 − s)εn ds
∣∣∣∣

≤
∣∣f(t1, r(t1, εn))− f(t2, r(t2, εn))

∣∣
+

∣∣∣∣∫ t1

t0

(t1 − s)g(s, rεn(s)) ds−
∫ t1

t0

(t2 − s)g(s, rεn(s)) ds

∣∣∣∣
+

∣∣∣∣∫ t1

t0

(t2 − s)g(s, rεn(s)) ds−
∫ t2

t0

(t2 − s)g(s, rεn(s)) ds

∣∣∣∣
+

∣∣∣∣∫ t1

t0

(t1 − s)εn ds−
∫ t1

t0

(t2 − s)εn ds
∣∣∣∣

+

∣∣∣∣∫ t1

t0

(t2 − s)εn ds−
∫ t2

t0

(t2 − s)εn ds
∣∣∣∣

≤
∣∣f(t1, r(t1, εn))− f(t2, r(t2, εn))

∣∣
+

∣∣∣∣∫ t1

t0

(t1 − t2)g(s, rεn(s)) ds

∣∣∣∣+

∣∣∣∣∫ t2

t1

(t2 − s)g(s, rεn(s)) ds

∣∣∣∣
+

∣∣∣∣∫ t1

t0

(t1 − t2)εn ds
∣∣∣∣+

∣∣∣∣∫ t2

t1

(t2 − s)εn ds
∣∣∣∣

≤
∣∣f(t1, r(t1, εn))− f(t2, r(t2, εn))

∣∣
+

∫ t0+a

t0

|t1 − t2||g(s, rεn(s))| ds+

∣∣∣∣∫ t2

t1

|g(s, rεn(s))| ds
∣∣∣∣

+

∫ t0+a

t0

|t1 − t2|εn ds+

∣∣∣∣∫ t2

t1

(t0 + a)εn ds

∣∣∣∣
≤
∣∣f(t1, r(t1, εn))− f(t2, r(t2, εn))

∣∣
+ a‖h‖|t1 − t2|+

∣∣∣∣∫ t2

t1

h(s) ds

∣∣∣∣+ a|t1 − t2|εn + |t1 − t2|(t0 + a)εn

≤
∣∣f(t1, r(t1, εn))− f(t2, r(t2, εn))

∣∣+ c|t1 − t2|+ |p(t1)− p(t2)|

(4.5)
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where, p(t) =
∫ t
t0
h(s) ds and c = [(t0 + 2a)εn + a‖h‖].

Since f is continuous on compact set J× [−N,N ], they are uniformly continuous there.

Hence, ∣∣f(t1, r(t1, εn))− f(t2, r(t2, εn))
∣∣→ 0 as t1 → t2

uniformly for all n ∈ N. Similarly, since the function p is continuous on compact set J , it

is uniformly continuous and hence∣∣p(t1)− p(t2)∣∣→ 0 as t1 → t2

uniformly for all t1, t2 ∈ J .

Therefore, from the above inequality (4.5), it follows that

|r(t1, εn)− r(t1, εn)| → 0 as t1 → t2

uniformly for all n ∈ N. Therefore,

r(t, εn)→ r(t) as n→∞

for all t ∈ J . Next, we show that the function r(t) is a solution of the HIDE (3.1) defined

on J . Now, since r(t, εn) is a solution of the HIDE (4.3), we have

r(t, εn) = x0 + εn + f(t, r(t, εn)) +

∫ t

t0

(t− s)g(s, rεn(s)) ds (4.6)

for all t ∈ J. Taking the limit as n→∞ in the above equation (4.6) yields

r(t) = x0 − f(t0, x0) + f(t, r(t)) +

∫ t

t0

(t− s)g(s, r(s)) ds

for t ∈ J . Thus, the function r is a solution of the HIDE (1.1) on J . Finally, form the

inequality (4.2) it follows that

u(t) ≤ r(t)

for all t ∈ J . Hence the HIDE (1.1) has a maximal solution on J . This completes the

proof.

In the following section we prove the comparison principle for the hybrid integro-

differential equation ((1.1).
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5. Comparison Theorems

The main problem of the integro-differential inequalities is to estimate a bound for the

solution set for the integro-differential inequality related to the HIDE (1.1). In this section

we prove that the maximal and minimal solutions serve the bounds for the solutions of

the related integro-differential inequality to HIDE (1.1) on J = [t0, t0 + a].

Theorem 5.1. Assume that the hypotheses (A0)-(A2) hold. Further, if there exists a

function u ∈ C(J,R) such that

d
dt

[u(t)− f(t, u(t))] ≤
∫ t
t0
g(s, u(s)) ds t ∈ J

u(t0) ≤ x0.

 (5.1)

Then,

u(t) ≤ r(t) (5.2)

for all t ∈ J , where r is a maximal solution of the HIDE (1.1) on J .

Proof. Let ε > 0 be arbitrary small. Then, by Theorem 4.2, r(t, ε) is a maximal solution

of the HIDE (4.1)) and that the limit

r(t) = lim
ε→0

r(t, ε) (5.3)

is uniform on J and the function r is a maximal solution of the HIDE (1.1) on J . Hence,

we obtain

d
dt

[r(t, ε)− f(t, r(t, ε))] =
∫ t
t0
g(s, r(s, ε)) + ε, t ∈ J

r(t0, ε) = x0 + ε.

