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Abstract. This article presents a novel concept of pre-invex functions linked to generalized Ostrowski-type in-

equalities. We explore the integral representation of these pre-invex functions within the framework of local frac-

tional calculus. This approach extends traditional calculus to analyze fractional-order derivatives and integrals. We

establish several generalized Ostrowski-type inequalities by employing the properties of pre-invex functions and

their representations as integrals. Several generalized Ostrowski-type inequalities are derived by employing the

properties of pre-invex functions and their integral representation. These inequalities applied to the twice differen-

tiable functions in the context of fractional calculus locally, allowing for a deeper understanding of their behaviors

and applications. Our work contributes to the growing body of knowledge in this area by providing new insights

and results that can be applied in various mathematical and applied fields.

Keywords: preinvex functions; generalized ostrowski inequality; local fractional calculus; inequalities in frac-
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1. INTRODUCTION

Let set of real numbers (R), positive real numbers (R+), rational numbers (Q), integers (Z)

and positive integers (N) represented accordingly, and J := R / Q and N;= N∪{0}.
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For 0≤ ζ ≤ 1, The ζ - type integers set Zζ is defined by

Zζ := {0ζ}∪{±mζ : m ∈ N}

the ζ - type rational number set Qζ is defined by

Qζ := qζ ;q ∈Q= (
m
n
)ζ : m ∈ Zn ∈ N

The ζ -type irrational number set Jζ is defined by

Qζ := qζ ;q ∈Q= (
m
n
)ζ : m ∈ Zn ∈ N

the α- type real number set Rζ is defined by

Rζ :=Qζ ∪Jζ

If rς

1 ,r
ς

2 ,r
ς

3 ∈ Rς (0 < ς ≤ 1) , then

• rς

1 + rς

2 ∈ Rς ,rς

1rς

2 ∈ Rς ,

• rς

1 + rς

2 = rς

2 + rς

1 = (r1 + r2)
ς = (r2 + r1)

ς ,

• rς

1 +(rς

2 + rς

3) = (r1 + r2)
ς + rς

3 ,

• rς

1rς

2 = rς

2rς

1 = (r1r2)
ς = (r2r1)

ς ,

• rς

1(r
ς

2rς

3) = (rς

1rς

2)r
ς

3 ,

• rς

1(r
ς

2 + rς

3) = rς

1rς

2 + rς

1rς

3 ,

• rς

1 +0ς = 0ς + rς

1 = rς

1 , and rς

11ς = 1ς rς

1 = rς

1

• If rς

1 < rς

2 , then rς

1 + rς

3 < rς

2 + rς

3 ,

• If 0ς < rς

1 ,0
ς < rς

2 , then 0ς < rς

1 .r
ς

2 ,

Local fractional order derivative and integral operator on Rς are rephrased from the sources

given as,

Definition 1. ([31, 32]) A non-differentiable function f : R→ Rς ,y→ f (y) is local fractional

continuous at y0, if for any ε > 0, there exists δ > 0 such that

| f (y)− f (y0)|< ε
ς

holds |y− y0| < δ , with ε,δ ∈ R. If f (y) is local continuous on (c,d), and denoted as f (y) ∈

Cς (c,d) .
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Definition 2. ([31, 32]) Local fractional order derivatives of the function f (y) of order ς at

y = y0 can be defined as

f (ς)(y0) =
dς f (y)

d`ς

∣∣∣∣
y=y0

= lim
y→y0

Γ(1+ ς)( f (y)− f (y0))

(y− y0)

Dς (b,c) is ς -local derivative set. If there exists f ((K+1)ς)(y) =

(n+1)times︷ ︸︸ ︷
Dς

y ...D
ς
y f (y) for any y ∈ I⊆R,

we denote f ∈ D(n+1)ς (I), and n = 0,1,2, ...

Definition 3. ([31, 32]) Let f (y) ∈Cς [c,d]. Local fractional integral of f (w) can be defined by

bIς
c f (y) =

1
Γ(1+ ς)

∫ c

b
f (`)(d`)ς =

1
Γ(1+ ς)

lim
∆`→0

N−1

∑
f=0

f (`f)(∆`f)
ς ,

Where c = `0 < `1 < ... < `N−1 < `N = d, [`f, `f+1] is partition of [c,d], ∆`f = ∆`f+1−∆`f,∆`=

max{`0, `1...`N−1}.

Note that cIς
c f (y) = 0 and cIς

d f (y) = −dIς
c f (y) if c < d. We denote f (y) ∈ Iς

y [c,d] if there

existsbIς
y f (y) for any y ∈ [b,c].

Lets define a couple of identities from the source [31, 32]

Definition 4. Let f : I ⊆ R→ Rζ . If the following inequality

(1.1) f (λx1 +(1−λ )x2)≤ λ
ζ f (x1)+(1−λ )ζ f (x2)

holds for any x1,x2 ∈ I and λ ∈ [0,1], then f is said to be a generalised convex function on I. If

the inequality in is reversed, then f is called a generalised concave function on I.

