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Abstract. A new geometric inequality involving circumradius, inradius and medians of an acute triangle is estab-

lished. Another similar inequality proposed by the author as an open problem many years ago is proved. Several

conjectures are proposed after having been verified by the computer.
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1. INTRODUCTION AND MAIN RESULT

Let ABC be a triangle with circumradius R and inradius r, and let ma,mb,mc be its medians.

In [2], the author proved the following inequality involving the reciprocal sum of the medians

of an arbitrary triangle ABC:

(1.1) ∑
1

ma
≤ 2

3

(
1
R
+

1
r

)
.

where ∑ denotes the cyclic sum.

In [11], Wu and Shi considered improvements of inequality (1.1) and proved that the best

constant k for the following inequality:
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(1.2) ∑
1

ma
≤ 1

r
− k
(

1
r
− 2

R

)
is the real root in the interval (1

3 ,
2
5) of equation

(1.3) 354294k6−509571k5 +1927260k4−2145600k3 +133376k2 +99328k+12288 = 0

Furthermore, the constant k is approximately equal to 0.3440653.

In the recent paper [3], the author established the following reverse inequality of (1.1):

(1.4) ∑
1

ma
≥ 5

2R+ r
.

where the combined coefficients of the denominator are the best possible.

In this paper, for the acute triangle we shall establish two inequalities involving the sums

∑
1

mb +mc
and ∑

1
(mb +mc)2 . Our main results are the following:

Theorem 1. In the acute triangle ABC the following inequality holds:

(1.5) ∑
1

mb +mc
≤ 2

R+2r
,

with equality if and only if triangle ABC is equilateral.

Theorem 2. In the acute triangle ABC the following inequality holds:

(1.6) ∑
1

(mb +mc)2 ≤
1

6Rr
,

with equality if and only if triangle ABC is equilateral.

In fact, inequality (1.6) was proposed by the author as one of conjectures in a Chinese paper

[4], where most conjectures have been solved. However, the author has not seen that anyone

has proved inequality (1.6).

The aim of this paper is to prove Theorem 1 and 2. We also propose several conjectures

checked by the computer.



TWO INEQUALITIES IN AN ACUTE TRIANGLE 3

2. PRELIMINARIES

In order to prove the main results, we need several lemmas.

As usual, we denote by a,b,c the sides of triangle ABC; s and S the semiperimeter and area

respectively; ha,hb,hc the altitudes; ra,rb,rc the radii of excircles.

Lemma 1. In any triangle ABC the following inequality holds:

(2.1) mambmc ≥
1

8R ∑b2c2,

with equality if and only if triangle ABC is isosceles.

In [9], the author pointed that inequality (2.1) can be obtained from the following known

result (see [11]):

(2.2) ∑h2
a ∑

1
m2

a
≤ 9.

Lemma 2. In any triangle ABC the following inequality holds:

(2.3) ma ≥ ha +
(b2 + c2−a2 +14bc)(b− c)2

64aS
,

with equality if and only if b = c.

Inequality (2.3) is one of the equivalent form of Theorem 1.1 from the author’s paper [7].

Lemma 3. With the above notations, we have the following identities:

∑a2 =2s2−8Rr−2r2,(2.4)

∑a3 =2s3− (12Rr+6r2)s,(2.5)

∑a4 =2s4−4(4R+3r)rs2 +2(4R+ r)2r2,(2.6)

∑a5 =2s5−20(R+ r)rs3 +10(2R+ r)(4R+ r)r2s,(2.7)

∑a6 =2s6−6(4R+5r)rs4 +6(24R2 +24Rr+5r2)r2s2

−2(4R+ r)3r3,(2.8)
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∑a7 =2s7−14(2R+3r)rs5 +14(16R2 +20Rr+5r2)r2s3

−14(2R+ r)(4R+ r)2r3s,(2.9)

