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Abstract. In this paper, we using the theory of majorization discuss the Schur convexity about related function of

Sierpinski’s inequality, the Sierpinski’s inequality is generalized and some applications are established.
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1. INTRODUCTION

Throughout the paper we assume that the set of n-dimensional row vector on the real number

field by Rn.

Rn
+ = {x = (x1, . . . ,xn) ∈ Rn : xi ≥ 0, i = 1, . . . ,n},

Rn
++ = {x = (x1, . . . ,xn) ∈ Rn : xi > 0, i = 1, . . . ,n},

In particular, R1, R1
+ and R1

++ denoted by R, R+ and R++ respectively.
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In this paper, for x ∈ Rn
++, we defined

An(x) =
1
n

n

∑
i=1

xi

is arithmetic mean of n variables.

Gn(x) =
n

∏
i=1

x
1
n
i

is geometric mean of n variables.

Hn(x) =
n

∑
n
i=1 x−1

i

is harmonic mean of n variables.

M[m]
n (x) =

(
∑

n
i=1 xm

i
n

) 1
m

(m 6= 0)

is m-order power mean of n variables.

Sierpinski’s inequality [1]: Let x = (x1, . . . ,xn) ∈ Rn
++. Then

n

∏
i=1

xi

n

∑
i=1

x−1
i ≤

1
nn−2

(
n

∑
i=1

xi

)n−1

(1)

There are many improvements and generalizations to the Sierpinski’s inequality of the related

arithmetic mean, geometric mean and harmonic mean (see[2],[3],[4],[5],[6]).

In recent years, majorization theory is used to study all kinds of means active, appeared a

large number of research results (see[13]-[25]).

In this paper we using the majorization theory to study on the other hand, we discuss the Schur

convexity of the correlation function: L(x) = ∏
n
i=1 xα

i ∑
n
i=1 xβ

i for the Sierpinski’s inequality and

get some new results.

Our main result is as follows:

Theorem 1. Let L(x) = ∏
n
i=1 xα

i ∑
n
i=1 xβ

i , x = (x1, . . . ,xn) ∈ Rn
++.

(i) When α > 0, if one of the following conditions is satisfied: (1) 0 < β ≤ 1
2(1 +

√
1+8α);(2)−1≤ β ≤ 1 and α +β ≥ 0, then L(x) is Schur concave with x1, . . . ,xn on

Rn
++.

(ii) When α < 0, if one of the following conditions is satisfied: (1)−1≤ β < 0;(2) 0≤ β ≤

min(−α,1);(3) β ≥ 1, then L(x) is Schur convex with x1, . . . ,xn on Rn
++.
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Theorem 2. Let L(x) = ∏
n
i=1 xα

i ∑
n
i=1 xβ

i , x = (x1, . . . ,xn) ∈Rn
++. For any α and β , then L(x) is

Schur geometricall convex with x1, . . . ,xn on Rn
++.

Theorem 3. Let L(x) = ∏
n
i=1 xα

i ∑
n
i=1 xβ

i , x = (x1, . . . ,xn) ∈ Rn
++.

(i) When α ≥ 0, if one of the following conditions is satisfied: (1) β ≥ 0; (2) β ≤−1; (3)

−1 ≤ β ≤ 1 and α +β ≥ 0, then L(x) is Schur harmonicall convex with x1, . . . ,xn on

Rn
++.

(ii) When α ≤ 0, if one of the following conditions is satisfied: (1) −1 ≤ β ≤ 0; (2) −1 ≤

β ≤ 1 and α+β ≤ 0; (3) β ≥ 1 and α+β 2≤ 0, then L(x) is Schur harmonicall concave

with x1, . . . ,xn on Rn
++.

2. PRELIMINARIES

We introduce some definitions and lemmas, which will be used in the proofs of the main

results in subsequent sections.

Definition 1 ([7, 8]). Let x = (x1, . . . ,xn) and y = (y1, . . . ,yn) ∈ Rn.

(i) x is said to be majorized by y (in symbols x≺ y) if ∑
k
i=1 x[i]≤∑

k
i=1 y[i] for k = 1,2, . . . ,n−

1 and ∑
n
i=1 xi = ∑

n
i=1 yi, where x[1] ≥ ·· · ≥ x[n] and y[1] ≥ ·· · ≥ y[n] are rearrangements

of x and y in a descending order.