Lemma 1. (1) Let g(y) = f(ς)(y) ∈Cς [c,d], then

bIς
c g(y) = f(d)− f(c)

(2) Let g(y), f(y) ∈ Dς [c,d] and g(ς)(y), f(ς)(y) ∈Cς [b,c], then

bIς
c g(y)f(ς)(y) = g(y)f(y)|cb− bIς

c g(ς)(y)f(y).
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Lemma 2.

dς ysς

duς
=

Γ(1+ sς)

Γ(1+(s−1)ς)
y(s−1)ς ;

1
Γ(ς +1)

∫ c

b
ysς (du)ς =

Γ(1+ sς)

Γ(1+(s+1)ς)
(d(s+1)ς − c(s+1)ς ), s > 0

Lemma 3.

bIς
c 1ς =

(d− c)ς

Γ(1+ ς)

Lemma 4. (Generalized Hölder’s inequality) Let p,q > 1 with p−1 +q−1 = 1, let g(w), f(w) ∈

Cς [c,d] ,Then

1
Γ(ς +1)

∫ c

b

∣∣g(y)f(y)∣∣(dy)ς ≤
(

1
Γ(ς +1)

∫ c

b

∣∣g(y)∣∣p(dy)ς

) 1
p
(

1
Γ(ς +1)

∫ c

b

∣∣f(y)∣∣q(dy)ς

) 1
q

Recall generalized beta function:

(1.2) Bς (y,x) =
1

Γ(1+ ς)

∫ 1

0
`(y−1)ς (1− `)(x−1)ς (d`)ς , y > 0,x > 0

Local fractional theory has solid applications in control theory, communication engineering,

random walk process and Physics [33, 34, 35, 36]. Many researchers studied various types

of integral inequalities for generalized definitions of convexity on fractal sets (see [37, 38, 39,

40, 41] are references therein). Recently, in [3], Saud and co introduces generalized (h,m)-

preinvex functions, extending convexity concepts to fractal sets and deriving novel Hermite-

Hadamard-type inequalities. The work significantly broadens prior research, offering new local

fractional integral inequalities and practical applications in midpoint, trapezoidal, and Simpson-

type inequality generalizations.

Let f : I→ R, where I ⊆ R is an interval, be a differentiable mapping in Io(the interior of Io)

and let a,b ∈ Io with a≤ b. If | f ′(t)| ≤M, for all t ∈ [a,b], then the following inequality holds∣∣∣∣ f (t)− 1
b−a

∫ b

a
f (τ)dτ

∣∣∣∣≤ M
b−a

[
(t−b)2 +(t−a)2

2

]

for all t ∈ [a,b] . This inequality is known in the literature as the Ostrowski inequality (see [9]).

For the research and extension concerning Owstrowski inequality, we can refer the Reference

[1, 6, 17, 23] and cited in.
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For the sake of tackling non-differentiable functions known as Cantor sets, Yang[26, 27] pre-

sented local fractional calculus on Yang’s fractional set and exemplified the theory comprehen-

sively. It can elaborate the aspect of continuous but differentiable functions can’t be explained

through this method. Thus, such topics have gained much popularity for the ones who are

researching in the fields of mathematical physics and applied sciences[28, 29, 30, 25]. Yang’s

theory of fractional sets and local fractional calculus has opened various new horizons for the re-

searchers who have further expanded the convexity on fractional set. For instance in [13] Mo et

al. introduced generalized convex function on Yang’s fractional sets. Mo and sui also presented

s-convex functions in [12]. Similarly, Sun in [19] established generalized harmonically convex

functions and further in [20] explained generalized harmonically s-convex functions. Moreover,

Du et al. in [7] proposed generalized m-convexity on fractal sets and and studied related integral

inequalities. For more results we refer the readers to [2, 4, 7, 8, 10, 11, 14, 15, 16, 21, 22, 24]

and further reference therein. Ostrowski [6] established an integral inequality which is now

classical and given in Theorem 1.

Lemma 5. [26, 31] The subsequent equations are valid:

• (Local fractional derivative of order ζ ) dζ xkζ

dxζ
= Γ(1+kζ )

Γ(1+(k−1)ζ )x(k−1)ζ (k ∈ R);

• (Local fractional integration corresponds to anti-differentiation) Suppose f = g(ζ ) ∈

Cζ [µ1,µ2]. Consequently, we have µ1I(ζ )µ2 f = g(µ2)−g(µ1).

• (Local fractional integration by parts) Assuming f,g ∈ Dζ [µ1,µ2] as well as

f (µ1),g(µ1) ∈Cζ [µ1,µ2].The expression is given by µ1I(ζ )µ2

(
f g(ζ )

)
g|µ2

µ1−µ1 I(ζ )µ2

(
f (ζ )g

)
;

• (Definite integrals of xkζ using local fractional calculus)
1

Γ(1+ζ )

∫
µ2
µ1

xkζ (dx)ζ = Γ(1+kζ )
Γ(1+(k+1)ζ )

(
µ
(k+1)ζ
2 −µ

(k+1)µ1
1

)
(k ∈ R).

