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Abstract. This paper is concerned with the Hyers-Ulam stability of third order nonlinear differential equations

with nonlinear damping. New criteria are developed to transform the ordinary differential equations under consid-

eration to integral inequalities. By employing the Gronwall-Bellman-Bihari type integral inequality, the stability of

ordinary differential equations is proved. Moreover, the Hyers-Ulam constants are established. Lastly, the obtained

results are not only new but also included the results stated in [14, 17].
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1. INTRODUCTION

In reality differential equations have become tools for many real life problem in biology,

mathematical finance, engineering, medicine and so on. Many notable researchers which we

are going to mention in this article have devoted most of their study on the qualitative(stability)

of solution of differential equations. In 1940, S.M. Ulam [61] posed the following question con-

cerning the stability of functional equations before the Mathematical Club of the University of

Wiscnsin: Give conditions in order for a linear mapping near an approximately linear mapping

to exist.” Since then, this question has attracted the attention of many researchers. Note that
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the solution to this question was given by Hyers [52] for additive functions defined on Banach

Spaces in 1941. Thereafter, the result by Hyers [52] was generalised by Rassias[48], Aoki[6]

and Bourgin[8], problem for approximately additive mappings, on Banach spaces,was solved

by Hyers [22]. The result obtained by Hyers was generalised by Rassias [48]. After that, many

authors have extensively investigated the Ulam problem to other functional equations in various

directions, see [3, 9, 10, 18, 19, 20, 23, 26, 30, 31, 41, 42, 45, 49, 50, 51, 55, 60, 62, 63].

The generalization of Ulam’s problem was recently proposed by replacing functional equa-

tions with differential equations. Obloza seems to be the first author who proved the Ulam

stability of differential equation in [43, 44]. Thereafter, Alsina and Ger [5] published their

papers,which handles the Hyers-Ulam stability of the linear differential equation u′(t) = u(t).

The result obtained by Alsina and Ger was generalized by Takahasi et.al.[58] to the case of

the complex Banach space valued differential equation. Since then Hyers-Ulam stability of

various classes of linear differential equations were investigated using different methods such

as direct method, fixed point method, iteration method open mapping theorem and so on (see

[1, 2, 21, 25, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 40, 43, 44, 56, 57, 58, 59]).

Now a days, the Hyers-Ulam stability of nonlinear ordinary differential equations has been

investigated (see [4, 11, 12, 13, 14, 15, 16, 46, 47, 53, 54]), and the investigation is going

on. In this paper, we are going to prove the Hyers-Ulam stability of the third order nonlinear

differential equations and also obtain the Hyers-Ulam constant of every equation considered.

The equations are:

(α(t)p(u(t))u′′(t))′+(γ(t) f (u(t))u′(t))′+β (t)g(u(t))u′(t)

+r(t)ρ(u(t)) = H(t,u(t,)u′(t)),
(1)

(P1(t,u(t),u′(t))u′′(t))′+np(t)P2(t,u(t),u′(t))u′(t)

+Q(t,u(t)) = H(t,u(t,)u′(t)),
(2)

with initial conditions

(3) u(t0) = u′(t0) = u′′(t0) = 0.

where n ∈ N(the set of natural numbers),u(t) ∈ C3(I,R+), P1(t0,0,0) = 0, P2(t0,0,0) =

0, Q(t0,0) = 0, p, f ,g,ρ ∈ C(R+,R+), Q ∈ C(I × R,R), H,P1,P2 ∈ C(I ×
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R2,R),β (t),r(t),α(t),γ(t), p(t) ∈C(I,R+), I = (0,∞), R+ = [0,∞), R = (−∞,∞).

