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1. INTRODUCTION

Let B (H) be the Banach algebra of bounded linear operators on a complex Hilbert space H.

The absolute value of an operator A is the positive operator |A| defined as |A| := (A∗A)1/2 .

One of the central problems in perturbation theory is to find bounds for

‖ f (A)− f (B)‖
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in terms of ‖A−B‖ for different classes of measurable functions f for which the function of

operator can be defined. For some results on this topic, see [5], [34] and the references therein.

It is known that [4] in the infinite-dimensional case the map f (A) := |A| is not Lipschitz

continuous on B (H) with the usual operator norm, i.e. there is no constant L > 0 such that

‖|A|− |B|‖ ≤ L‖A−B‖

for any A, B ∈B (H) .

However, as shown by Farforovskaya in [32], [33] and Kato in [39], the following inequality

holds

(1.1) ‖|A|− |B|‖ ≤ 2
π
‖A−B‖

(
2+ log

(
‖A‖+‖B‖
‖A−B‖

))
for any A,B ∈B (H) with A 6= B.

If the operator norm is replaced with Hilbert-Schmidt norm ‖C‖HS := (trC∗C)1/2 of an oper-

ator C, then the following inequality is true [2]

(1.2) ‖|A|− |B|‖HS ≤
√

2‖A−B‖HS

for any A,B ∈B (H) .

The coefficient
√

2 is best possible for a general A and B. If A and B are restricted to be

selfadjoint, then the best coefficient is 1.

It has been shown in [4] that, if A is an invertible operator, then for all operators B in a

neighborhood of A we have

(1.3) ‖|A|− |B|‖ ≤ a1 ‖A−B‖+a2 ‖A−B‖2 +O
(
‖A−B‖3

)
where

a1 =
∥∥A−1∥∥‖A‖ and a2 =

∥∥A−1∥∥+∥∥A−1∥∥3 ‖A‖2 .

In [3] the author also obtained the following Lipschitz type inequality

(1.4) ‖ f (A)− f (B)‖ ≤ f ′ (a)‖A−B‖

where f is an operator monotone function on (0,∞) and A,B≥ aIH > 0.
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Let (X ;‖·‖X) and (Y ;‖·‖Y ) be two Banach spaces over the complex number field C. Let C

be a convex set in X . For any mapping F : C⊂ X →Y we can consider the associated functions

ΦF,x,y,λ , ΨF,x,y,λ : [0,1]→ Y, where x,y ∈C, λ ∈ [0,1] , defined by [25]

ΦF,x,y,λ (t) : = (1−λ )F [(1− t)((1−λ )x+λy)+ ty](1.5)

+λF [(1− t)x+ t ((1−λ )x+λy)]

and

ΨF,x,y,λ (t) : = (1−λ )F [(1− t)((1−λ )x+λy)+ ty](1.6)

+λF [tx+(1− t)((1−λ )x+λy)] .

We say that the mapping F : B⊂ X →Y is Lipschitzian with the constant L > 0 on the subset

B of X if

(1.7) ‖F (x)−F (y)‖Y ≤ L‖x− y‖X for any x,y ∈ B.

The following result holds [25]:

Theorem 1. Let F : C ⊂ X → Y be a Lipschitzian mapping with the constant L > 0 on the

convex subset C of X . If x,y ∈C, then we have∥∥∥∥ΛF,x,y,λ (t)−
∫ 1

0
F [sy+(1− s)x]ds

∥∥∥∥
Y

(1.8)

≤ 2L

[
1
4
+

(
t− 1

2

)2
][

1
4
+

(
λ − 1

2

)2
]
‖x− y‖X

for any t ∈ [0,1] and λ ∈ [0,1] , where ΛF,x,y,λ = ΦF,x,y,λ or ΛF,x,y,λ = ΨF,x,y,λ .