(ii) Ω ⊂ Rn is called a convex set if (αx1 +βy1, . . . ,αxn +βyn) ∈ Ω for any x and y ∈ Ω,

where α and β ∈ [0,1] with α +β = 1.

(iii) let Ω⊂Rn, ϕ: Ω→R is said to be a Schur convex function on Ω if x≺ y on Ω implies

ϕ (x)≤ ϕ (y) . ϕ is said to be a Schur concave function on Ω if and only if −ϕ is Schur

convex function.

Definition 2 ([7]). Let x = (x1, . . . ,xn) and y = (y1, . . . ,yn) ∈ Rn
+.

(i) Ω∈Rn
+ is called a geometrically convex set if (xα

1 yβ

1 , . . . ,x
α
n yβ

1 )∈Ω for any x and y∈Ω,

where α and β ∈ [0,1] with α +β = 1.

(ii) let Ω ⊂ Rn
+, ϕ : Ω→ R+ is said to be a Schur-geometrically convex function on if

(logx1, . . . , logxn) ≺ (logy1, . . . , logyn) on Ω implies ϕ(x) ≤ ϕ(y). ϕ is said to be a
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Schur geometrically concave function on Ω if and only if −ϕ is Schur geometrically

convex function.

Definition 3 ([7, 8]). Let Ω⊂ Rn
+.

(i) A set Ω is said to be a harmonically convex set if xy
λx+(1−λ )y for every x,y ∈ Ω and

λ ∈ [0,1], where xy = ∑
n
i=1 xiyi and 1

x =
(

1
x1
, . . . , 1

xn

)
.

(ii) A function ϕ : Ω→R+ is said to be a Schur harmonically convex function on Ω if x≺ y

implies ϕ(x)≤ ϕ(y) A function ϕ is said to be a Schur harmonically concave function

on Ω if and only if −ϕ is a Schur harmonically convex function.

Lemma 1 ([7, 8]). Let Ω⊂Rn is convex set, and has a nonempty interior set Ω0 . Let ϕ : Ω→R

is continuous on Ω and differentiable in Ω◦. Then ϕ is the Schur convex (Schur concave)

function, if and only if it is symmetric on Ω and if

(x1− x2)

(
∂ϕ

∂x1
− ∂ϕ

∂x2

)
≥ 0(or ≤ 0;respectively)(2)

holds for any x = (x1, · · · ,xn) ∈Ω◦.

Remark 1. Lemma1 equivalent to

∂ϕ

∂xi
≥ ∂ϕ

∂xi+1
(or ≤ 0;respectively), i = 1,2, . . . ,n−1(3)

for all x ∈ D∩Ω. Where D = {x : x1 ≥ ·· · ≥ xn}.

Lemma 2 ([9]). Let Ω ⊂ Rn is convex set, and has a nonempty interior set Ω◦, let ϕ : Ω→ R

is continuous on Ω and differentiable in Ω◦. Then ϕ is the Schur geometrically convex(Schur

geometrically concave)function, if and only if it is symmetric on Ω and if

(logx1− logx2)

(
x1

∂φ

∂x1
− x2

∂φ

∂x2

)
≥ 0(or ≤ 0;respectively)(4)

holds for any x = (x1, . . . ,xn) ∈Ω◦.

Lemma 3 ([7, 9]). Let Ω⊂Rn be a symmetric harmonically convex set with a nonempty interior

Ω◦, let ϕ : Ω→R be continuous on Ω and differentiable on Ω. Then ϕ is a Schur harmonically

convex (Schur harmonically concave) function if and only if ϕ is symmetric on Ω and

(x1− x2)

(
x2

1
∂φ

∂x1
− x2

2
∂φ

∂x2

)
≥ 0(or ≤ 0;respectively)(5)
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holds for any x = (x1, . . . ,xn) ∈Ω◦.

Lemma 4. Let f (z) = −αzβ+1 +(α +β )zβ − (α +β )z+α(z ≥ 1). If α > 0, 0 < β ≤ 1
2(1+

√
1+8α), then f (z)≤ 0.