2. PRELIMINARIES

In this section we present some assumptions, definitions, lemmas and theorems to make this

paper self-dependent. For convenience, we list the following general assumptions:

let

i H(t,u(t),u′(t)) = φ(t)ϖ(u(t))(u′(t))n, where n a positive integer, ϖ ∈ C(R+,R+)

φ(t) ∈C(R+),

ii P1(t,u(t),u′(t)) = h(t)κ(u(t))b(u′(t))4, where κ(u(t)), b(u′(t)) ∈ C(R+,R+), h(t) ∈

C(I,R+),

iii P2(t,u(t),u′(t)) = y(t)v(t)ω(u(t))(u′(t))4 where ω(u(t)) ∈ C(R+,R+), y(t), v(t) ∈

C(I,R+), u′(t) ∈C1(I,R+)

iv Q(t,u(t)) = ψ(t)σ(u(t)) where ψ(t) ∈C(R+), σ ∈C(R+,R+)

Definition 1. We say that equation (1) has the Hywrs-Ulam stability, if there exists a constant

K1 ≥ 0 with the following property: for every ε > 0, u(t) ∈C3(R+), if

|(α(t)p(u(t))u′′(t))′+(γ(t) f (u(t))u′(t))′+β (t)g(u(t))u′(t)

+r(t)ρ(u(t))−H(t,u(t),u′(t))| ≤ ε,
(4)

then, there exists some u0(t) ∈C3(R+) such that

|u(t)−u0(t)| ≤ K1ε,

we call such K1 the Hyers-Ulam constant.

Definition 2. The differential equation (2) has the Hyers-Ulam stability, if there exists a positive

constant K2 ≥ 0 with the following property: for every ε > 0, u(t) ∈C3(R+), which satisfies

|(P1(t,u(t),u′(t))u′′(t))′+np(t)P2(t,u(t),u′(t))u′(t)

+Q(t,u(t))−H(t,u(t),u′(t))| ≤ ε,
(5)

then there exists a function u0(t) ∈C3(R+) satisfies (2) with initial condition (3) such that
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|u(t)−u0(t)| ≤ K2ε,

we call such K2 a Hyers-Ulam stability for the differential equation (2).

Lemma 1. [7] Let u(t), f (t) be positive continuous functions defined on t0 ≤ t ≤ b,(≤ ∞) and

K > 0, M ≥ 0, further let ω(u) be a nonnegative nondecreasing continuous function for u≥ 0,

then the inequality

(6) u(t)≤ N +M
∫ t

t0
f (s)ω(u(s))ds, t0 ≤ t < b,

implies the inequality

(7) u(t)≤Ω
−1
(

Ω(N)+M
∫ t

t0
f (s)ds

)
, t0 ≤ t ≤ b′ ≤ b,

where

(8) Ω(u) =
∫ u

u0

dt
ω(t)

, 0 < u0 < u.

In the case ω(0)> 0 or Ω(0+) is finite, one may take u0 = 0 and Ω−1 is the inverse function of

Ω and t must be in the subinterval [t0,b′] of [t0,b] such that

Ω(N)+M
∫ t

t0
f (s)ds ∈ Dom(Ω−1).

Lemma 2. [24] Let r(t) be an integrable function then the n successive integration of r over the

interval [t0, t] is given by

(9)
∫ t

t0
· · ·
∫ t

t0
r(s)dsn =

1
(n−1)!

∫ t

t0
(t− s)n−1r(s)ds

Theorem 1. [39] If f (t) and g(t) are continuous in [t0, t]⊆ I and f (t) does not change sign in

the interval, then there is a point ξ ∈ [t0, t] such that
∫ t

t0
g(s) f (s)ds = g(ξ )

∫ t

t0
f (s)ds

Theorem 2. [14, 15] Suppose u(t),r(t),h(t) ∈ C(I,R+) are nonnegative, monotonic, nonde-

creasing, continuous and ω(u) be submultiplicative for u > 0. Let

(10) u(t)≤ N +T
∫ t

t0
r(s)β (u(s))ds+L

∫ t

t0
h(s)ϖ(u(s))ds
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for N, T and L positive constants, then

u(t)≤Ω
−1
(

Ω(K)+L
∫ t

t0
h(s)ϖ

(
F−1

(
F(1)+T

∫ s

t0
r(α)dα

))
ds
)

F−1
(

F(1)+T
∫ t

t0
r(s)ds

)(11)

where β (u) 6= ϖ(u), Ω is defined in equation (7) and F(u) is defined as

(12) F(u) =
∫ u

u0

ds
β (s)