∑a8 =2s8−8(4R+7r)rs6 +20(16R2 +24Rr+7r2)r2s4

−8(4R+ r)(32R2 +32Rr+7r2)r3s2 +2(4R+ r)4r4.(2.10)

Lemma 4. With the above notations, we have the following identities:

∑bc =s2 +4Rr+ r2,(2.11)

∑b2c2 =s4−2(4R− r)rs2 +(4R+ r)2r2,(2.12)

∑b3c3 =s6−3(4R− r)rs4 +3r4s2 +(4R+ r)3r3(2.13)

∑b4c4 =s8−4(4R− r)rs6 +2(16R2−8Rr+3r2)r2s4

+4(4R+ r)r5s2 +(4R+ r)4r4.(2.14)

In Lemma 3 and 4, identities (2.4)-(2.6), (2.11) and (2.12) can be found in the monograph

[11]. The others have been proved in [5] and [6].

Lemma 5. In any triangle ABC the following inequality holds:

(2.15) P0 ≡ (mb +mc)(mc +ma)(ma +mb)≥
K0

32Rs2 ,

where

K0 =12s6 +(86R2 +55Rr+13r2)s4− (53R−4r)(4R+ r)2rs2

+3(4R+ r)4r2.

Equality in (2.15) holds if and only if4ABC is equilateral.

Proof. First, we note that

(2.16) P0 = 2mambmc +∑ma(m2
b +m2

c).

Using the known formula:

(2.17) ma =
1
2

√
2b2 +2c2−a2,
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we get

(2.18) 4(m2
b +m2

c) = 4a2 +b2 + c2.

Consequently, from identity (2.16) using Lemma 1 and 2, we get

P0 ≥
1

4R ∑b2c2 +
1
4 ∑(4a2 +b2 + c2)

[
ha +

(b2 + c2−a2 +14bc)(b− c)2

64aS

]
.

Using ha = 2S/a again, we get

P0 ≥
1

4R ∑b2c2 +
P1

256abcS
,(2.19)

where

P1 = ∑bc(4a2 +b2 + c2)
[
128S2 +(b2 + c2−a2 +14bc)(b− c)2] .

Letting d = abc and applying the equivalent form of Heron’s formula

(2.20) 16S2 = 2∑b2c2−∑a4,

we easily obtain the following identity:

P1 =
(
108∑a2−10∑bc

)
d2 +

(
52∑a3

∑a2−13∑a∑a4−71∑a5
)

d

12∑a8−7∑a∑a7−17∑a3
∑a5 +12∑a2

∑a6 +24∑b4c4.(2.21)

Further, with the help of software Maple, using ∑a = 2s, Lemma 3, Lemma 4 and the following

identity

(2.22) abc = 4Rrs,

we immediately obtain

P1 =32r2
[
4s6 +(86R2 +119Rr−3r2)s4− (53R+4r)(4R+ r)2rs2

+3(4R+ r)4r2] .(2.23)

Finally, from (2.19) using identities (2.12), (2.22) and S = rs, we get inequality (2.15). This

completes the proof of Lemma 5. �
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Lemma 6. In the acute triangle ABC the following inequality holds:

(2.24) s2 ≥ 4R2−Rr+13r2 +
(R−2r)r3

R2 ,

with equality if and only if triangle ABC is equilateral or right isosceles.

Inequality (2.24) was obtained by the author in [8].

Lemma 7. In the acute triangle ABC the following inequality holds:

(2.25) s2 ≥ 16Rr−3r2− 4r3

R
,

with equality if and only if4ABC is equilateral or right isosceles.

Inequality (2.25) was first established by the author in a Chinese paper [10]. Later, the author

also gave a direct proof in [8].

The following lemma provides an interesting inequality involving the medians and altitudes

of an acute triangles.

Lemma 8. In the acute triangle ABC the following inequality holds:

(2.26) ∑mbmc ≤
1
3 ∑h2

a +
2
3 ∑m2

a,

with equality if and only if4ABC is equilateral.