Proof. By computing, we have

f (1) =−α +(α +β )− (α +β )+α = 0,

f ′(z) =−α(β +1)zβ +(α +β )β zβ−1− (α +β ),

f ′(1) =−α(β +1)+(α +β )β − (α +β ) = β
2−β −2α,

f ′′(z) =−αβ (β +1)zβ−1 +(α +β )β (β −1)z(β −2)

= zβ−2m(z),

where

m(z) =−αβ (β +1)z+(α +β )β (β −1).

When 0 < β ≤ 1
2(1+

√
1+8α), we have β 2−β −2α ≤ 0, so, m(1) =−αβ (β +1)β (β −1) =

β (β 2−β − 2α) ≤ 0. And m′(z) = −αβ (β + 1) ≤ 0, so, m(z) ≤ 0, therefore f ′′(z) ≤ 0. And

f ′(1) = β 2−β −2α ≤ 0, we have f ′(z)≤ 0, and f (1) = 0, so, f (z)≤ 0.

The proof of Lemma 4 is complete. �

Lemma 5. Let g(z) = (α+β )zβ+1−αzβ +αz−α−β (z≥ 1). If α ≤ 0, β ≥ 1, and α+β 2≤ 0,

then g(z)≤ 0.

Proof. By computing, we have

g(1) = (α +β )−α +α−α−β = 0,

g′(z) = (α +β )(β +1)zβ −αβ zβ−1 +α,

g′(1) = (α +β )(β +1)−αβ +α = β
2 +β +2α,

g′′(z) = (α +β )(β +1)β zβ−1−αβ (β −1)zβ−2

= zβ−2h(z),
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where

h(z) = (α +β )(β +1)β z−αβ (β −1).

h(1) = (α +β )(β +1)β −αβ (β −1) = β (β 2 +β +2α),

h′(z) = (α +β )(β +1)β .

If α ≤ 0, β ≥ 1 and α +β 2 ≤ 0, then

h′(z) = (α +β
2)β +(α +1)β 2 ≤ (α +β

2)β +(α +β
2)β 2 ≤ 0,

and

h(1) = β (β 2 +β +2α)≤ 2β (α +β
2)≤ 0,

so, h(z) ≤ 0, we have g′′(z) ≤ 0, and then g′(z) ≤ g′(1) = β 2 +β +2α ≤ 0. Therefore g(z) ≤

g(1) = 0.

The proof of Lemma 5 is complete. �

Lemma 6 ([8]). Let x = (x1, . . . ,xn) ∈ Rn
++. Then

(i)

(6)

An(x), · · · ,An(x)︸ ︷︷ ︸
n

≺ (x1, · · · ,xn).

(ii)

(7)

logGn(x), · · · , logGn(x)︸ ︷︷ ︸
n

≺ (logx1, · · · , logxn).

(iii)

(8)

 1
(Hn(x))

, · · · , 1
(Hn(x))︸ ︷︷ ︸

n

≺ ( 1
x1
, · · · , 1

xn

)
.

Lemma 7 ([1]). If p > 0, then

1
p+1

np+1 <
n

∑
k=1

kp <
1

p+1
[(n+1)p+1−1].(9)
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3. PROOF OF MAIN RESULTS

Proof of Theorem 1.

Proof. Let L(x) = ∏
n
i=1 xα

i ∑
n
i=1 xβ

i , then

∂L
∂x1

= αxα−1
1 xα

2 · · ·xα
n

n

∑
i=1

xβ

i +βxβ−1
1

n

∏
i=1

xα
i

=
n

∏
i=1

xα
i

(
α

x1

n

∑
i=1

xβ

i +βxβ−1
1

)
,

∂L
∂x2

=
n

∏
i=1

xα
i

(
α

x2

n

∑
i=1

xβ

i +βxβ−1
2

)
.

It is easy to see L(x) is symmetry with x1, . . . ,xn, without loss of generality, we may assume

that x1 ≥ x2 > 0, then z := x1
x2
≥ 1.