Ostrowski [6] Introduced µ1 classical integral inequality, as presented and established in The-

orem 1.

Theorem 1. Let f : [a,b]→ R be a differentiable function whose derivative f ′ : [a,b]−→ R is

bounded on (a,b),i.e., ‖ f ′‖∞=supt∈(a,b)| f ′(t)| ≤ ∞.Then the following inequality holds true:

(1.3)
∣∣∣∣ f (x)− 1

b−a

∫ b

a
f (t)dt

∣∣∣∣≤
[

1
4
+

(x− a+b
2 )2

(b−a)2

]
(b−a)‖ f ′‖∞
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for all x ∈ [a,b]. The constant 1
4 is best possible.

Inequality 1.3 has attracted significant attention from mathematicians and other researchers,

primarily due to its broad and diverse applications in fields such as numerical analysis and the

theory of certain special means [9]. Recently, Sarikaya and Budak [18] derived a generalised

Ostrowski inequality for local fractional integrals, which is presented in Theorem 2

Theorem 2. Let I ⊆ R be 1n interval, f : Io ⊆ R→ Rζ (Io is the interior of I) such that f (ζ ) ∈

Dζ f (2ζ ) ∈Ca[a,b] for a,b ∈ Io with a≤ b. Also, assume that. ‖ f (ζ )‖∞ := supt∈[a,b]| f (ζ )(t)| ≤∞.

Then, for all x ∈ [a,b].

(1.4)
∣∣∣∣ f (x)− Γ(1+ζ )

(b−a)ζ
a
I(ζ )b f

∣∣∣∣≤ 2ζ Γ(1+ζ )

Γ(1+2ζ )

[
1

4ζ
+

(
x− a+b

2
b−a

)2ζ]
(b−a)ζ‖ f (ζ )‖∞

2. THE RESULTS

To derive additional inequalities of the generalised Ostrowski type for twice locally fractional

differentiable functions, we first introduce a function along with its integral representation for

such functions, as stated in the following lemma.

Lemma 6. Let I ⊆ R be an interval f : I◦ ⊆ R→ Rζ (where I◦ is the interior of I), such that

f , f (ζ ) ∈Dζ (I◦) and f (2ζ ) ∈Cζ [a,b] for a,b ∈ I◦ with a < b. Then the following equality holds

true: For any x ∈
[a+b

2 ,b
]
,

(2.5) L(ζ ;a,b;x) =
η(b,a)2ζ

Γ(1+ζ )Γ(1+2ζ )

∫ 1

0
k(t) f (2ζ )(a+ tη(b,a))(dt)ζ ,

The function k(t) is defined as follows:

(2.6) k(t) =


t2ζ if 0≤ t ≤ x−a

η(b,a) ,(
t− 1

2

)2ζ
if x−a

η(b,a) < t < b−x
η(b,a) ,

(t−1)2ζ if b−x
η(b,a) ≤ t ≤ 1.

Proof. Let I represent the following integral:

I :=
1

Γ(1+ζ )

∫ 1

0
k(t) f (2ζ )(a+ tη(b,a))(dt)ζ .
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Therefore, considering k(t), we have

(2.7) I = I1 + I2 + I3,

where

I1 :=
1

Γ(1+ζ )

∫ x−a
η(b,a)

0
t2ζ f (2ζ )(a+ tη(b,a))(dt)ζ .

and

I2 :=
1

Γ(1+ζ )

∫ x−a
η(b,a)

b−x
η(b,a)

(
t− 1

2

)2ζ

f (2ζ )(a+ tη(b,a))(dt)ζ .

I3 :=
1

Γ(1+ζ )

∫ 1

b−x
η(b,a)

(t−1)2ζ f (2ζ )(a+ tη(b,a))(dt)ζ .

Using local fractional integration by parts, we get

I1 :=
1

Γ(1+ζ )

∫ x−a
η(b,a)

0
t2ζ f (2ζ )(a+ tη(b,a))(dt)ζ .

Let’s denote u(t) = t(2ζ ) and v(t) = f (a+ tη(b,a)). We need to compute their local fractional

derivatives and then apply the integration by parts formula. First, compute the local fractional

derivative of u(t):

u(ζ )(t) = (t2ζ )ζ

Applying the rule for functional derivatives of power functions, we have:

(t2ζ )ζ =
Γ(2ζ +1)

Γ(2ζ +1−ζ )
t(2ζ+1) =

Γ(2ζ +1)
Γ(ζ +1)

t(ζ )

Now the local derivative of v(t).

v(ζ )(t) = ( f (a+ tη(b,a)))(d) = η(b,a)d f (ζ )(a+ tη(b,a)).

Now apply the local fractional integration by parts

I = u(t)v(t)
∣∣ x−a

η(b,a)
0 −

∫ x−a
η(b,a)

0
u(t)v(α)(dt)α

substitute u(t) and v(t).