If we take in (1.8) ΛF,x,y,λ = ΦF,x,y,λ , λ = 1
2 , then we get

(1.9)
∥∥∥∥1

2

(
F
[
(1− t)

x+ y
2

+ ty
]
+F

[
(1− t)x+ t

x+ y
2

])
−
∫ 1

0
F [sy+(1− s)x]ds

∥∥∥∥≤ 1
2

L

[
1
4
+

(
t− 1

2

)2
]
‖x− y‖X

for any x,y ∈C and t ∈ [0,1] .
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If we take in (1.8) ΛF,x,y,λ = ΨF,x,y,λ , λ = 1
2 , then we get

(1.10)
∥∥∥∥1

2

(
F
[
(1− t)

x+ y
2

+ ty
]
+F

[
tx+(1− t)

x+ y
2

])
−
∫ 1

0
F [sy+(1− s)x]ds

∥∥∥∥
Y
≤ 1

2
L

[
1
4
+

(
t− 1

2

)2
]
‖x− y‖X

for any t ∈ [0,1] and x,y ∈C.

We also have the simpler inequalities∥∥∥∥1
2

[
F
(

3x+ y
4

)
+F

(
x+3y

4

)]
−
∫ 1

0
F [sy+(1− s)x]ds

∥∥∥∥
Y
≤ 1

8
L‖x− y‖X ,(1.11)

(1.12)
∥∥∥∥F
(

x+ y
2

)
−
∫ 1

0
F [sy+(1− s)x]ds

∥∥∥∥
Y
≤ 1

4
L‖x− y‖X

and

(1.13)
∥∥∥∥1

2
[F (x)+F (y)]−

∫ 1

0
F [sy+(1− s)x]ds

∥∥∥∥
Y
≤ 1

4
L‖x− y‖X

for any x,y ∈C. The constants 1
8 and 1

4 are best possible.

The inequalities (1.12) and (1.13) are the corresponding versions of Hermite-Hadamard in-

equalities for Lipschitzian functions. The scalar cases were obtained in [12] and [43]. For

Hermite-Hadamard’s type inequalities, see for instance [10], [12], [13], [35], [37], [38], [40],

[42], [43], [46], [47], [48], [49], [50] and the references therein.

From (1.8) we also have the Ostrowski’s inequality∥∥∥∥F [ty+(1− t)x]−
∫ 1

0
F [sy+(1− s)x]ds

∥∥∥∥
Y
≤ L

[
1
4
+

(
t− 1

2

)2
]
‖x− y‖X(1.14)

for any t ∈ [0,1] and x, y ∈C. For Ostrowski’s type inequalities for the Lebesgue integral, see

[1], [8]-[9] and [15]-[30]. Inequalities for the Riemann-Stieltjes integral may be found in [17],

[19] while the generalization for isotonic functionals was provided in [20]. For the case of

functions of self-adjoint operators on complex Hilbert spaces, see the recent monograph [23].

Motivated by the above results, we introduce here a class of functions that extends the concept

of Lipschitzian function and called them L-bounded norm weak convex functions. Integral
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inequalities of Hermite-Hadamard type are obtained and applications for discrete inequalities

of Jensen type are provided as well.

2. L-BOUNDED NORM WEAK CONVEX MAPPINGS

Let (X ;‖·‖X) and (Y ;‖·‖Y ) be two normed linear spaces over the complex number field C.

Let C be a convex set in X . We consider the following class of functions:

Definition 1. A mapping F : C⊂ X→Y is called L-bounded norm weak convex, for some given

L > 0, if it satisfies the condition

(2.1) ‖(1−λ )F (x)+λF (y)−F ((1−λ )x+λy)‖Y ≤ Lλ (1−λ )‖x− y‖X

for any x, y ∈C and λ ∈ [0,1] . For simplicity, we denote this by F ∈BN W L (C) .

We have from (2.1) for λ = 1
2 the Jensen’s inequality

(2.2)
∥∥∥∥F (x)+F (y)

2
−F

(
x+ y

2

)∥∥∥∥
Y
≤ 1

4
L‖x− y‖X

for any x, y ∈C.

We observe that BN W L (C) is a convex subset in the linear space of all functions defined

on C and with values in Y.

The following simple result holds:

Lemma 1. If the function F : C ⊂ X → Y is Lipschitzian with the constant K > 0, then F ∈

BN W L (C) with L = 2K.