(i) (1)If α > 0, 0 < β < 1
2(1+

√
1+8α), then by Lemma 4 we have

∆1 := (x1− x2)

(
∂L
∂x1
− ∂L

∂x2

)

= (x1− x2)
n

∏
i=1

xα
i

[
α

(
1
x1
− 1

x2

) n

∑
i=1

xβ

i +β (xβ−1
1 − xβ−1

2 )

]
(10)

≤ (x1− x2)
n

∏
i=1

xα
i

[
α

(
1
x1
− 1

x2

)
(xβ

1 + xβ

2 )+β (xβ−1
1 − xβ−1

2 )

]

= (x1− x2)
n

∏
i=1

xα
i

[
(α +β )(xβ−1

1 − xβ−1
2 )+α

(
xβ

2
x1
−

xβ

1
x2

)]

= (x1− x2)
n

∏
i=1

xα
i

[
(α +β )xβ−1

2

(
xβ−1

1

xβ−1
2

−1

)
+αxβ−1

2

(
x2

x1
−

xβ

1

xβ

2

)]

= (x1− x2)x
β−1
2

n

∏
i

xα
i [(α +β )(zβ−1−1)+α(z−1− zβ )]

= (x1− x2)z−1xβ−1
2

n

∏
i

xα
i f (z)≤ 0.
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(2)If α > 0, −1≤ β ≤ 1 and α +β ≥ 0, then

∆1 ≤ (x1− x2)
n

∏
i=1

xα
i

[
α

(
1
x1
− 1

x2

)
(xβ

1 + xβ

2 )+β (xβ−1
1 − xβ−1

2 )

]

= (x1− x2)
n

∏
i=1

xα
i

[
(α +β )(xβ−1

1 − xβ−1
2 )+α

(
xβ

2
x1
−

xβ

1
x2

)]

= (x1− x2)
n

∏
i=1

xα
i

[
(α +β )(xβ−1

1 − xβ−1
2 )+α

(
xβ+1

2 − xβ+1
1

x1x2

)]
≤ 0.

By Lemma 1, when α > 0, if one of the following conditions is satisfied: (1)0 < β <

1
2(1+

√
1+8α); (2) −1 ≤ β ≤ 1 and α + β ≥ 0, then L(x) is Schur concave with

x1, . . . ,xn on Rn
++.

(ii) If α < 0, β ≥ 1, from the inequality (10) we have ∆1 ≥ 0.

If α < 0, and −1≤ β < 0 or 0≤ β ≤min(−α,1), then

∆1 ≥ (x1− x2)
n

∏
i=1

xα
i

[
α

(
1
x1
− 1

x2

)
(xβ

1 + xβ

2 )+β (xβ−1
1 − xβ−1

2 )

]

= (x1− x2)
n

∏
i=1

xα
i

[
(α +β )(xβ−1

1 − xβ−1
2 )+α

(
xβ+1

2 − xβ+1
1

x1x2

)]
≥ 0.

By Lemma 1, L(x) is Schur convex with x1, . . . ,xn on Rn
++.

The proof of Theorem 1 is complete. �

Proof of Theorem 2.

Proof.

x1
∂L
∂x1

= αxα
1 xα

2 · · ·xα
n

n

∑
i=1

xβ

i +βxβ

1

n

∏
i=1

xα
i

=
n

∏
i=1

xα
i

(
α

n

∑
i=1

xβ

i +βxβ

1

)
,

x2
∂L
∂x2

=
n

∏
i=1

xα
i

(
α

n

∑
i=1

xβ

i +βxβ

2

)
.

∆2 :=(x1− x2)

(
x1

∂L
∂x1
− x2

∂L
∂x2

)
=(x1− x2)

n

∏
i=1

xα
i β (xβ

1 − xβ

2 ).
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For any α , β , we have ∆2 ≥ 0. By Lemma 2 we know L(x) is Schur geometrically convex with

x1, . . . ,xn on Rn
++.

The proof of Theorem 2 is complete. �

Proof of Theorem 3.

Proof.

x2
1

∂L
∂x1

=αxα+1
1 xα

2 · · ·xα
n

n

∑
i=1

xβ

i +βxβ+1
1

n

∏
i=1

xα
i

=
n

∏
i=1

xα
i

(
αx1

n

∑
i=1

xβ

i +βxβ+1
1

)
,

x2
2

∂L
∂x2

=
n

∏
i=1

xα
i

(
αx2

n

∑
i=1

xβ

i +βxβ+1
2

)
.