Proof. First, by the Cauchy inequality we have

(2.27)
(
∑mbmc

)2 ≤∑
1

rb + rc
∑(rb + rc)m2

bm2
c .

Using the following known formula:

(2.28) ra =
S

s−a

and S = rs, we easily get

∑
1

rb + rc
=

abc∑a−∑a∑a3 +
(
∑a2)2

4abcS
.

Further, using ∑ = 2s, identities (2.4), (2.5) and (2.22), one obtains

(2.29) ∑
1

rb + rc
=

s2 +(4R+ r)2

4Rs2 .
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In addition, by applying (2.17), (2.28), s = (a+b+ c)/2 and S = rs, one can get

(2.30) ∑(rb + rc)m2
bm2

c =
K1

32r
,

where

K1 =7abc∑a∑a2−11abc∑a3 +2∑a∑a5−6∑a6

+4∑b3c3−15(abc)2.

Then, using ∑a = 2s, identities (2.4), (2.5), (2.7), (2.8), (2.13) and (2.22), we further obtain

∑(rb + rc)m2
bm2

c =
1
4

K2,(2.31)

where

K2 = (5R+14r)s4− (88R2 +59Rr+16r2)rs2 +2(4R+ r)3r2.

Consequently, it follows from (2.27), (2.29) and (2.31) that

(2.32)
(
∑mbmc

)2 ≤
[
s2 +(4R+ r)2]K2

16Rs2 .

On the other hand, by the equality 2Rha = bc and the following known identity:

(2.33) ∑m2
a =

3
4 ∑a2,

we have
1
3 ∑h2

a +
2
3 ∑m2

a =
1

12R2 ∑b2c2 +
1
2 ∑a2.

Using identities (2.4) and (2.12), we further get

(2.34)
1
3 ∑h2

a +
2
3 ∑m2

a =
K3

12R2 ,

where

K3 = s4 +(12R2−8Rr+2r2)s2− (4R+ r)(2R− r)(6R+ r)r.

Now, by inequality (2.32) and identity (2.34), to prove inequality (2.26) we need to show[
s2 +(4R+ r)2]K2

16Rs2 ≤
K2

3
144R4 ,
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i.e.

Q0 ≡ s2K2
3 −9K2R3 [s2 +(4R+ r)2]≥ 0.

With the help of software Maple, by using the expressions of K2 and K3, the above inequality is

transformed into

Q0 ≡s10 +(24R2−16Rr+4r2)s8 +(99R4−414R3r+120R2r2

−16Rr3 +6r4)s6 +(−720R6−2736R5r+342R4r2−46R3r3

−88R2r4 +16Rr5 +4r6)s4 +(792R5 +603R4r+30R3r2

−8R2r3 +8Rr4 + r5)(4R+ r)2rs2−18(4R+ r)5R3r2 ≥ 0,(2.35)

which needs to be proved.

According to Euler’s inequality (valid for any triangle):

(2.36) R≥ 2r

and Lemma 6, we know that for acute triangle ABC holds:

(2.37) v0 ≡ s2− (4R2−Rr−13r2)≥ 0.

Based on this inequality, one can write inequality (2.35) as follows:

(2.38) Q0 ≡ v5
0 +m4v4

0 +m3v3
0 +m2v2

0 +m1v0 +m0 ≥ 0,

where

m4 =44R2−21Rr+69r2,

m3 =643R4−846R3r+2546R2r2−1124Rr3 +1904r4,

m2 =3412R6−11169R5r+29517R4r2−33890R3r3

+54734R2r4−22544Rr5 +26264r6,

m1 =6416R8−40008R7r+134625R6r2−291952R5r3

+442837R4r4−452028R3r5 +519024R2r6

−200816Rr7 +181104r8,
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m0 =(R−2r)(1984R9−26128R8r+127428R7r2−301051R6r3

+559631R5r4−791539R4r5 +597875R3r6−811914R2r7

+210308Rr8−249704r9).