 (5.4)

From above inequality it follows that

d
dt

[r(t, ε)− f(t, r(t, ε))] >
∫ t
t0
g(s, r(s, ε)), t ∈ J

r(t0, ε) > x0.

 (5.5)

Now we apply Theorem 2.1 to the inequalities (5.1) and (5.5) and conclude that

u(t) < r(t, ε) (5.6)
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for all t ∈ J . This further in view of limit (5.3) implies that inequality (5.2) holds on J .

This completes the proof.

Theorem 5.2. Assume that the hypotheses (A0)-(A2) hold. Further, if there exists a

function v ∈ C(J,R) such that

d
dt

[v(t)− f(t, v(t))] ≥
∫ t
t0
g(s, v(s)), t ∈ J

v(t0) ≥ x0.

 (5.7)

Then,

ρ(t) ≤ v(t) (5.8)

for all t ∈ J , where ρ is a minimal solution of the HIDE (1.1) on J .

Note that Theorem 5.1 is useful to prove the boundedness and uniqueness of the solu-

tions for the HIDE (1.1) on J . A result in this direction is

Theorem 5.3. Assume that the hypotheses (A0)-(A2) hold. Suppose that there exists a

function G : J × R+ → R+ such that∣∣g(t, x1(t))− g(t, x2(t))
∣∣

≤ G

(
t, sup
t0≤s≤t

∣∣(x1(s)− f(s, x1(s))
)
−
(
x2(s)− f(s, x2(s))

)∣∣) (5.9)

for all t ∈ J and x1, x2 ∈ E. If identically zero function is the only solution of the

integro-differential equation

m′(t) =

∫ t

t0

G(s,m(s)) ds, t ∈ J, m(t0) = 0, (5.10)

then the HIDE (1.1) has a unique solution defined on J .

Proof. By Theorem 3.2, the HIDE (1.1) has a solution defined on J . Suppose that there

are two solutions u1 and u2 of the HIDE (1.1) existing on J . Define a function m : J → R+

by

m(t) =
∣∣(u1(t)− f(t, u1(t))

)
−
(
u2(t)− f(t, u2(t))

)∣∣ . (5.11)

As (|x(t)|)′ ≤ |x′(t)| for t ∈ J , we have that
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m′(t) ≤
∣∣∣∣ ddt [u1(t)− f(t, u1(t))]−

d

dt
[u2(t)− f(t, u2(t))]

∣∣∣∣
≤
∫ t

t0

|g(s, u1(s))− g(s, u2(s))| ds

≤
∫ t

t0

G
(
s, sup
t0≤s≤t

∣∣∣(u1(s)− f(s, u1(s))
)
−
(
u2(s)− f(s, u2(s))

)∣∣∣) ds
=

∫ t

t0

G(s,m(s)) ds

for all t ∈ J ; and that m(t0) = 0.

Now, we apply Theorem 5.1 with f ≡ 0 to get that m(t) = 0 for all t ∈ J . This gives

u1(t)− f(t, u1(t)) = u2(t)− f(t, u2(t))

for all t ∈ J . Finally, in view of hypothesis (A0) we conclude that u1(t) = u2(t) on J .

This completes the proof.

6. Extremal Solutions in Vector Segments

Sometimes it is desirable to have knowledge of existence of extremal solutions for the

HIDE (1.1) in a vector segment defined on J . Therefore, in this section we shall prove

the existence of maximal and minimal solutions for HIDE (1.1) between the given upper

and lower solutions on J = [t0, t0 + a]. We use a hybrid fixed point theorem of Dhage [3]

in ordered Banach space for establishing our results. We need the following preliminaries

in the sequel.

A non-empty closed set K in a Banach space E is called a cone with vertex 0, if (i)

K + K ⊆ K, (ii) λK ⊆ K for λ ∈ R, λ ≥ 0 and (iii) {−K} ∩ K = 0, where 0 is the

zero element of E. We introduce an order relation ≤ in E as follows. Let x, y ∈ E. Then

x ≤ y if and only if y − x ∈ K. A cone K is called to be normal if the norm ‖ · ‖ is

semi-monotone increasing on K, that is, there is a constant N > 0 such that ‖x‖ ≤ N‖y‖

for all x, y ∈ K with x ≤ y. It is known that if the cone K is normal in E, then every
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order-bounded set in E is norm-bounded. The details of cones and their properties appear

in Heikkilä and Lakshmikantham [8].

For any a, b ∈ E, a ≤ b, the order interval [a, b] is a set in E given by

[a, b] = {x ∈ E : a ≤ x ≤ b}.

Definition A mapping T : [a, b] → E is said to be nondecreasing or monotone

increasing if x ≤ y implies Tx ≤ Ty for all x, y ∈ [a, b].

We use the following fixed point theorems of Dhage [4] for proving the existence of

extremal solutions for the IVP (1.1) under certain monotonicity conditions.