, 0 < u0 ≤ u,

F−1, Ω−1 are the inverses of F, Ω respectively and t is in the subinterval (0,b) ∈ I so that

F(1)+T
∫ t

t0
r(s)ds ∈ Dom(F−1)

and

Ω(N)+L
∫ t

t0
h(s)ϖ

(
F−1

(
F(1)+T

∫ t

t0
r(α)dα

))
ds ∈ Dom(Ω−1)

Theorem 3. [14, 15] If u(t),r(t),h(t),ρ(t),g(t) ∈ C(R+) be nonnegative, monotonic, nonde-

creasing continuous functions. Let γ be submultiplicative. If

u(t)≤ ρ(t)+A
∫ t

t0
r(s)β (u(s))ds+B

∫ t

t0
h(s)ϖ(u(s))ds+

L
∫ t

t0
g(s)γ(u(s))ds

(13)

for A,B,L > 0, then

u(t)≤ ρ(t)ϒ−1[
ϒ(1)+L

∫ t

t0
g(s)γ

[
Ω
−1
(

Ω(1)+B
∫ s

t0
h(α)ϖ (T (α))dα

)
T (s)

]
ds
]

Ω
−1
(

Ω(1)+B
∫ t

t0
h(s)ϖ (T (s))ds

)
T (t)

(14)

where T (t) is given as

(15) T (t) = F−1
(

F(1)+A
∫ t

t0
r(s)ds

)
and

(16) ϒ(r) =
∫ r

r0

ds
γ(s)

, 0 < r0 ≤ r,
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and F−1, Ω−1 and ϒ−1 are the inverses of F, Ω, ϒ respectively t ∈ (0,b)⊂ (I). So that

ϒ(1)+L
∫ t

t0
g(s)γ

[
Ω
−1
(

Ω(1)+B
∫ s

t0
h(α)ϖ (T (α))dα

)
T (s)

]
ds ∈ Dom(ϒ−1

3. MAIN RESULTS

In this section, we will state our main results and give their proofs.

Theorem 4. Suppose that

i setting |u′(t)| ≤ λ where λ > 0,

ii lim
t0→∞

∫ t

t0
|u′(s)|ds = L, where L > 0,

iii lim
t0→∞

∫ t

t0
φ(s)ds≤ n1 < ∞, where n1 > 0,

iv lim
t0→∞

∫ t

t0
β (s)ds≤ n2 < ∞, where n2 > 0,

v lim
t0→∞

∫ t

t0
r(s)ds≤ n3 < ∞, where n3 > 0,

vi |F(u(t))| ≥ |u(t)|,

vii setting F(u(t)) =
∫ u(t)

u(t0)
f (u(s)ds < ∞,

are satisfied. In addition, let ϖ(u(t)) be continuous, nondecreasing and monotonic, then equa-

tion (1) has the Hyer-Ulam stability with initial conditions (3), if for Hyers-Ulam constant

K1 ≥ 0 and for each approximate solution u(t) ∈C3(R+) of (1) satisfying (4), there exists any

solution u0(t) ∈C3(R+) of (1) such that

|u(t)−u0(t)| ≤ K1ε,

thus, the Hyers-Ulam constant is given as

K1 =
L

σλ
ϒ
−1
[

ϒ(1)+
λ n

σ
n1ϖ

[
Ω
−1
(

Ω(1)+
1

σλ
n2ρ (T ∗)

)
T ∗
]]

Ω
−1
(

Ω(1)+
1

σλ
n2ρ (T ∗)

)
T ∗.

Proof. Multiplying inequality(4) by u′(t) to obtain

−εu′(t)≤ (α(t)p(u(t))u′′(t))′u′(t)+(γ(t) f (u(t))u′(t))′u′(t)

+β (t)g(u(t))(u′(t))2 + r(t)ρ(u(t))u′(t)−H(t,u(t),u′(t))u′(t)≤ εu′(t).
(17)
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Integrating twice and applying Lemma 2, since u′(t) is differentiable and nondecreasing on R+,

then u′′(t)≥ 0 ∀t ∈ I, we use this condition on the second term of (17) to have

−ε

∫ t

t0
u′(s)ds≤

∫ t

t0
(γ(s) f (u(s))u′(s))′u′(s)ds+

∫ t

t0
β (s)g(u(s))(u′(s))2ds

+
∫ t

t0
r(s)ρ(u(s))u′(s)ds−

∫ t

t0
H(s,u(s),u′(s))u′(s)ds≤ ε

∫ t

t0
u′(s)ds, t ≥ 0.