Clearly, Euler’s inequality shows that m4 > 0 and m3 > 0. If we set e = R− 2r and substitute

R = 2r+ e into the expression of m2, then it is easy to obtain

m2 =3412e6 +29775e5r+122547e4r2 +301406e3r3 +485162e2r4

+495840er5 +262224r6.(2.39)

As e≥ 0, so that m2 > 0. Thus, to prove inequality (2.38) it remains to show that

(2.40) m1v0 +m0 ≥ 0.

We shall consider the following two cases to finish the proof of inequality (2.40).

Case 1 R and r satisfy that h0 ≡ R2−2Rr− r2 > 0.

Firstly, in the same way to prove m2 > 0 one can easily show that m1 > 0. Hence, by Lemma

6, to prove (2.40) we require the following inequality to be proved:

m1
(R−2r)r3

R2 +m0 ≥ 0.

A direct calculation gives the equivalent inequality

(2.41) x1
(R−2r)

R2 ≥ 0,

where

x1 =1984R11−26128R10r+127428R9r2−294635R8r3 +519623R7r4

−656914R6r5 +305923R5r6−369077R4r7−241720R3r8

+269320R2r9−200816Rr10 +181104r11.

Since R ≥ 2r, to prove (2.41) we need to show the strict inequality x1 > 0. However, it is easy

to verify the following identity:

48828125x1 = eh0x2 +97656250 [2766994h0 +R(147480R−311143r)]r9(2.42)
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where

e =R−2r,

x2 =96875000000e8 +661718750000e7r+792382812500e6r2

−5077880859375e5r3−11135107421875e4r4 +55848583984375e3r5

+313514160156250e2r6 +659879296875000er7 +676876269531250r8.

It follows from the hypothesis R2− 2Rr− r2 > 0 that R ≥ (1+
√

2)r. So, it is easy to find

147480R− 311143r > 0. Thus, by (2.42) we only need to show x2 > 0. Then, it is enough to

show that

661718750000e7r+792382812500e6r2−5077880859375e5r3

−11135107421875e4r4 +55848583984375e3r5 > 0.(2.43)

One can only consider the case r = 1, i.e.,

661718750000e7 +792382812500e6−5077880859375e5

−11135107421875e4 +55848583984375e3 > 0.

Dividing both sides by 66171875000 gives

10e4 +(11.974 · · ·)e3− (76.737 · · ·)e2− (168.275 · · ·)e+(843.992 · · ·)> 0.

So, we only need to prove

10e4 +10e3−80e2−170e+840 > 0.

It suffices to show

e4 + e3−8e2−17e+48 > 0,

which can be rewritten as

e(e+5)(e−2)2 +8e2−37e+48 > 0.

Notice that 8e2−37e+48 > 0. One sees that the desired inequality holds. Hence, inequalities

(2.43) and (2.40) are proved in Case 1.
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Case 2 R and r satisfy h0 ≡ R2−2Rr− r2 ≤ 0.

By Lemma 7 we have

v0 = s2− (4R2−Rr+13r2)≥ 16Rr−3r2− 4r3

R
−4R2 +Rr−13r2.

Simplifying gives

(2.44) v0 ≥
(R−2r)(2r2 +9Rr−4R2)

R
.

Since m1 > 0, to prove inequality (2.40) we need to show that

m1
(R−2r)(2r2 +9Rr−4R2)

R
+m0 ≥ 0.

A direct computation gives the equivalent inequality:

(2.45) x3
(R−2r)

R
≥ 0,

where

x3 =−23680R10 +191648R9r−758312R8r2 +1998366R7r3

−3570035R6r4 +4418202R5r5−4660799R4r6

+3758510R3r7−1283404R2r8 +978600Rr9 +362208r10.