∆3 := (x1− x2)

(
x2

1
∂L
∂x1
− x2

2
∂L
∂x2

)
= (x1− x2)

n

∏
i=1

xα
i

(
α

n

∑
i=1

xβ

i (x1− x2)+β (xβ+1
1 − xβ+1

2 )

)
.

It is easy to see that for α ≥ 0 and β ≥ 0, or α ≥ 0 and β ≤−1, we have ∆3 ≥ 0. By Lemma

3 we know L(x) is Schur harmonically convex with x1, . . . ,xn on Rn
++.

For α ≤ 0 and −1 ≤ β ≤ 0, we have ∆3 ≤ 0. By Lemma 3 we know that L(x) is Schur

harmonically concave with x1, . . . ,xn on Rn
++.

For α ≥ 0, −1≤ β ≤ 1 and α +β ≥ 0, we have

∆3 = (x1− x2)

(
x2

1
∂L
∂x1
− x2

2
∂L
∂x2

)
= (x1− x2)

n

∏
i=1

xα
i

(
α

n

∑
i=1

xβ

i (x1− x2)+β (xβ+1
1 − xβ+1

2 )

)

≥ (x1− x2)
n

∏
i=1

xα
i

(
α

2

∑
i=1

xβ

i (x1− x2)+β (xβ+1
1 − xβ+1

2 )

)

= (x1− x2)
n

∏
i=1

xα
i [α(xβ

1 + xβ

2 )(x1− x2)+β (xβ+1
1 − xβ+1

2 )]

= (x1− x2)
n

∏
i=1

xα
i [(α +β )(xβ+1

1 − xβ+1
2 )−αx1x2(x

β−1
1 − xβ−1

2 )≥ 0.
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By Lemma 3, it follows that L(x) is Schur harmonically convex with x1, . . . ,xn on Rn
++.

For α ≤ 0, −1≤ β ≤ 1 and α +β ≤ 0, we have

∆3 = (x1− x2)

(
x2

1
∂L
∂x1
− x2

2
∂L
∂x2

)
= (x1− x2)

n

∏
i=1

xα
i

(
α

n

∑
i=1

xβ

i (x1− x2)+β (xβ+1
1 − xβ+1

2 )

)

≤ (x1− x2)
n

∏
i=1

xα
i

(
α

2

∑
i=1

xβ

i (x1− x2)+β (xβ+1
1 − xβ+1

2 )

)

= (x1− x2)
n

∏
i=1

xα
i [(α +β )(xβ+1

1 − xβ+1
2 )−αx1x2(x

β−1
1 − xβ−1

2 )≤ 0.

By Lemma 3, it follows that L(x) is Schur harmonically concave with x1, . . . ,xn on Rn
++.

For α ≤ 0,β ≥ 1 and α +β 2 ≤ 0,let z = x1
x2
≥ 1, then

∆3 = (x1− x2)

(
x2

1
∂L
∂x1
− x2

2
∂L
∂x2

)
≤ (x1− x2)

n

∏
i=1

xα
i

(
α

2

∑
i=1

xβ

i (x1− x2)+β (xβ+1
1 − xβ+1

2 )

)

= (x1− x2)x
β+1
i

n

∏
i=1

xα
i [(α +β )zβ+1−αzβ −α−β ]

= (x1− x2)x
β+1
2

n

∏
i=1

xα
i g(z).

From Lemma 5, we have ∆3 ≤ 0, and then by Lemma 3, it follows that L(x) is Schur harmonic

concave with x1, . . . ,xn on Rn
++.

The proof of Theorem 3 is complete. �

4. APPLICATIONS

As an applications of Theorem 1, Theorem 2 and Theorem 3, we get the following corollaries.

Corollary 1. Let x = (x1, . . . ,xn) ∈ Rn
++.

(i) When α > 0, if one of the following conditions is satisfied: (1) 0< β ≤ 1
2(1+

√
1+8α);

(2) −1≤ β ≤ 1 and α +β ≥ 0, then

n

∏
i=1

xα
i

n

∑
i=1

xβ

i ≤
1

nnα+β−1

(
n

∑
1=1

xi

)nα+β

.(11)
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(ii) When α < 0, if one of the following conditions is satisfied: (1) −1 ≤ β < 0; (2) 0 ≤

β ≤min(−α,1); (3) β ≥ 1, then inequality (11) is reversed.