Theorem 6.1. Let K be a cone in a Banach space E and let a, b ∈ E. be such that

a ≤ b. Suppose that A,B : [a, b]→ E are two nondecreasing operators such that

(a) A is nonlinear contraction,

(b) B is completely continuous, and

(c) Ax+ Cx ∈ [a, b] for each x ∈ [a, b].

Further, if the cone K is normal, then the operator equation Ax + Cx = x has a least

and a greatest solution in [a, b].

We equip the space C(J,R) with the order relation ≤ with the help of the cone K in

it defined by

K =
{
x ∈ C(J,R) : x(t) ≥ 0 for all t ∈ J

}
. (6.1)

It is well known that the cone K is a normal in C(J,R). We need the following definitions

in the sequel.

Definition A function a ∈ C(J,R) is called a lower solution of the HIDE (1.1) defined

on J if the map t 7→ x− f(t, x) is continuous for every x ∈ R and satisfies

d
dt

[a(t)− f(t, a(t))] ≤
∫ t
t0
g(s, a(s)) ds, t ∈ J

a(t0) ≤ x0.

 (6.2)
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Similarly, a function b ∈ C(J,R) is called an upper solution of the HIDE (1.1) defined on

J if the map t 7→ x− f(t, x) is continuous for every x ∈ R and satisfies

d
dt

[b(t)− f(t, b(t))] ≥
∫ t
t0
g(s, b(s)) ds, t ∈ J

b(t0) ≥ x0.

 (6.3)

A solution to the HIDE (1.1) is a lower as well as an upper solution for the HIDE (1.1)

defined on J and vice versa.

We consider the following set of assumptions:

(B1) The HIDE (1.1) has a lower solution a and an upper solution b defined on J with

a ≤ b.

(B2) The function x 7→ x−f(t, x) is increasing in the interval
[

mint∈J a(t),maxt∈J b(t)
]

for t ∈ J .

(B3) The functions f(t, x) and g(t, x) are nondecreasing in x for all t ∈ J.

(B4) There exists a continuous function h : J → R such that

g(s, b(s)) ≤ h(t)

for all t ∈ J .

Theorem 6.2. Suppose that the assumptions (A1) and (B1) through (B4 ) hold. Then

the HIDE (1.1) has a minimal and a maximal solution in [a, b] defined on J .

Proof. Now, the HIDE (1.1) is equivalent to hybrid integral equation (3.4) defined

on J . Let E = C(J,R). Define three operators A and B on [a, b] by (3.5) and (3.6)

respectively. Then the integral equation (3.4) is transformed into an operator equation as

Ax(t) +Bx(t) = x(t) in the ordered Banach space E. Notice that hypothesis (B1) implies

A,B : [a, b]→ E. Since the cone K in E is normal, [a, b] is a norm-bounded set in E. Now

it is shown, as in the proof of Theorem 3.2, that the operators A is nonlinear contraction.

Similarly, B is completely continuous operator on [a, b] into E. Again, the hypothesis

(B3) implies that A and B are nondecreasing on [a, b]. To see this, let x, y ∈ [a, b] be such



BASIC RESULTS IN HYBRID INTEGRO-DIFFERENTIAL EQUATIONS 79

that x ≤ y. Then, by hypothesis (B3),

Ax(t) = f(t, x(t)) ≤ f(t, y(t)) = Ay(t)

for all t ∈ J. Similarly, we have

Bx(t) = x0 − f(t0, x0) +

∫ t

t0

(t− s)g(s, x(s)) ds

≤ x0 − f(t0, x0) +

∫ t

t0

(t− s)g(s, y(s)) ds

= By(t)

for all t ∈ J . So A and B are nondecreasing operators on [a, b]. Hence, for any x ∈ [a, b]

we obtain

a(t) ≤ x0 − f(t0, x0) + f(t, a(t)) +

∫ t

t0

(t− s)g(s, a(s)) ds

≤ x0 − f(t0, x0) + f(t, x(t)) +

∫ t

t0

(t− s)g(s, x(s)) ds

≤ x0 − f(t0, x0) + f(t, b(t)) +

∫ t

t0

(t− s)g(s, b(s)) ds

≤ b(t),

for all t ∈ J . As a result a(t) ≤ Ax(t) + Bx(t) ≤ b(t) for all t ∈ J and x ∈ [a, b]. Hence,

Ax+Bx ∈ [a, b] for all x ∈ [a, b].

Now, we apply Theorem 6.1 to the operator equation Ax + Bx = x to yield that the

HIDE (1.1) has a minimal and a maximal solution in [a, b] defined on J . This completes

the proof.

Remark The hybrid integro-differential equations is a rich area for variety of nonlinear

ordinary as well as partial integro-differential equations. Here, in this paper, we have

considered a very simple hybrid integro-differential equation involving two nonlinearities,

however, a more complex hybrid integro-differential equation can also be studied on sim-

ilar lines with appropriate modifications. Again, the results proved in this paper are very

fundamental in nature and therefore, all other problems for the hybrid integro-differential

equation in question are still open. In a forthcoming paper we plan to prove some ap-

proximation results for the hybrid integro-differential equation considered in this paper.
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