By Euler’s inequality, it remains to show that x3 > 0. We can rewrite x3 as follows:

(2.46) x3 =−eh0x4−529824h0r8 +2R(769766r−311143R)r8,

where

x4 =23680R7−96928R6r+299560R5r2−556702R4r3

+638403R3r4−793604R2r5 +684578Rr6 +83808r7.

If we set R = 2r+ e(e ≥ 0) and substitute it into the expression of x4, then we find that all the

terms are nonnegative after expanding. Thus, we have x4 > 0.

In addition, it follows from the hypothesis R2−2Rr− r2 ≤ 0 that (1+
√

2)r ≥ R. This yields

769766r−311143R > 0. Finally, from identity (2.46) we deduce that x4 > 0 holds in the case

h0 < 0.
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Combining the discussions of the above two cases, we conclude that inequality (2.40) holds

for all acute triangles. Also, it is easy to determine that equality of (2.40) holds if and only if

4ABC is equilateral. This completes the proof of Lemma 8. �

Remark 1. Inspired by inequality (2.26), the author has found and proved that for the acute

triangle ABC the following inequality chain holds:

1
2 ∑(mb−mc)

2 +
1
3 ∑h2

a ≥
1
4 ∑a2 ≥ 1

2 ∑(mb−mc)
2 +

1
3 ∑hbhc

≥ 1
4 ∑bc,(2.47)

in which the first inequality is equivalent to inequality (2.26).

3. PROOFS OF THEOREM 1 AND THEOREM 2

In this section, we shall give the proofs of Theorem 1 and 2.

3.1. Proof of Theorem 1.

Proof. We first note that inequality (1.5) it is equivalent to

2(mb +mc)(mc +ma)(ma +mb)≥ (R+2r)∑(mc +ma)(ma +mb),

that is

(3.1) 2(mb +mc)(mc +ma)(ma +mb)≥ (R+2r)
(
∑m2

a +3∑mbmc
)
.

By Lemma 5 and 8, we only need to prove

K0

16Rs2 ≥ (R+2r)
(
3∑m2

a +∑h2
a
)
.

Multiplying both sides by 16s2R2 and using 2Rha = bc and the previous identity (2.33), one can

see that the inequality is equivalent to

D0 ≡ RK0−4(R+2r)s2 (9R2
∑a2 +∑b2c2)≥ 0.
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Using the expression of K0 and simplifying gives

D0 ≡8(R− r)s6 +(14R3−57R2r+69Rr2−16r3)s4

− (4R+ r)(140R3−91R2r+32Rr2 +8r3)rs2

+3(4R+ r)4Rr2 ≥ 0,(3.2)

which needs to be proved.

We set v0 = s2−4R2+Rr−13r2. Inequality (2.37) shows that for acute triangle v0≥ 0 holds.

We can rewrite D0 as follows:

D0 ≡8(R− r)v3
0 +(110R3−177R2r+405Rr2−328r3)v2

0

+(496R5−1620R4r+3966R3r2−4929R2r3 +6442Rr4

−4480r5)v0 +(R−2r)(736R6−2688R5r+5350R4r2

−10933R3r3 +11376R2r4−11348Rr5 +10192r6)≥ 0.(3.3)

By Euler’s inequality, one sees that 110R3− 177R2r + 405Rr2− 328r3 > 0. Thus, to prove

D0 ≥ 0 we only need to show that

D1 ≡(496R5−1620R4r+3966R3r2−4929R2r3 +6442Rr4−4480r5)v0

+(R−2r)(736R6−2688R5r+5350R4r2−10933R3r3 +11376R2r4

−11348Rr5 +10192r6)≥ 0.(3.4)

We shall consider the following two cases to finish the proof of inequality (3.4).

Case 1 R and r satisfy 5R−12r > 0.