I1 = t2ζ f (a+ tη(b,a))
∣∣ x−a

η(b,a)
0 −

∫ x−a
η(b,a)

0
t2ζ (η(b,a)ζ f (ζ )(a+ tη(b,a)))(dt)ζ .
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Evaluating the boundary term.

t2ζ f (a+ tη(b,a))
∣∣ x−a

η(b,a)
0 =

( x−a
η(b,a)

)2ζ f (x)−0 =
( x−a

η(b,a)

)2ζ f (x).

The integral term becomes

−η(b,a)ζ

∫ x−a
η(b,a)

0
t2ζ f (ζ )(a+ tη(b,a))(dt)ζ .

Combining the results we get:

I1 =
( x−a

η(b,a)

)2ζ f (x)−η(b,a)ζ

∫ x−a
η(b,a)

0
t2ζ f (ζ )(a+ tη(b,a))(dt)ζ .(2.8)

Similarly, we have

I2 =
( x−a

η(b,a)
− 1

2
)2ζ f (b)−

( b− x
η(b,a)

− 1
2
)2ζ f (a)−2ζ

∫ x−a
η(b,a)

b−x
η(b,a)

f (a+ tη(b,a))
(
t− 1

2
)2ζ−1

(dt)ζ .

(2.9)

I3 =
1

Γ(1+ζ )

[
f (a+η(b,a))−

( b− x
η(b,a)

−1
)2ζ f (a+

b− x
η(b,a)

η(b,a))
]
−

η(b,a)ζ

Γ(1+ζ )

∫ 1

b−x
η(b,a)

(t−1)2ζ f (ζ )(a+ tη(b,a))(dt)ζ .(2.10)

From (2.8), (2.9) and (2.10) we observe that

I =
(

1
η(b,a)

)2ζ
[
(x−a)2ζ f (x)+

(
(x−a)− η(b,a)

2

)2ζ

f (b)−
(
(b− x)− η(b,a)

2

)2ζ

f (a)

]

+
1

Γ(1+ζ )

[
f (a+η(b,a))−

(
b− x

η(b,a)
−1
)2ζ

f (a+(b− x))

]

−η(b,a)ζ

[∫ x−a
η(b,a)

0
t2ζ f (α)(a+ tη(b,a))(dt)v +2ζ

∫ x−a
η(b,a)

b−x
η(b,a)

f (a+ tη(b,a))
(

t− 1
2

)2ζ−1

(dt)ζ

+
1

Γ(1+ζ )

∫ 1

b−x
η(b,a)

(t−1)2ζ f (ζ )(a+ tη(b,a))(dt)ζ

]
.

(2.11)

Finally, by substituting the variable u = a+ tη(b,a) (t ∈ [0,1]) into Equation (2.11) and multi-

plying both sides of the resulting identity by η(b,a)2α

Γ(1+2ζ )
, we can get the desired equality (2.5).
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Theorem 3. Let I ⊆ R be an interval f : I◦ ⊆ R→ Rζ (where I◦ is the interior of I) such that

f , f (ζ ) ∈ Dζ (I◦), and f (2ζ ) ∈Cζ [a,b] for a,b ∈ I◦ with a < b. Also, assume that

‖ f (2ζ )‖∞ := sup
t∈[a,b]

| f (2ζ )(t)|< ∞.

in that case, the following inequality holds: For any x ∈
[a+b

2 ,b
]
,

|L(ζ ;a,b;x)| ≤ ‖ f (2ζ )‖∞

Γ(1+3α)η(b,a)ζ

[
2ζ (x−a)3ζ +(2x−a−b)3ζ 1

4ζ

]
,(2.12)

Proof. Let L := L(ζ ;a,b;x) . As a result, we obtain:

|L| ≤ η(b,a)2ζ

Γ(1+ζ )Γ(1+2ζ )

∫ 1

0
|k(t)|

∣∣∣ f (2ζ )(a+ tη(b,a))
∣∣∣(dt)ζ

≤ η(b,a)2ζ‖ f (2ζ )‖∞

Γ(1+ζ )Γ(1+2ζ )

∫ 1

0
|k(x, t)|(dt)ζ ,

Using (2.6), we get

|L| ≤η(b,a)2ζ‖ f (2ζ )‖∞

Γ(1+2ζ )
×

{
1

Γ(1+α)

∫ b−x
b−a

0
t2ζ (dt)ζ +

1
Γ(1+ζ )

∫ x−a
η(b,a)

b−x
η(b,a)

(t− 1
2)

2ζ (dt)ζ

+
1

Γ(1+ζ )

∫ 1

b−x
η(b,a)

(t−1)2ζ (dt)ζ

}
.(2.13)

Using Lemma 5, we have

1
Γ(1+ζ )

∫ x−a
η(b,a)

0
t2ζ (dt)ζ =

Γ(1+2ζ )

Γ(1+3ζ )

(
x−a

η(b,a)

)3ζ

.(2.14)

1
Γ(1+ζ )

∫ x−a
η(b,a)

b−x
η(b,a)

(t− 1
2)

2ζ (dt)ζ =
Γ(1+2ζ )

4αΓ(1+3ζ )

(
2x−a−b

η(b,a)

)3ζ

.(2.15)

1
Γ(1+ζ )

∫ 1

b−x
η(b,a)

(t−1)2ζ (dt)ζ =
1

Γ(1+ζ )

∫ x−a
η(b,a)

0
u2ζ (du)ζ

(2.16) =
Γ(1+2ζ )

Γ(1+3ζ )

(
x−a

η(b,a)

)3ζ

.