Proof. (i) For α > 0, if one of the following conditions is satisfied: (1) 0< β ≤ 1
2(1+

√
1+8α);

(2) −1≤ β ≤ 1 and α +β ≥ 0, by

An(x),An(x), · · · ,An(x)︸ ︷︷ ︸
n

≺ (x1,x2, · · · ,xn).

Theorem 1 and Definition 1, we have

n

∏
i=1

xα
i

n

∑
i=1

xβ

i ≤ [An(x)]nαn[An(x)]β

= n
(

∑
n
i=1 xi

n

)nα(
∑

n
i=1 xi

n

)β

=
1

nnα+β−1

(
n

∑
i=1

xi

)nα+β

.

Similar argument leads to the proof of the proposition (ii).

The proof of Corollary 1 is complete. �

Remark 2. (i) Taking α = 1, β =−1, the inequality (11) is reduces to Sierpinski’s inequality.

(ii) Taking α = 1, β = 1, the inequality (11) is reduces to GM−AM inequality.

(iii) Let γ =−α > 0, β ≥ 1, ∑
n
i=1 xi = 1, by Corollary 1(ii) we have

n

∏
i=1

xγ

i ≤ nβ−nγ−1
n

∑
i=1

xβ

i .

Corollary 2. Let xi ∈ R++, i = 1,2, . . . ,n. If 0 < m≤ 3, then

nGm(n+1)
n (x)≤

n

∏
i=1

xm
i

n

∑
i=1

xm
i ≤ nAm(n+1)

n (x).(12)
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Proof. When m > 0, m ≤ 1
2(1+

√
1+8m)⇔ m > 0,(2m− 1)2 ≤ 1+ 8m⇔ 0 < m ≤ 3. Let

α = β = m. By Corollary 1, we have

n

∏
i=1

xm
i

n

∑
i=1

xm
i ≤

1
nnm+m−1

(
n

∑
i=1

xi

)nm+m

= n
(

∑
n
i=1 xi

n

)mn+m

= nAm(n+1)
m (x).

Let L1(x) = (x1 · · ·xn)
m(xm

1 + · · ·+xm
n ). By Theorem 2 L(x) is Schur geometrically convex with

x1, . . . ,xn on Rn
++.

By logGn(x), · · · , logGn(x)︸ ︷︷ ︸
n

≺ (logx1, · · · , logxn),

and Definition 2, we have L1(x)≥ L1(Gn(x)), that is

(x1 · · ·xn)
m(xm

1 + · · ·+ xm
n )≥ nGm(n+1)

n (x).

The proof of Corollary 2 is complete. �

Corollary 3. Faĭzlev’s inequality (see[10]) Let xi ∈ R++, i = 1,2, . . . ,n. Then

(x1 · · ·xn)(x1 + · · ·+ xn)≤ xn+1
1 + · · ·+ xn+1

n .(13)

Proof. Taking m = 1, by Corollary 2 and power mean inequality(see[10])(
n

∑
i=1

xi

)p

≤ np−1
n

∑
i=1

xp
i ,(p≥ 1),

it follows that

(x1 · · ·xn)(x1 + · · ·+ xn)≤ n
(

∑
n
i=1 xi

n

)n+1

≤ nn(n+1)−1

nn+1

n

∑
i=1

xn+1
i

=
n

∑
i=1

xn+1
i .

The proof of Corollary 3 is complete. �
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By Corollary 2, it can easily be shown that the following Corollary.

Corollary 4. Let xi ∈ R++, i = 1,2, . . . ,n. If 0 < m≤ 3 and ∑
n
i=1 xi = n, then

(xm
1 · · ·xm

n )(x
m
1 + · · ·+ xm

n )≤ n.(14)

Remark 3. (i) Suppose x,y ∈ R++ and x+ y = 2, proof

x2y2(x2 + y2)≤ 2.

It is an inequality question for the 2002 Irish Mathematical Olympiad(see[11]).

Suppose x,y ∈ R++ and x+ y = 2, proof

x3y3(x3 + y3)≤ 2.

It is inequality question of the Indian Mathematical Olympiad (see[11])

Corollary 4 is generalization of this two inequalities questions.