We set e = R−2r, then e≥ 0 and it is easy to obtain

(496R5−1620R4r+3966R3r2−4929R2r3 +6442Rr4−4480r5)

= 496e5 +3340e4r+10846e3r2 +19667e2r3 +22158er4 +10368r5 > 0.(3.5)

Note that v0 ≥ 0 and R≥ 2r, to prove (3.4) it remains to prove the following strict inequality:

y1 ≡ 736R6−2688R5r+5350R4r2−10933R3r3 +11376R2r4

−11348Rr5 +10192r6 > 0.(3.6)
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But, it is easy to check that

3125y1 =(5R−12r)(R−2r)(460000R4 +344000R3r+2649350R2r2

+3172815Rr3 +8353506r4)+32(2255221R−5269817r)r5.(3.7)

By the assumption that 5R−12r > 0, it is easy to know 2255221R−5269817r > 0. Thus, from

the above identity we deduce y1 > 0. This completes the proof of (3.4) in Case 1.

Case 2 R and r satisfy 5R−12r ≤ 0.

By the previous inequalities (2.43) and (3.5), we have

D1 ≥
(R−2r)(2r2 +9Rr−4R2)

R
(496R5−1620R4r+3966R3r2

−4929R2r3 +6442Rr4−4480r5 +(R−2r)(736R6−2688R5r

+5350R4r2−10933R3r3 +11376R2r4−11348Rr5 +10192r6).

Simplifying gives

(3.8) D1 ≥
R−2r

R
y2,

where

y2 =−1248R7 +8256R6r−24102R5r2 +41237R4r3−50821R3r4

+54692R2r5−17244Rr6−8960r7.

Let e = R−2r, then it is easy to get

(3.9) 78152y2 = 5(12r−5R)ey3 +368812232(12r−5R)r6 +1287375536r7,

where

y3 =3900000e5 +30360000e4r+105462750e3r2 +210506975e2r3

+280843415er4 +255843616r5.

As e≥ 0 and the assumption 12r−5R > 0 we deduce y2 > 0 from (3.9). Thus, it follows from

(3.8) that D1 ≥ 0. Inequality (3.4) is proved.

Combining the arguments of the above two cases, we conclude that inequality (3.4) is valid

for all acute triangles. And we completes the proof of inequality (1.5). It is easily shown that
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equality in (1.5) holds only when triangle ABC is an equilateral triangle. This completes the

proof of Theorem 1. �

3.2. Proof of Theorem 2.

Proof. To prove inequality (1.6), note first that it is equivalent to

(3.10) (mb +mc)
2(mc +ma)

2(ma +mb)
2 ≥ 6Rr∑(mc +ma)

2(ma +mb)
2.

Using the previous identity (2.33), the following known identity

(3.11) ∑m4
a =

9
16 ∑a4,

inequality (2.26) and identity (2.34), we have

∑(mc +ma)
2(ma +mb)

2

= ∑m4
a +2∑mbmc ∑m2

a +3
(
∑mbmc

)2

=
9
16 ∑a4 +

3
2 ∑a2

∑mbmc +3
(
∑mbmc

)2

≤ 9
16 ∑a4 +

K3

8R2 ∑a2 +
K2

3
48R4 .

Finally, with the help of Maple using identities (2.4), (2.6) and the expression of K3, we imme-

diately obtain

(3.12) ∑(mc +ma)
2(ma +mb)

2 ≤ K4

48R4 ,

where

K4 =s8 +(36R2−16Rr+4r2)s6 +(342R4−432R3r+132R2r2

−16Rr3 +6r4)s4−4(684R5−207R4r−8R3r2 +25R2r3

−4Rr4− r5)rs2 +(342R4−144R3r−20R2r2 +8Rr3

+ r4)(4R+ r)2r2.

By Lemma 5 and inequality (3.10), to prove inequality (3.8) we only need to show(
K0

32Rs2

)2

≥ 6Rr · K4

48R4 ,
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that is

E0 ≡ RK2
0 −128rs4K4 ≥ 0.