Proof. Since F is Lipschitzian, we have

‖F ((1−λ )x+λy)−F (x)‖Y ≤ Kλ ‖x− y‖X

and

‖F ((1−λ )x+λy)−F (y)‖Y ≤ K (1−λ )‖x− y‖X

for any x, y ∈C and λ ∈ [0,1] .
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If we multiply the first inequality by 1− λ and the second inequality by λ and add these

inequalities, we get

(1−λ )‖F ((1−λ )x+λy)−F (x)‖Y +λ ‖F ((1−λ )x+λy)−F (y)‖Y

≤ 2Kλ (1−λ )‖x− y‖X

for any x, y ∈C and λ ∈ [0,1] .

We also have

(1−λ )‖F ((1−λ )x+λy)−F (x)‖Y +λ ‖F ((1−λ )x+λy)−F (y)‖Y

≥ ‖(1−λ )F ((1−λ )x+λy)− (1−λ )F (x)+λF ((1−λ )x+λy)−λF (y)‖Y

= ‖F ((1−λ )x+λy)− (1−λ )F (x)−λF (y)‖ ,

which proves that

‖(1−λ )F (x)+λF (y)−F ((1−λ )x+λy)‖ ≤ 2Kλ (1−λ )‖x− y‖X

for any x, y ∈C and λ ∈ [0,1] , namely F ∈BN W L (C) with L = 2K. �

We observe also that, by the triangle inequality, we have

‖F ((1−λ )x+λy)‖Y −‖(1−λ )F (x)+λF (y)‖Y(2.3)

≤ ‖(1−λ )F (x)+λF (y)−F ((1−λ )x+λy)‖Y

and by (2.1) we get

‖F ((1−λ )x+λy)‖Y −‖(1−λ )F (x)+λF (y)‖Y ≤ Lλ (1−λ )‖x− y‖X ,

which, again, by the triangle inequality gives

‖F ((1−λ )x+λy)‖Y ≤ Lλ (1−λ )‖x− y‖X +(1−λ )‖F (x)‖Y +λ ‖F (y)‖Y(2.4)

for any x,y ∈C and λ ∈ [0,1] .
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Now, if the function t 7→ ‖F ((1−λ )x+λy)‖Y , for some x, y ∈C, is Lebesgue integrable on

[0,1] , then by taking the integral in (2.4) we get∫ 1

0
‖F ((1−λ )x+λy)‖Y dλ ≤ L‖x− y‖X

∫ 1

0
λ (1−λ )dλ(2.5)

+‖F (x)‖Y
∫ 1

0
(1−λ )dλ +‖F (y)‖Y

∫ 1

0
λdλ

and since ∫ 1

0
λ (1−λ )dλ =

1
6
,
∫ 1

0
(1−λ )dλ =

∫ 1

0
λdλ =

1
2
,

then we get from (2.5) that

(2.6)
∫ 1

0
‖F ((1−λ )x+λy)‖Y dλ ≤ 1

6
L‖x− y‖X +

1
2
[‖F (x)‖Y +‖F (y)‖Y ] .

If we assume continuity for the function F on C in the norm topology of (X ;‖·‖X) , then the

inequality (2.6) holds for any x, y ∈C. Moreover, if we assume that (Y ;‖·‖Y ) is a Banach space

and F is continuos on C, then we have the generalized triangle inequality∥∥∥∥∫ 1

0
F ((1−λ )x+λy)dλ

∥∥∥∥
Y
≤
∫ 1

0
‖F ((1−λ )x+λy)‖Y dλ ,

and by (2.6) we get

(2.7)
∥∥∥∥∫ 1

0
F ((1−λ )x+λy)dλ

∥∥∥∥
Y
≤ 1

6
L‖x− y‖X +

1
2
[‖F (x)‖Y +‖F (y)‖Y ]

for any x, y ∈C.

We have the following results:

Theorem 2. Let (X ;‖·‖X) and (Y ;‖·‖Y ) be two normed linear spaces over the complex number

field C with Y complete. Assume that the mapping F : C ⊂ X → Y is continuous on the convex

set C in the norm topology. If F ∈BN W L (C) for some L > 0, then we have

(2.8)
∥∥∥∥F (x)+F (y)

2
−
∫ 1

0
F ((1−λ )x+λy)dλ

∥∥∥∥
Y
≤ 1

6
L‖x− y‖X

and

(2.9)
∥∥∥∥∫ 1

0
F ((1−λ )x+λy)dλ −F

(
x+ y

2

)∥∥∥∥
Y
≤ 1

8
L‖x− y‖X

for any x, y ∈C.