(18)

We apply the assumption (i) to fifth term of (18) and use the mean value Theorem 1 for integrals,

that is, there exist ξ ,ν ,η ,δ ∈ [t0, t] such that

u′(ξ )
∫ t

t0
(γ(s) f (u(s))u′(s))′ds+u′(ν)2

∫ t

t0
β (s)g(u(s))ds

+u′(η)
∫ t

t0
r(s)ρ(u(s))ds−u′(δ )n+1

∫ t

t0
φ(t)ϖ(u(t))ds≤ ε

∫ t

t0
u′(s)ds.

(19)

Employing the condition (vii) of Theorem 4 to the first term of (19), integrating by parts, let γ(t)

be differentiable on R+, if γ ′(t)≥ 0 for all t ∈ I, then γ(t) is nondecreasing on R+, in addition

γ ′(t)≥ 0, since γ(t)> 0 there exists constant σ > 0 such that γ(t)≥ σ , thus, we have

u′(ξ )σF(u(s))≤ ε

∫ t

t0
u′(s)ds−u′(ν)2

∫ t

t0
β (s)g(u(s))ds

−u′(η)
∫ t

t0
r(s)ρ(u(s))ds+u′(δ )n+1

∫ t

t0
φ(t)ϖ(u(t))ds, ∀t ≥ 0.

We apply the conditions (i), (vi), (vii) of Theorem 4 to obtain

|(u(s))| ≤ Lε

σλ
L+

λ

σ

∫ t

t0
β (s)g(|u(s)|)ds

+
1

σλ

∫ t

t0
r(s)ρ(|u(s)|)ds+

λ n

σ

∫ t

t0
φ(t)ϖ(|u(t)|)ds,∀t ≥ 0.

Furthermore, we apply the Theorem 3 to arrive at

|u(t)| ≤ Lε

σλ
ϒ
−1
[

ϒ(1)+
λ n

σ∫ t

t0
φ(s)ϖ

[
Ω
−1
(

Ω(1)+
1

σλ

∫ s

t0
r(α)ρ (T (α))dα

)
T (s)

]
ds
]

Ω
−1
(

Ω(1)+
1

σλ

∫ t

t0
r(s)ρ (T (s))ds

)
T (t),

(20)

for

T (t) = F−1
(

F(1)+
λ

σ

∫ t

t0
β (s)ds

)
.
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Applying the conditions (iii)- (v) of Theorem 4, we get

|u(t)| ≤ Lε

σλ
ϒ
−1
[

ϒ(1)+
λ n

σ
n1ϖ

[
Ω
−1
(

Ω(1)+
1

σλ
n2ρ (T ∗)

)
T ∗
]]

Ω
−1
(

Ω(1)+
1

σλ
n2ρ (T ∗)

)
T ∗

and

T ∗ = F−1
(

F(1)+
λ

σ
n3

)
.

Hence,

|u(t)−u(t0)| ≤ |u(t)| ≤ K1ε,

where

K1 =
L

σλ
ϒ
−1
[

ϒ(1)+
λ n

σ
n1ϖ

[
Ω
−1
(

Ω(1)+
1

σλ
n2ρ (T ∗)

)
T ∗
]]

Ω
−1
(

Ω(1)+
1

σλ
n2ρ (T ∗)

)
T ∗.