With the help of Maple, it is easy to know that the above inequality is equivalent to

E0 ≡(144R−128r)s12 +(2064R3−3288R2r+2360Rr2−512r3)s10

+(7396R5−54668R4r+51917R3r2−15970R2r3 +2313Rr4

−768r5)s8−2(72928R6−106720R5r+76406R4r2 +4083R3r3

−6923R2r4 +936Rr5 +256r6)rs6 +(53200R5−18680R4r

+22509R3r2 +3218R2r3−930Rr4−128r5)(4R+ r)2r2s4

−6(53R−4r)(4R+ r)6Rr3s2 +9(4R+ r)8Rr4 ≥ 0.(3.13)

Note that for any triangle the following inequality holds (see [10]):

(3.14) (4R+ r)2 ≥ 3s2,

we only need to show

E1 ≡(144R−128r)s10 +(2064R3−3288R2r+2360Rr2−512r3)s8

+(7396R5−54668R4r+51917R3r2−15970R2r3 +2313Rr4

−768r5)s6−2(72928R6−106720R5r+76406R4r2 +4083R3r3

−6923R2r4 +936Rr5 +256r6)rs4 +(53200R5−18680R4r

+22509R3r2 +3218R2r3−930Rr4−128r5)(4R+ r)2r2s2

−6(53R−4r)(4R+ r)6Rr3 +27(4R+ r)6Rr4 ≥ 0,(3.15)

According to the previous inequality v0 ≡ s2− (4R2−Rr+13r2)≥ 0, one can write the above

inequality in the form:

(3.16) E1 ≡ n5v5
0 +n4v4

0 +n3v3
0 +n2v2

0 +n1v0 +n0 ≥ 0,
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where

n5 =144R−128r,

n4 =4944R3−6568R2r+12360Rr2−8832r3,

n3 =63460R5−147532R4r+371597R3r2−376418R2r3

+403721Rr4−243712r5,

n2 =379056R7−1389820R6r+3950876R5r2−6452911R4r3

+9586583R3r4−8025731R2r5 +6376191Rr6−3361792r7,

n1 =1067712R9−5554592R8r+18099612R7r2−40657780R6r3

+71938507R5r4−92811924R4r5 +104317475R3r6

−75553590R2r7 +49149249Rr8−23181312r9,

n0 =(R−2r)(1149184R10−5574592R9r+18653296R8r2

−46214692R7r3 +81322316R6r4−131709673R5r5

+143156617R4r6−153888527R3r7 +103416673R2r8

−58414647Rr9 +31962112r10).

Since R≥ 2r, we see that n5 > 0 and n4 > 0. Let e = R−2r, then we have

n3 =63460e5 +487068e4r+1729741e3r2 +3389196e2r3

+3712989er4 +1701042r5 > 0.(3.17)

Similarly, we have n2 > 0. Thus, to prove inequality (3.16) it remains to prove that for the acute

triangle ABC holds:

(3.18) n1v0 +n0 ≥ 0.

As the proof of inequality (3.4), we shall also consider the following two cases.

Case 1 R and r satisfy 5R−12r > 0.
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Substituting R = 2r+ e(e ≥ 0) into the expression of n1 and expanding, we find that all the

terms are non-negative. So, we have n1 > 0. To prove (3.18) it remains to show that n0 ≥ 0.

Since R≥ 2r, we only need to prove the following strict inequality:

z1 ≡1149184R10−5574592R9r+18653296R8r2−46214692R7r3

+81322316R6r4−131709673R5r5 +143156617R4r6−153888527R3r7

+103416673R2r8−58414647Rr9 +31962112r10 > 0.(3.19)

However, it is easy to obtain

9765625z1 =5(R−2r)(5R−12r)z2 +2432992422589223(5R−12r)r9

+573527481897196r10(3.20)

where

z2 =448900000000R8−202415000000R7r+4241097750000R6r2

+1579808037500R5r3 +18360415852500R4r4 +21753660155375R3r5

+63506662107275R2r6 +114899038666835Rr7 +241120929909779r8.