The constants 1
6 and 1

8 are best possible.
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Proof. From (2.1) we have successively

∥∥∥∥∫ 1

0
[(1−λ )F (x)+λF (y)−F ((1−λ )x+λy)]dλ

∥∥∥∥
Y

≤
∫ 1

0
‖(1−λ )F (x)+λF (y)−F ((1−λ )x+λy)‖Y dλ

≤ L‖x− y‖X

∫ 1

0
λ (1−λ )dλ =

1
6

L‖x− y‖X

which produces the desired result (2.8).

Utilising (2.2) we have

∥∥∥∥F ((1−λ )x+λy)+F (λx+(1−λ )y)
2

−F
(

x+ y
2

)∥∥∥∥
Y

(2.10)

≤ 1
4

L‖(1−λ )x+λy−λx− (1−λ )y‖X

=
1
2

K
∣∣∣∣λ − 1

2

∣∣∣∣‖x− y‖X

for any x, y ∈C and λ ∈ [0,1] .

Integrating in (2.10) we get

∥∥∥∥∫ 1

0

[
F ((1−λ )x+λy)+F (λx+(1−λ )y)

2
−F

(
x+ y

2

)]
dλ

∥∥∥∥
Y

(2.11)

≤
∫ 1

0

∥∥∥∥F ((1−λ )x+λy)+F (λx+(1−λ )y)
2

−F
(

x+ y
2

)∥∥∥∥
Y

dλ

≤ 1
2

K ‖x− y‖X

∫ 1

0

∣∣∣∣λ − 1
2

∣∣∣∣dλ =
1
8

K ‖x− y‖X

and since

∫ 1

0
F ((1−λ )x+λy)dλ =

∫ 1

0
F (λx+(1−λ )y)dλ ,

then from (2.11) we get (2.9).

Now, consider the function F0 : H → R, F0 (x) = ‖x‖2 where (H,〈., .〉) is a complex inner

product space. If x, y ∈ H and λ ∈ [0,1] , then
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(1−λ )F0 (x)+λF0 (y)−F0 ((1−λ )x+λy)

= (1−λ )‖x‖2 +λ ‖y‖2−‖(1−λ )x+λy‖2

= (1−λ )‖x‖2 +λ ‖y‖2− (1−λ )2 ‖x‖2−2(1−λ )λ Re〈x,y〉−λ
2 ‖y‖2

= (1−λ )λ

[
‖x‖2−2Re〈x,y〉+‖y‖2

]
= (1−λ )λ ‖x− y‖2 .

Consider C0 a convex subset of H such that ‖x− y‖ ≤ 1 for any x,y ∈ C. For instance C0 =

B
(
0, 1

2

)
is the closed ball centered in 0 and with a radius 1

2 . Then for all x, y ∈ B
(
0, 1

2

)
we have

‖x− y‖ ≤ ‖x‖+‖y‖ ≤ 1
2 +

1
2 = 1.

Therefore, if we consider F0 (x) = ‖x‖2 defined on C0 = B
(
0, 1

2

)
, we have

0≤ (1−λ )F0 (x)+λF0 (y)−F0 ((1−λ )x+λy)≤ (1−λ )λ ‖x− y‖

which shows that F0 ∈BN W L (C0) with L = 1.

We have∫ 1

0
F0 ((1−λ )x+λy)dλ =

∫ 1

0
‖(1−λ )x+λy‖2 dλ

=
∫ 1

0

[
(1−λ )2 ‖x‖2 +2(1−λ )λ Re〈x,y〉+λ

2 ‖y‖2
]

dλ

=
1
3

[
‖x‖2 +Re〈x,y〉+‖y‖2

]
for any x, y ∈ H.

Therefore

F0 (x)+F0 (y)
2

−
∫ 1

0
F0 ((1−λ )x+λy)dλ

=
1
2

[
‖x‖2 +‖y‖2

]
− 1

3

[
‖x‖2 +Re〈x,y〉+‖y‖2

]
=

1
6
‖x− y‖2 .

Now, assume that the inequality (2.8) holds with a constant A > 0, namely∥∥∥∥F (x)+F (y)
2

−
∫ 1

0
F ((1−λ )x+λy)dλ

∥∥∥∥
Y
≤ AL‖x− y‖X ,

then by taking F0 ∈BN W L (C0) with L = 1 defined above, we get

1
6
‖x− y‖2 ≤ A‖x− y‖X
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namely

(2.12)
1
6
‖x− y‖ ≤ A.