Finally, it is evident that substituting (2.14), (2.15), and (2.16) into (2.13) directly leads to the

desired inequality (2.12).

Substituting x = (a+b)/2 into Theorem 3 results in an intriguing inequality related to the local

fractional integral, as stated in the following corollary.
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Corollary 1. Under the conditions stated in Theorem 3, the following inequality is true:∣∣∣∣∣ 1
η(b,a)ζ

aIζ

b f − 2ζ

Γ(1+ζ )Γ(1+2ζ )
f
(

a+b
2

)∣∣∣∣∣≤ ‖ f (2ζ )‖∞η(b,a)2ζ

4ζ Γ(1+3ζ )
.

Theorem 4. Let I ⊆R be an interval, and let f : I◦ ⊆R→Rζ (where I◦ represents the interior

of I) such that f and f (ζ ) ∈ Dζ (I◦), and f (2ζ ) ∈ Cζ [a,b] for a,b ∈ I◦ with a < b. If | f (2ζ )| is

generalized convex, the ensuing inequality is true for all x ∈
[a+b

2 ,b
]
:

|L(ζ ;a,b;x)| ≤ η(b,a)2ζ

Γ(1+2ζ )
[Kζ (x;a,b)+Lζ (x;a,b)+Mζ (x;a,b)],(2.17)

Kζ (x;a,b) :=
Γ(1+3ζ )

Γ(1+4ζ )

(
x−a

η(b,a)

)4ζ ∣∣∣ f (2ζ )(a)
∣∣∣+[

Γ(1+2ζ )

Γ(1+3ζ )

(
x−a

η(b,a)

)3ζ

− Γ(1+3ζ )

Γ(1+4ζ )

(
x−a

η(b,a)

)4ζ
]∣∣∣ f (2ζ )(b)

∣∣∣ .(2.18)

Lζ (x;a,b) :=Cζ (x;a,b)
∣∣∣∣∣∣ f (2ζ )(a)

∣∣∣−Dζ (x;a,b)
∣∣∣ f (2ζ )(b)

∣∣∣∣∣∣ .(2.19)

Cζ (x;a,b) :=
Γ(1+3ζ )

Γ(1+4ζ )

(
(x−a)4ζ − (b− x)4ζ

η(b,a)4ζ

)
−

Γ(1+2ζ )

Γ(1+3ζ )

(
(x−a)3ζ − (b− x)3ζ

η(b,a)3ζ

)
+

Γ(1+ζ )

4ζ Γ(1+2ζ )

(
(x−a)2ζ − (b− x)2ζ

η(b,a)2ζ

)
.

and

Dζ (x;a,b) :=
Γ(1+3ζ )

Γ(1+4ζ )

(
(x−a)4ζ − (b− x)4ζ

η(b,a)4ζ

)
−2ζ Γ(1+2ζ )

Γ(1+3ζ )

(
(x−a)3ζ − (b− x)3ζ

η(b,a)3ζ

)
+

(
5
4

)v
Γ(1+ζ )

Γ(1+2ζ )

(
(x−a)2ζ − (b− x)2ζ

η(b,a)2ζ

)
− 1

4ζ Γ(1+ζ )

(2x−b−a)ζ

η(b,a)ζ
.

and

Mζ (x;a,b) :=

[
Γ(1+3ζ )

Γ(1+4ζ )

(
η(b,a)4ζ − (b− x)4ζ

η(b,a)4ζ

)
− 2ζ Γ(1+2ζ )

Γ(1+3ζ )

(
η(b,a)3ζ − (b− x)3ζ

η(b,a)3ζ

)

+
Γ(1+ζ )

Γ(1+2ζ )

(
b+a−2x

η(b,a)

)ζ
]∣∣∣ f (2ζ )(a)

∣∣∣+ Γ(1+3ζ )

Γ(1+4ζ )

(
x−a

η(b,a)

)4ζ ∣∣∣ f (2ζ )(b)
∣∣∣ .(2.20)
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Proof. As demonstrated in the proof of Theorem 4, let L := L(ζ ;a,b;x) in (2.5).Then, by

examining k(t), we have

|L| ≤ η(b,a)2ζ

Γ(1+2ζ )

1
Γ(1+ζ )