�

Theorem 5. Suppose the assumptions (i)-(iv) and conditions (i), (vii) of Theorem 4 remained

satisfied. In addition, let

i’ Φ(u(t)) =
∫ u(t)

u(t0)
σ(u(s))ds,

ii’ setting |Φ(u(t))| ≥ |u(t)|,

iii’ let |u′′(t)| ≤ ρ where ρ > 0,

iv’ lim
t0→∞

∫ t

t0
p(s)y(s)v(s)ds≤ n4 < ∞, where n4 > 0,

v’ lim
t0→∞

∫ t

t0
h(s)ds≤ n5 where n5 > 0,

hold, then equation (2) is stable in the sense of Hyers-Ulam, if K2 ≥ 0 and for each approximate

solution u(t) ∈C3(R+) satisfying (5), there exists any solution u0(t) ∈C3(R+) of (2) such that

|u(t)−u0(t)| ≤ K2ε,

for Hyers-Ulam constant is given as

K2 =
L
ν

ϒ
−1
[

ϒ(1)+
λ n+1

ν
k1ϖ

[
Ω
−1
(

Ω(1)+
nλ 6

ν
k4ω (T ∗2 )

)
T ∗2

]]
Ω
−1
(

Ω(1)+
nλ 6

ν
k4ω (T ∗2 )

)
T ∗2 .
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Proof. In this case we simplify (5), consider the right hand side of first inequality and multi-

plying by u′(t) where we apply on the first term the Theorem 1, there exists ξ ∈ [t0, t] such

that

u′(ξ )
∫ t

t0
(P1(s,u(s),u′(s)u′′(s))′ds+n

∫ t

t0
p(s)P2(s,u(s),u′(s))(u′(s))2ds

+
∫ t

t0
Q(s,u(s))u′(s)ds−

∫ t

t0
H(s,u(s),u′(s))u′(s)ds≤ ε

∫ t

t0
u′(s)ds.

Using the assumptions (i)-(iv) to get∫ t

t0
ψ(s)σ(u(s))u′(s)ds≤ ε

∫ t

t0
u′(s)ds−u′(ξ )

∫ t

t0
h(s)κ(u(s))b(u′(s))4u′′(s)ds

−n
∫ t

t0
p(s)y(s)v(s)ω(u(s))(u′(s))6ds+

∫ t

t0
φ(s)ϖ(u(s))(u′(s))n+1ds, ∀t > 0.

(21)

Applying the condition (i’) of Theorem 5 to the first term of (21) and Theorem 1 there exists

ι , ε, δ ∈ [t0, t] such that∫ t

t0
ψ(s)

d
ds

Φ(u(s))ds≤ ε

∫ t

t0
u′(s)ds−u′(ξ )b(u′(ι)4)u′′(ι)

∫ t

t0
h(s)κ(u(s))ds

−nu′(ε)6
∫ t

t0
p(s)y(s)v(s)ω(u(s))ds+u′(δ )n+1

∫ t

t0
φ(s)ϖ(u(s))ds, ∀t > 0.

(22)

Integrate by parts the first term of (22) by letting ψ(t) be nondecreasing function on R+ implies

ψ ′(t) ≥ 0 and using the fact that since ψ(t) > 0 there exists a positive constant ν such that

ψ(t)≥ ν with application of the conditions (i), (vii) of Theorem 5 together with the conditions

(ii’), (iii’) of Theorem 5 to obtain

|u(t)| ≤ ε

ν
L+

λb(λ 4)ρ

ν

∫ t

t0
h(s)κ(|u(s)|)ds

+
nλ 6

ν

∫ t

t0
p(s)y(s)v(s)ω(|u(s)|)ds+

λ n+1

ν

∫ t

t0
φ(s)ϖ(|u(s)|)ds, ∀t > 0.

As before, we apply the Theorem 3 to arrive at

|u(t)| ≤ Lε

ν
ϒ
−1
[

ϒ(1)+
λ n+1

ν

∫ t

t0
φ(s)ϖ

[
Ω
−1 (Ω(1)

+
nλ 6

ν

∫ s

t0
p(α)y(α)v(α)ω (T (α))dα

)
T (s)

]
ds
]

Ω
−1
(

Ω(1)+
nλ 6

ν

∫ t

t0
p(s)y(s)v(s)ω (T (s))ds

)
T (t),

(23)
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where

T (t) = F−1
(

F(1)+
λb(λ 4)ρ

ν

∫ t

t0
h(s)ds

)
.