If e ∈H with ‖e‖= 1, then x = 1
2e and y =−1

2e ∈ B
(
0, 1

2

)
giving that x−y = e and by (2.12)

we get A≥ 1
6 .

Now, consider the function F0 : X → [0,∞), F0 (x) =
∥∥x− a+b

2

∥∥ , with a,b ∈ X with a 6= b.

Then

|F0 (x)−F0 (y)|=
∣∣∣∣∥∥∥∥x− a+b

2

∥∥∥∥−∥∥∥∥y− a+b
2

∥∥∥∥∣∣∣∣≤ ‖x− y‖ ,

for any x, y ∈ X , which shows that F0 is Lipschitzian with the constant K = 1.

By utilising Lemma 1 we conclude that F0 ∈BN W L (C) with L = 2.

We have∫ 1

0
F0 ((1−λ )a+λb)dλ −F0

(
a+b

2

)
=
∫ 1

0

∥∥∥∥(1−λ )a+λb− a+b
2

∥∥∥∥dλ =
1
4
‖b−a‖ ,

which shows that the inequality (2.9) holds with equality. �

3. RELATED INEQUALITIES

We have the following result as well:

Theorem 3. Let (X ;‖·‖X) and (Y ;‖·‖Y ) be two normed linear spaces over the complex number

field C with Y complete. Assume that the mapping F : C ⊂ X → Y is continuous on the convex

set C in the norm topology. If F ∈BN W L (C) for some L > 0, then we have

∥∥∥∥∫ 1

0
F (uy+(1−u)x)du− 1

2λ −1

∫
λ

1−λ

F (sx+(1− s)y)ds
∥∥∥∥

F
≤ 1

2
Lλ (1−λ )‖y− x‖X

(3.1)

for any λ ∈ [0,1] , λ 6= 1
2 and x, y ∈C.

Proof. Since F ∈BN W L (C) for K > 0, then

(3.2) ‖(1−λ )F (u)+λF (v)−F ((1−λ )u+λv)‖Y ≤ Lλ (1−λ )‖u− v‖X

for any u, v ∈C and λ ∈ [0,1] .
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Let t ∈ [0,1] and for x, y ∈C, take

u = (1− t)((1−λ )x+λy)+ ty, v = tx+(1− t)((1−λ )x+λy) ∈C

in (3.2) to get

‖(1−λ )F ((1− t)((1−λ )x+λy)+ ty) +λF (tx+(1− t)((1−λ )x+λy))(3.3)

−F ((1−λ ) [(1− t)((1−λ )x+λy)+ ty]+λ [tx+(1− t)((1−λ )x+λy)])‖Y

≤ Lλ (1−λ )‖(1− t)((1−λ )x+λy)+ ty− [tx+(1− t)((1−λ )x+λy)]‖X .

Observe that

(1−λ ) [(1− t)((1−λ )x+λy)+ ty]+λ [tx+(1− t)((1−λ )x+λy)]

= (1−λ )(1− t)((1−λ )x+λy)+(1−λ ) ty+λ tx+λ (1− t)((1−λ )x+λy)

= (1− t)((1−λ )x+λy)+(1−λ ) ty+λ tx

= [(1− t)(1−λ )+λ t]x+[(1− t)λ +(1−λ ) t]y

and

(1− t)((1−λ )x+λy)+ ty− [tx+(1− t)((1−λ )x+λy)]

= (1− t)(1−λ )x+(1− t)λy+ ty− tx− (1− t)(1−λ )x− (1− t)λy = t (y− x) .

Then by (3.3) we have

‖(1−λ )F ((1− t)((1−λ )x+λy)+ ty) +λF (tx+(1− t)((1−λ )x+λy))(3.4)

−F ([(1− t)(1−λ )+λ t]x+[(1− t)λ +(1−λ ) t]y)‖Y

≤ Lλ (1−λ ) t ‖y− x‖X ,

for any t, λ ∈ [0,1] and x,y ∈C.