∫ 1

0
|k(t)|

∣∣∣ f (2ζ )(a+ tη(b,a))
∣∣∣(dt)ζ .(2.21)

≤ η(b,a)2ζ

Γ(1+2ζ )
(H1 +H2 +H3) ,

where

H1 :=
1

Γ(1+ζ )

∫ x−a
η(b,a)

0
t2ζ

∣∣∣ f (2ζ )(a+ tη(b,a))
∣∣∣(dt)ζ ,

H2 :=
1

Γ(1+ζ )

∫ x−a
η(b,a)

b−x
η(b,a)

(
t− 1

2

)2ζ ∣∣∣ f (2ζ )(a+ tη(b,a))
∣∣∣(dt)ζ ,

H3 :=
1

Γ(1+ζ )

∫ 1

b−x
η(b,a)

(t−1)2ζ

∣∣∣ f (2ζ )(a+ tη(b,a))
∣∣∣(dt)ζ .

By utilizing the generalized convexity of | f (2ζ )| (as defined in Definition 4 and applying Lemma

5 to evaluate the local fractional integrals of the relevant powers, we obtain:

H1≤ 1
Γ(1+ζ )

∫ x−a
η(b,a)

0

[∣∣∣ f (2ζ )(a)
∣∣∣+ t2ζ

η(b,a)ζ

∣∣∣ f (2ζ )
∣∣∣](dt)ζ = Kζ (x;a,b)(2.22)

H2≤ 1
Γ(1+ζ )

∫ x−a
η(b,a)

b−x
η(b,a)

[
(t− 1

2
)2ζ

∣∣∣ f (2ζ )(a)
∣∣∣+η(b,a)ζ (t− 1

2
)2ζ

∣∣∣ f (2ζ )
∣∣∣](dt)ζ = Lζ (x;a,b),

(2.23)

and

H3≤ 1
Γ(1+ζ )

∫ 1

b−x
η(b,a)

(t−1)2ζ

∣∣∣ f (2ζ )(a)
∣∣∣+η(b,a)ζ (t−1)2ζ

∣∣∣ f (2ζ )
∣∣∣(dt)ζ = Mζ (x;a,b),

(2.24)

At last, by plugging (2.22), (2.23), and (2.24) into (2.21), we acquire the inequality in question.

Theorem 5. Let I ⊆ R be an interval f : I◦ ⊆ R → Rζ ( I◦ is the interior of I) such that

f , f (ζ ) ∈ Dζ (I◦), and f (2ζ ) ∈Cζ [a,b] for a,b ∈ I◦ with a < b. Also let p,q ∈ R with p,q > 1

and 1
p +

1
q = 1. If | f (2ζ )|q is generalized convex, then the subsequent inequality is valid for any

x ∈
[a+b

2 ,b
]
:

|L(ζ ;a,b;x)| ≤ η(b,a)2ζ

Γ(1+2ζ )

1(
2ζ Γ(1+ζ )

) 1
q

(
Γ(1+2pζ )

Γ(1+(2p+1)ζ )

) 1
p

Jζ (x;a,b; p,q),(2.25)
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Proof. We find from (2.21) that

|L| ≤ η(b,a)2ζ

Γ(1+2ζ )

1
Γ(1+ζ )

∫ 1

0
|k(t)|

∣∣∣ f (2ζ )(a+ tη(b,a))
∣∣∣(dt)ζ ≤ η(b,a)2ζ

Γ(1+2ζ )
(H1 +H2 +H3),

(2.26)

Where Hi (i = 1,2,3) are described according to (2.21).

By employing H”older’s inequality for the local fractional integral, as described in Lemma 5 on

Hi (i = 1,2,3), we get:

(2.27)

H1 ≤

(
1

Γ(1+ζ )

∫ x−a
η(b,a)

0
t2pζ (dt)ζ

) 1
p

×

(
1

Γ(1+ζ )

∫ x−a
η(b,a)

0

∣∣∣ f (2ζ )(a+ tη(b,a))
∣∣∣q (dt)ζ

) 1
q

(2.28)

H2 ≤

(
1

Γ(1+ζ )

∫ x−a
η(b,a)

b−x
η(b,a)

(
t− 1

2

)2pζ

(dt)ζ

) 1
p

×

(
1

Γ(1+ζ )

∫ x−a
η(b,a)

b−x
η(b,a)

∣∣∣ f (2ζ )(a+ tη(b,a))
∣∣∣q (dt)ζ

) 1
q

and

(2.29)

H3 ≤

(
1

Γ(1+ζ )

∫ 1

b−x
η(b,a)

(t−1)2pζ (dt)ζ

) 1
p

×

(
1

Γ(1+ζ )

∫ 1

b−x
η(b,a)

∣∣∣ f (2ζ )(a+ tη(b,a))
∣∣∣q (dt)ζ

) 1
q

Here, by applying Lemma 5, we derive:

(2.30)
1

Γ(1+ζ )

∫ x−a
η(b,a)

0
t2pζ (dt)ζ =

Γ(1+2pζ )