By Euler’s inequality we have

448900000000R−202415000000r > 0,

so that z2 > 0. Hence, from (3.20) by Euler’s inequality and the assumption 5R− 12r > 0 we

deduce z1 > 0. This completes the proof of inequality (3.18) in Case 1.

Case 2 R and r satisfy 5R−12r ≤ 0.

We have known n1 > 0. Thus, by the previous inequality (2.44), for proving (3.18) we require

the following inequality to be proved:

(R−2r)(2r2 +9Rr−4R2)

R
n1 +n0 ≥ 0.

Simplifying gives equivalent inequality:

(3.21)
R−2r

R
z3 ≥ 0,
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where

z3 =−3121664R11 +26253184R10r−101601056R9r2

+268203752R8r3−536152508R7r4 +805669026R6r5

−965543585R5r6 +901559260R4r7−564527683R3r8

+325546662R2r9−78371198Rr10−46362624r11.

Since R≥ 2r, it remains to show z3 > 0. But it is easy to get

(3.22) 1953125z3 =−(5R−12r)(R−2r)3z4 + z5,

where

e =R−2r,

z4 =1219400000000e7 +17059410000000e6r+109676676500000e5r2

+417167004975000e4r3 +1008575325427500e3r4

+1527468345014750e2r5 +1236948010271525er6

+33836712702360r7,

z5 =45(106634517846909e3 +59569264062500e2r

+15351996093750er2 +7648551562500r3)r8.

As e ≥ 0, one sees that both strict inequalities z4 > 0 and z5 > 0 are valid. Thus, by identity

(3.22) and the assumption that 5R−12r≤ 0, we deduce that z3 > 0. Therefore, inequality (3.18)

is proved in Case 2.

Combining the arguments of the above two cases, we conclude that inequality (3.18) holds

for all acute triangles. And, we finish the proof of inequality (1.6). Moreover, it is easy to

determine that equality in (1.6) occurs if and only if triangle ABC is equilateral. This completes

the proof of Theorem 2. �

4. SEVERAL CONJECTURES

In this section, we shall propose several conjectures for acute triangles.
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Let k be a positive real number. Theorem 1 shows that for the acute triangle the following

inequality

(4.1) ∑
1

mb +mc
≤ 1

2r+ k(R−2r)

holds for k = 1/2.

The author propose here the following related conjecture:

Conjecture 1. Suppose that inequality (4.1) holds for acute triangle ABC, then the maximum

kmax of k is given by

kmax =
23
√

10−42
41

+
92
√

5−166
√

2
123

≈ 0.5134 · · · ,

which arrives only when triangle ABC is right isosceles.

Many years ago, the author found that there exist a large number of acute triangle inequalities

in which the equalities hold if and only if the triangle is right isosceles. It seems likely that

this kind of inequalities are not easy to prove. Next, we introduce several such conjectured

inequalities, which only involves the medians and sides of an acute triangle.

Conjecture 2. If ABC is an acute triangle, then

(4.2) ∑ma

∑a
≥
√

2+2
√

5
4+2

√
2

,

with equality if and only if triangle ABC is right isosceles.

Conjecture 3. If ABC is an acute triangle, then

(4.3) ∑mbmc

∑bc
≥ 5+2

√
10

4+8
√

2
,

with equality if and only if triangle ABC is right isosceles.

Conjecture 4. If ABC is an acute triangle, then

(4.4) ∑a2ma ≥
2+
√

10
2

abc,

with equality if and only if triangle ABC is right isosceles.
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Conjecture 5. If ABC is an acute triangle, then

(4.5) ∑m3
a ≤
√

2+5
√

5
8+8

√
2 ∑a3,

with equality if and only if triangle ABC is right isosceles.
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