Integrating the inequality (3.4) over t on [0,1] and using the generalized triangle inequality

for norms and integrals, we get
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∥∥∥∥(1−λ )
∫ 1

0
F ((1− t)((1−λ )x+λy)+ ty)dt(3.5)

+λ

∫ 1

0
F (tx+(1− t)((1−λ )x+λy))dt

−
∫ 1

0
F ([(1− t)(1−λ )+λ t]x+[(1− t)λ +(1−λ ) t]y)dt

∥∥∥∥
Y

≤ 1
2

Lλ (1−λ )‖y− x‖X ,

for any λ ∈ [0,1] and x, y ∈C.

Observe that

(3.6)
∫ 1

0
F [(1− t)(λy+(1−λ )x)+ ty]dt =

∫ 1

0
F [((1− t)λ + t)y+(1− t)(1−λ )x]dt

and

(3.7)
∫ 1

0
F (tx+(1− t)((1−λ )x+λy))dt

=
∫ 1

0
F ((1− t)x+ t ((1−λ )x+λy))dt =

∫ 1

0
F [tλy+(1−λ t)x]dt.

If we make the change of variable u := (1− t)λ + t then we have 1− u = (1− t)(1−λ ) and

du = (1−λ )du. Then∫ 1

0
F [((1− t)λ + t)y+(1− t)(1−λ )x]dt =

1
1−λ

∫ 1

λ

F [uy+(1−u)x]du.

If we make the change of variable u := λ t then we have du = λdt and∫ 1

0
F [tλy+(1−λ t)x]dt =

1
λ

∫
λ

0
F [uy+(1−u)x]du.

Therefore

(1−λ )
∫ 1

0
F [(1− t)(λy+(1−λ )x)+ ty]dt +λ

∫ 1

0
F [t (λy+(1−λ )x)+(1− t)x]dt

=
∫ 1

λ

F [uy+(1−u)x]du+
∫

λ

0
F [uy+(1−u)x]du =

∫ 1

0
F [uy+(1−u)x]du,

and we have the simple equality
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(3.8) (1−λ )
∫ 1

0
F ((1− t)((1−λ )x+λy)+ ty)dt

+λ

∫ 1

0
F (tx+(1− t)((1−λ )x+λy))dt =

∫ 1

0
F [uy+(1−u)x]du

for any λ ∈ [0,1] and x, y ∈C.

Consider now the integral∫ 1

0
F ([(1− t)(1−λ )+λ t]x+[(1− t)λ +(1−λ ) t]y)dt.

Put

s = (1− t)(1−λ )+λ t = 1−λ +(2λ −1) t.

Then

1− s = (1− t)λ +(1−λ ) t.

If λ 6= 1
2 , then s = 1−λ +(2λ −1) t is a change of variable with dt = 1

2λ−1 and we have

∫ 1

0
F ([(1− t)(1−λ )+λ t]x+[(1− t)λ +(1−λ ) t]y)dt

=
1

2λ −1

∫
λ

1−λ

F (sx+(1− s)y)ds.

Now, making use of (3.5) we get the desired result (3.1). �

Remark 1. We observe that for λ → 1
2 we recapture from (3.1) the inequality (2.9). If we take

in (3.1) λ = 3
4 , then we get∥∥∥∥∫ 1

0
F [uy+(1−u)x]du−2

∫ 3/4

1/4
F (sx+(1− s)y)ds

∥∥∥∥
F
≤ 3

32
L‖y− x‖X .(3.9)

4. APPLICATIONS FOR GÂTEAUX DIFFERENTIABLE FUNCTIONS

Following [11, p. 59], let (X ,‖·‖X) and (Y,‖·‖Y ) be two normed linear spaces, Ω an open

subset of X and f : Ω→ Y . If a ∈Ω, u ∈ X \{0} and if the limit

lim
t→0

1
t
[ f (a+ tu)− f (a)]
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exists, then we denote this derivative ∂u f (a) . It is called the directional derivative of f at a in

the direction u. If the directional derivative is defined in all directions and there is a continuous

linear mapping Φ from X into Y such that for all u ∈ X

∂u f (a) = Φ(u) ,

then we say that f is Gâteaux-differentiable at a and that Φ is the Gâteaux differential of f at a.

If a mapping f is differentiable at a point a, then clearly all its directional derivatives exist and

we have

∂u f (a) = f ′ (a)u, u ∈ X .