Γ(1+(2p+1)ζ )

(
x−a

η(b,a)

)(2p+1)ζ

(2.31)
1

Γ(1+ζ )

∫ x−a
η(b,a)

b−x
η(b,a)

(
t− 1

2

)2pζ

dtζ =
Γ(1+2pζ )

Γ(1+(2p+1)ζ )

[(
2x−b−a
2η(b,a)

)(2p+1)ζ

−
(

a+b−2x
2η(b,a)

)(2p+1)ζ
]

and
1

Γ(1+α)

∫ 1

b−x
η(b,a)

(t−1)2pζ dtζ =
1

Γ(1+ζ )

∫ 1

b−x
η(b,a)

(1− t)2pζ (dt)ζ

(2.32) =
1

Γ(1+ζ )

∫ x−a
η(b,a)

0
u2pζ (du)ζ

=
Γ(1+2pζ )

Γ(1+(2p+1)ζ )

(
x−a

η(b,a)

)(2p+1)ζ
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Moreover, as
∣∣∣ f (2ζ )

∣∣∣q exhibits generalized convexity on [a,b], we can apply the generalized

Hermite-Hadamard inequality from (1.10) to obtain:∫ x−a
η(b,a)

0

∣∣∣ f (2ζ )(a+ tη(b,a))
∣∣∣q (dt)ζ =

1
(η(b,a))ζ

∫ b

x

∣∣∣ f (2ζ )(u)
∣∣∣q (du)ζ

≤

∣∣∣ f (2ζ )(b)
∣∣∣q + ∣∣∣ f (2ζ )(x)

∣∣∣q
2ζ

(2.33)

(2.34)
∫ x−a

η(b,a)

b−x
η(b,a)

∣∣∣ f (2ζ )(a+ tη(b,a))
∣∣∣q (dt)ζ ≤

∣∣∣ f (2ζ )(x)
∣∣∣q + ∣∣∣ f (2ζ )(a+b− x)

∣∣∣q
2ζ

and

(2.35)
∫ 1

x−a
η(b,a)

∣∣∣ f (2ζ )(a+ tη(b,a))
∣∣∣q (dt)ζ ≤

∣∣∣ f (2ζ )(a+b− x)
∣∣∣q + ∣∣∣ f (2ζ )(a)

∣∣∣q
2ζ

By integrating the equalities (2.30)–(2.32) and the inequalities (2.33)–(2.35) into the inequal-

ities (2.27)–(2.29), and subsequently incorporating the obtained inequalities into (2.26), we

derive the final inequality (2.25).

Substituting x = b into the aforementioned theorem results in an inequality that includes a lo-

cal fractional integral, as stated in Corollary 2. To proceed, we must first recall the following

inequality:

(2.36)
n

∑
k=1

(uk + vk)
s ≤

n

∑
k=1

(uk)
s +

n

∑
k=1

(vk)
s (n ∈ N; 0≤ s≤ 1; uk,vk ≥ 0, 1≤ k ≤ n)

Corollary 2. Based on the assumption that the hypothesis holds true of Theorem 5, the follow-

ing inequality is true:∣∣∣∣∣ 1
(η(b,a))ζ

aIζ

b f − f (a)+ f (b)
Γ(1+ζ )Γ(1+2ζ )

+
(η(b,a))ζ

8
f (ζ )(b)− f (ζ )(a)

Γ(1+ζ )

∣∣∣∣∣
≤ (η(b,a))2ζ

4ζ Γ(1+2ζ )

{
Γ(1+2pζ )

Γ(1+(2p+1)ζ )

} 1
p
{
| f (2ζ )(a)|+ | f (2ζ )(b)|

(2ζ Γ(1+ζ ))
1
q

}
(2.37)

Proof. By considering x = b in the aforementioned Theorem, we assume that L1 is associated

with the left-hand side of the inequality in (2.37)

(2.38) L1 ≤
(η(b,a))2ζ

Γ(1+2ζ )

{
Γ(1+2pα)

Γ(1+(2p+1)ζ )

} 1
p
(

1ζ − (−1)ζ

2(2+
1
p )ζ

)
×

{
| f (2ζ )(a)|+ | f (2ζ )(b)|

(2ζ Γ(1+ζ ))
1
q

}
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It is now clear that the expected inequality (2.37) is obtained by fitting the inequality (2.36) to

every single of the final two terms in (2.38).

(2.39) f (
a+b

2
)≤ Γ(1+α)

η(b,a)α
aI(α)

b f ≤ f (a)+ f (b)
2α

3. APPLICATION OF RESULTS: MODELING THE SPREAD OF INFECTIOUS DISEASES

IN BIOMEDICAL ENGINEERING

The spread of infectious diseases can be modeled using differential equations to predict the

dynamics of infection over time. Traditional models often use integer-order derivatives, but

these models may not adequately capture the memory effects and long-range dependencies

present in real-world disease spread. Fractional calculus provides a more accurate framework

by incorporating these effects. Generalized Ostrowski-type inequalities for fractional integrals

can be used to derive bounds on the errors in predicting the spread of infectious diseases, leading

to more reliable and accurate models.