(ii) If m > 3, inequality (14) does not necessarily hold. For example, let x1 = 1.1, x2 = 0.9,

m = 4, though x1 + x2 = 2, but x4
1x4

2(x
4
1 + x4

2)≈ 2.0367 > 2.

By Corollary 2, we have the following Corollary.

Corollary 5. Let xi ∈ R++, i = 1,2, . . . ,n and 0 < m≤ 3, then

Gn(x)≤ [(Gn(x))nM[m]
n (x)]

1
n+1 ≤ An(x).(15)

From corollary 2, we can get the sharpen of Cauchy inequality n! <
(n+1

2

)n
(see[12]).

Corollary 6. If n≥ 4, then

n!≤ 1
3
√

2

(
1+

1
n

)(
n+1

2

)n

<

(
n+1

2

)n

.(16)

Proof. Let m = 3, xk = k(k = 1, . . . ,3), by Corollary 2 and Lemma 7, we have

n

∏
k=1

k3
n

∑
k=1

k3 = (n!)3
n

∑
k=1

k3 ≤ n
(

n+1
2

)3(n+1)

⇒n!≤ n
1
3

(
n+1

2

)n+1 1

(∑n
k=1 k3)

1
3
≤ n

1
3

(
n+1

2

)n+1 4
1
3

n
4
3

=
n+1

3
√

2n

(
n+1

2

)n

=
1
3
√

2

(
1+

1
n

)(
n+1

2

)n

.
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If n≥ 4, then
1
3
√

2

(
1+

1
n

)
≤ 1

3
√

2

(
1+

1
4

)
≈ 0.9921 < 1.

�

The proof of Corollary 6 is complete.

Corollary 7. Let x = (x1, . . . ,xn) ∈ Rn
++.

(i) When α ≥ 0, if one of the following conditions is satisfied: (1) β ≥ 0;(2) β ≤ −1; (3)

−1≤ β ≤ 1 and α +β ≥ 0, then

n

∏
i=1

xα
i

n

∑
i=1

xβ

i ≥ n[Hn(x)]nα+β .(17)

(ii) When α ≤ 0, if one of the following conditions is satisfied:(1) −1 ≤ β ≤ 0; (2) −1 ≤

β ≤ 1 and α +β ≤ 0; (3) β ≥ 1 and α +β 2 ≤ 0, then inequality (17) reverse.

Proof. By Theorem 3, Definition 3 and 1
(Hn(x))

,
1

(Hn(x))
, · · · , 1

(Hn(x))︸ ︷︷ ︸
n

≺ ( 1
x1
,

1
x2
, · · · , 1

xn

)
,

it is easy to prove inequality (17) holds.

The proof of Corollary 7 is complete. �

Remark 4. If let α =−1,β = 1, by Corollary 7, then inequality

An(x)
Hn(x)

≤
(

Gn(x)
Hn(x)

)n

(18)

holds. If let α =−1, β = 0, then HM−GM inequality holds.

5. SCHUR CONVEXITY OF L1(x) = ∏
n
i=1 (a+ xi)

α
∑

n
i=1 (b+ xi)

β

Theorem 4. Let a≥ 0, b≥ 0, x = (x1, · · · ,xn) ∈ Rn
++,

L1(x) =
n

∏
i=1

(a+ xi)
α

n

∑
i=1

(b+ xi)
β .

(i) When α ≥ 0, 0≤ β ≤ 1, then L1(x) is Schur concave with x1, . . . ,xn on Rn
++.

(ii) When α ≤ 0, β ≤ 0 or β ≥ 1 then L1(x) is Schur convex with x1, . . . ,xn on Rn
++.
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Proof. It is easy to see L1(x) is symmetry with x1, · · · ,xn, without loss of generality, we may

assume that x1 ≥ x2 > 0, we have

∂L1

∂x1
= α(a+ x1)

α−1
n

∏
i=2

(a+ xi)
α

n

∑
i=1

(b+ xi)
β +β (b+ x1)

β−1
n

∏
i=1

(a+ xi)
α

=
α

a+ x1

n

∏
i=1

(a+ xi)
α

n

∑
i=1

(b+ xi)
β +β (b+ x1)

β−1
n

∏
i=1

(a+ xi)
α ,

∂L1

∂x2
= α(a+ x2)