Thus f is Gâteaux-differentiable at a. However, the Gâteaux differential may exist without the

differential existing. The existence of directional derivatives at a point does not imply that the

mapping is Gâteaux-differentiable. To distinguish the differential from the Gâteaux differential,

the differential is often referred as the Fréchet differential.

Theorem 4. Let (X ;‖·‖X) and (Y ;‖·‖Y ) be two normed linear spaces over the complex number

field C. Assume that the mapping F : C ⊂ X → Y is defined on the open convex set C and

F ∈BN W L (C) for some L > 0. If xk ∈C, pk ≥ 0 for k ∈ {1, ...,n} with ∑
n
k=1 pk = 1 and F is

Gâteaux-differentiable at ∑
n
k=1 pkxk ∈C, then for any y j ∈C and q j ≥ 0 for j ∈ {1, ...,m} with

∑
m
j=1 q j = 1 and ∑

m
j=1 q jy j = ∑

n
k=1 pkxk we have

(4.1)

∥∥∥∥∥ m

∑
j=1

q jF
(
y j
)
−F

(
n

∑
k=1

pkxk

)∥∥∥∥∥
Y

≤ L
m

∑
j=1

q j

∥∥∥∥∥y j−
n

∑
k=1

pkxk

∥∥∥∥∥
X

.

In particular, we have

(4.2)

∥∥∥∥∥ n

∑
j=1

p jF
(
x j
)
−F

(
n

∑
k=1

pkxk

)∥∥∥∥∥
Y

≤ L
n

∑
j=1

p j

∥∥∥∥∥x j−
n

∑
k=1

pkxk

∥∥∥∥∥
X

.

Proof. Since F ∈BN W L (C) then we have

‖λ [F (y)−F (x)]+F (x)−F ((1−λ )x+λy)‖Y ≤ Lλ (1−λ )‖x− y‖X

for any x, y ∈C and λ ∈ [0,1] .

This implies that

(4.3)
∥∥∥∥F (y)−F (x)− F (x+λ (y− x))−F (x)

λ

∥∥∥∥
Y
≤ L(1−λ )‖x− y‖X
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for any x, y ∈C and λ ∈ (0,1) .

If we assume that F is Gâteaux-differentiable at x, then by taking the limit over λ → 0+ in

(4.3) we get

(4.4)
∥∥F (y)−F (x)−∂y−xF (x)

∥∥
Y ≤ L‖x− y‖X

for any x, y ∈C.

Now, if F is Gâteaux-differentiable at ∑
n
k=1 pkxk ∈C, then∥∥∥∥∥F (y)−F

(
n

∑
k=1

pkxk

)
−∂y−∑

n
k=1 pkxkF

(
n

∑
k=1

pkxk

)∥∥∥∥∥
Y

≤ L

∥∥∥∥∥ n

∑
k=1

pkxk− y

∥∥∥∥∥
X

(4.5)

for any y ∈C.

If y j ∈C and q j ≥ 0 for j ∈ {1, ...,m} with ∑
m
j=1 q j = 1, then by (4.5) we have

m

∑
j=1

q j

∥∥∥∥∥F
(
y j
)
−F

(
n

∑
k=1

pkxk

)
−∂y j−∑

n
k=1 pkxkF

(
n

∑
k=1

pkxk

)∥∥∥∥∥
Y

(4.6)

≤ L
m

∑
j=1

q j

∥∥∥∥∥ n

∑
k=1

pkxk− y j

∥∥∥∥∥
X

.

By the generalized triangle inequality we have

(4.7)

∥∥∥∥∥ m

∑
j=1

q jF
(
y j
)
−F

(
n

∑
k=1

pkxk

)
−∂∑

m
j=1 q jy j−∑

n
k=1 pkxkF

(
n

∑
k=1

pkxk

)∥∥∥∥∥
Y

≤
m

∑
j=1

q j

∥∥∥∥∥F
(
y j
)
−F

(
n

∑
k=1

pkxk

)
−∂y j−∑

n
k=1 pkxkF

(
n

∑
k=1

pkxk

)∥∥∥∥∥
Y

and by (4.6) and (4.7) we have the following inequality of interest∥∥∥∥∥ m

∑
j=1

q jF
(
y j
)
−F

(
n

∑
k=1

pkxk

)
−∂∑

m
j=1 q jy j−∑

n
k=1 pkxkF

(
n

∑
k=1

pkxk

)∥∥∥∥∥
Y

(4.8)

≤ L
m

∑
j=1

q j

∥∥∥∥∥ n

∑
k=1

pkxk− y j

∥∥∥∥∥
X

.