Assume that the susceptible, infected, and recovered populations at time t are denoted by S(t),

I(t), and R(t) respectively. The following system of fractional differential equations can be used

to characterize the fractional SIR (Susceptible-Infected-Recovered) model:

Dζ S(t) =−βS(t)I(t)

Dζ I(t) = βS(t)I(t)− γI(t)

Dζ R(t) = γI(t)

in which β represents the transfer level, γ represents the recuperation level, and Dζ represents

a fractional derivative with order ζ .

Define error functions for each population group as the difference between the actual and pre-

dicted values:

ES(t) = Sactual(t)−Spred(t)

EI(t) = Iactual(t)− Ipred(t)

ER(t) = Ractual(t)−Rpred(t)
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Apply the generalized Ostrowski-type inequalities to derive bounds for these error functions.

For example:

∣∣∣Iζ [ES(t)]
∣∣∣≤ KS

∣∣∣Iζ
[
Sactual(t)−Spred(t)

]∣∣∣∣∣∣Iζ [EI(t)]
∣∣∣≤ KI

∣∣∣Iζ
[
Iactual(t)− Ipred(t)

]∣∣∣∣∣∣Iζ [ER(t)]
∣∣∣≤ KR

∣∣∣Iζ
[
Ractual(t)−Rpred(t)

]∣∣∣
where KS,KI and KR are constants dependent on the model parameters.

To minimize the prediction errors ES(t),EI(t) and ER(t), optimize the model parameters (ζ ,β

and γ). The goal is to choose these parameters such that the bounds on
∣∣∣Iζ [ES(t)]

∣∣∣, ∣∣∣Iζ [EI(t)]
∣∣∣

and
∣∣∣Iζ [ER(t)]

∣∣∣ are minimized.

Perform simulations to validate the theoretical bounds. Use historical data on infectious disease

outbreaks to fit the fractional SIR model. Compare the model’s predictions with the actual data

to evaluate the performance of the model. Measure the prediction error for each population

group before and after optimizing the parameters.

Example Simulation: Assume an outbreak of a disease with known transmission and recov-

ery rates. Fit the fractional SIR model to the data and apply the generalized Ostrowski-type

inequalities to derive error bounds. Optimize the parameters α,β , and γ to minimize the pre-

diction error.

Calculate the MAE and RMSE for each population group before and after parameter optimiza-

tion:

MAES =
1
N

N

∑
i=1

∣∣Sactual(ti)−Spred(ti)
∣∣

RMSEI =

√
1
N

N

∑
i=1

(
Iactual(ti)− Ipred(ti)

)2

MAER =
1
N

N

∑
i=1

∣∣Ractual(ti)−Rpred(ti)
∣∣

By applying generalized Ostrowski-type inequalities in the design and optimization of

fractional-order models, one can effectively predict the spread of infectious diseases with higher

accuracy. This detailed application demonstrates the practical utility of fractional calculus and
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generalized inequalities in real-world biomedical engineering tasks, providing a framework for

developing more accurate and robust disease spread models.

4. CONCLUSION

In our research, we delve into the concept of a preinvex function in the realm of local frac-

tional calculus. We start by presenting a preinvex function that is closely tied to a generalized

Ostrowski-type inequality. Ostrowski-type inequalities are important in mathematical modeling

as they have numerous uses, including error estimates for numerical integration and approxi-

mation theory, which makes this association essential. By developing an integral representation

for this preinvex function, we create a robust mathematical framework that extends the classical

Ostrowski inequality to the domain of fractional calculus locally.

Local fractional calculus, a generalization of traditional calculus, is particularly useful for ana-

lyzing functions that exhibit fractal or nondifferentiable behavior at certain points. It provides

tools for dealing with problems that cannot be addressed adequately by standard calculus. In

this context, our introduction of the preinvex function and its integral representation offers new

insights and methods for handling such complex functions.

Building upon this foundation, we utilize the preinvex function and its integral representation

to derive a series of generalized Ostrowski-type inequalities. These inequalities are tailored for

functions that are twice locally fractionally differentiable. This means that the functions pos-

sess a fractional order of differentiation, which adds a layer of complexity and precision to the

analysis. By focusing on twice-local fractionally differentiable functions, we ensure that our

results apply to a wide range of practical problems where such differentiability conditions are

met.

The inequalities we establish provide bounds and estimates that are more refined than those

available through traditional methods. This is particularly valuable in fields such as signal

processing, image analysis, and other areas where fractal and irregular patterns are common.

By providing tangible methods for error estimates and function approximation, our study not

exclusively broadens the mathematical foundation of local fractional calculus yet additionally

improves its practicality.

Our research significantly contributes to the theoretical and practical aspects of local fractional
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calculus, offering novel approaches and perspectives applicable to a range of complex mathe-

matical challenges.
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