α−1
n

∏
i−1,i6=2

(a+ xi)
α

n

∑
i=1

(b+ xi)
β +β (b+ x2)

β−1
n

∏
i=1

(a+ xi)
α

=
α

a+ x2

n

∏
i=1

(a+ xi)
α

n

∑
i=1

(b+ xi)
β +β (b+ x2)

β−1
n

∏
i=1

(a+ xi)
α ,

44 :=(x1− x2)

(
∂L1

∂x1
− ∂L2

∂x2

)
=(x1− x2){α

n

∏
i=1

(a+ xi)
α

n

∑
i=1

(b+ xi)
β

(
1

a+ x1
− 1

a+ x2

)
+β

n

∏
i=1

(a+ xi)
α

[
(b+ x1)

β−1− (b+ x2)
β−1
]
}.

Easy to see, when α ≥ 0, 0 ≤ β ≤ 1, we have 44 ≤ 0, by Lemma 1, it follows that L1(x)

is Schur concave with x1, . . . ,xn on Rn
++. When α ≤ 0, β ≤ 0 or β ≥ 1, we have 44 ≥ 0, by

Lemma 1, it follows that L1(x) is Schur convex with x1, . . . ,xn on Rn
++.

The proof of Theorem 4 is complete. �

Question: when α ≥ 0, β > 1 or β < 0, what is the Schur convexity of L1(x)?

By Theorem 4, Lemma 6(i) and Definition 1, we get the following conclusion:

Corollary 8. Let a≥ 0, b≥ 0, x = (x1, · · · ,xn) ∈ Rn
++. If α ≥ 0, 0≤ β ≤ 1, then

n

∏
i=1

(a+ xi)
α

n

∑
i=1

(b+ xi)
β ≤ n1−nα−β

(
n

∑
i=1

(a+ xi)

)nα( n

∑
i=1

(b+ xi)

)β

.(19)

Let n1, · · · ,nm are any m (m > 1) natural numbers. Then(
m

∑
i=1

2
ni

)(
m

∏
j=1

n j

n j +1

)
≤ 1.(20)

is Minc’s inequality[26].
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It is easy to see that the equivalent form of Minc’s inequality is

m

∑
i=1

1
ni
≤ 1

2

m

∏
i=1

(
1+

1
ni

)
.(21)

In the following, we give reverse Minc’s inequality.

Corollary 9. Let n1 ≤ ·· · ≤ nm are any m (m > 1) natural numbers. Write

A = min
(

m
nm

(
nm

1+nm

)m

,
m
n1

(
n1

1+n1

)m)
,

then

m

∑
i=1

1
ni
≥ A

m

∏
i=1

(
1+

1
ni

)
.(22)

Proof. For any x = (x1, · · · ,xm) ∈ Rm
++, by Theorem 4(ii), Lemma 6(i) and Definition 1, we

have

2
m

∏
i=1

(1+ xi)
−1

m

∑
i=1

xi ≥2
(

∑
m
i=1(1+ xi)

m

)−m

m
∑

m
i=1 xi

m

=
2mm

∑
m
i=1 xi

(m+∑
m
i=1 xi)

m .

Let xi =
1
ni

, i = 1, · · · ,m, then

2
m

∏
i=1

ni

ni +1

m

∑
1

1
ni
≥

2mm
∑

m
i=1

1
ni(

m+∑
m
i=1

1
ni

)m .

Let f (t) = 2mmt
(m+t)m , t > 0, we have

f ′(t) = 2mm[m+(1−m)t].

Easy to see, when 0 < t ≤ m
m−1 , f is increasing, hence

m

∏
i=1

ni

ni +1

m

∑
i=1

2
ni
≥

2mm
∑

m
i=1

1
ni(

m+∑
m
i=1

1
ni

)m

≥
2mmm 1

nm(
m+m 1

nm

)m

=
2m
nm

(
nm

1+nm

)m

.
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When t ≥ m
m−1 , f is decreasing, hence

m

∏
i=1

ni

ni +1

m

∑
i=1

2
ni
≥

2mm
∑

m
i=1

1
ni(

m+∑
m
i=1

1
ni

)m

≥
2mmm 1

n1(
m+m 1

n1

)m

=
2m
n1

(
n1

1+n1

)m

.

The proof of Corollary 9 is complete. �
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