If we take ∑
m
j=1 q jy j = ∑

n
k=1 pkxk in (4.8), then we get the desired inequality (4.1).

The inequality (4.2) follows by (4.1) on taking m = n and q j = p j, j ∈ {1, ...,n} . �

We also have:
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Theorem 5. Let (X ;‖·‖X) and (Y ;‖·‖Y ) be two normed linear spaces over the complex number

field C. Assume that the mapping F : C ⊂ X → Y is defined on the open convex set C and

F ∈BN W L (C) for some L > 0. Let xk ∈C, pk ≥ 0 for k ∈ {1, ...,n} with ∑
n
k=1 pk = 1 and F

is Gâteaux-differentiable at xk for any k ∈ {1, ...,n} . If there exists z ∈C such that

(4.9)
n

∑
k=1

pk∂zF (xk) =
n

∑
k=1

pk∂xkF (xk) ,

then we have

(4.10)

∥∥∥∥∥F (z)−
n

∑
k=1

pkF (xk)

∥∥∥∥∥
Y

≤ L
n

∑
k=1

pk ‖xk− z‖X .

Proof. From (4.4) we have

(4.11)
∥∥F (y)−F (xk)−∂y−xkF (xk)

∥∥
Y ≤ L‖xk− y‖X

for any y ∈C and for any k ∈ {1, ...,n} .

If we multiply (4.11) by pk ≥ 0 for k ∈ {1, ...,n} and sum, we get

(4.12)
n

∑
k=1

pk
∥∥F (y)−F (xk)−∂y−xkF (xk)

∥∥
Y ≤ L

n

∑
k=1

pk ‖xk− y‖X

for any y ∈C.

By the generalized triangle inequality we get

n

∑
k=1

pk
∥∥F (y)−F (xk)−∂y−xkF (xk)

∥∥
Y ≥

∥∥∥∥∥F (y)−
n

∑
k=1

pkF (xk)−
n

∑
k=1

pk∂y−xkF (xk)

∥∥∥∥∥
Y

.(4.13)

By the linearity of the Gâteaux differential we have

n

∑
k=1

pk∂y−xkF (xk) =
n

∑
k=1

pk∂yF (xk)−
n

∑
k=1

pk∂xkF (xk)

and by (4.12) and (4.13) we have the inequality of interest∥∥∥∥∥F (y)−
n

∑
k=1

pkF (xk)−
n

∑
k=1

pk∂yF (xk)+
n

∑
k=1

pk∂xkF (xk)

∥∥∥∥∥
Y

≤ L
n

∑
k=1

pk ‖xk− y‖X(4.14)

for any y ∈C.

Now, if z ∈C is such that (4.9) holds, then by (4.14) we get the desired result (4.10). �
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Remark 2. Let xk ∈C, pk ≥ 0 for k ∈ {1, ...,n} with ∑
n
k=1 pk = 1 and F is differentiable at xk

for any k ∈ {1, ...,n} . If there exists z ∈C such that

(4.15)
n

∑
k=1

pkF ′ (xk)z =
n

∑
k=1

pkF (xk)xk,

then we have the inequality (4.10).

Moreover, if the operator ∑
n
k=1 pkF ′ (xk) is invertible and

(4.16) z :=

(
n

∑
k=1

pkF ′ (xk)

)−1( n

∑
k=1

pkF (xk)xk

)
∈C,

then we have the inequality∥∥∥∥∥∥F

( n

∑
k=1

pkF ′ (xk)

)−1( n

∑
k=1

pkF (xk)xk

)− n

∑
k=1

pkF (xk)

∥∥∥∥∥∥
Y

(4.17)

≤ L
n

∑
k=1

pk

∥∥∥∥∥∥xk−

(
n

∑
k=1

pkF ′ (xk)

)−1( n

∑
k=1

pkF (xk)xk

)∥∥∥∥∥∥
X

.
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