Simplifying (23) using conditions (i) of Theorem 4 and (iv’),(v’) of Theorem 5 to obtain

|u(t)| ≤ Lε

ν
ϒ
−1
[

ϒ(1)+
λ n+1

ν
n1ϖ

[
Ω
−1
(

Ω(1)+
nλ 6

ν
n4ω (T ∗2 )

)
T ∗2

]]
Ω
−1
(

Ω(1)+
nλ 6

ν
n4ω (T ∗2 )

)
T ∗2 ,

where

T ∗2 = F−1
(

F(1)+
λb(λ 4)ρ

ν
n5

)
.

Hence,

|u(t)−u(t0)| ≤ |u(t)| ≤ K2ε

and

K2 =
L
ν

ϒ
−1
[

ϒ(1)+
λ n+1

ν
k1ϖ

[
Ω
−1
(

Ω(1)+
nλ 6

ν
k4ω (T ∗2 )

)
T ∗2

]]
Ω
−1
(

Ω(1)+
nλ 6

ν
k4ω (T ∗2 )

)
T ∗2 .

�

Next, we consider the equations (1) and (2) in the following forms:

(α(t)p(u(t))u′′(t))′+(γ(t) f (u(t))u′(t))′+β (t)g(u(t))u′(t)+ r(t)ρ(u(t)) = 0(24)

and

(P1(t,u(t),u′(t)u′′(t))′+np(t)P2(t,u(t),u′(t))u′(t)+Q(t,u(t)) = 0.(25)

where the term H(t,u(t,)u′(t)) is replaced by 0

Theorem 6. Supposed the conditions (ii)-(iv) of Theorem 4 and conditions (i’), (iii’) of Theo-

rem 5 remain valid. In addition to the above conditions, let the following conditions:

i” Λ(u(t)) =
∫ u(t)

u(t0)
ρ(u(s))ds,

ii” lim
t0→∞

∫ t

t0
γ(s)ds≤ n6 < ∞, where n6 > 0,

iii” lim
t0→∞

∫ t

t0
α(s)ds≤ n7 < ∞, where n7 > 0.
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hold. Then, equation (24) is Hyers-Ulam stable with Hyera-Ulam constant given as

K3 =
L
η

ϒ
−1
[

ϒ(1)+
λ 2

η
n2g
[

Ω
−1
(

Ω(1)+
λ 2

η
n6 f (T ∗3 )

)
T ∗3 ]]Ω

−1
(

Ω(1)+
λ 2

η
n6 f (T ∗3 )

)
T ∗3 ,

Proof. We proceed as in Theorem 4 by allowing H(t,u(t,)u′(t) = 0 in inequality (4) and using

the Theorem 1 there exists ξ ,ν ,δ ∈ [t0, t] such that

u′(δ )
∫ t

t0
(α(s)p(u(s))u′′(s))′ds+u′(ξ )

∫ t

t0
(γ(s) f (u(s))u′(s))′ds

+u′(ν)2
∫ t

t0
β (s)g(u(s))ds+

∫ t

t0
r(s)ρ(u(s))u′(s)ds≤ ε

∫ t

t0
u′(s)ds.

(26)

Integrating again (26) from t0 to t, using Lemma 2 and condition (i”) we obtain

u′(δ )
∫ t

t0
α(s)p(u(s))u′′(s)ds+u′(ξ )

∫ t

t0
γ(s) f (u(s))u′(s)ds

+u′(ν)2
∫ t

t0
β (s)g(u(s))ds+

∫ t

t0
r(s)

d
ds

Λ(u(s)))ds≤ ε

∫ t

t0
u′(s)ds, t ≥ 0.

(27)

Integrating by parts of the fourth term of (27), since r(t) a nondecreasing on R+, then r′(t)≥ 0

and using the fact that r(t)> 0 so r(t)≥ η where constant η > 0, we obtain

ηΦ(u(t))≤ ε

∫ t

t0
u′(s)ds−u′(δ )

∫ t

t0
α(s)p(u(s))u′′(s)ds

−u′(ξ )
∫ t

t0
(γ(s) f (u(s))u′(s)ds−u′(ν)2

∫ t

t0
β (s)g(u(s))ds, ∀t > 0.

Using conditions (ii), (iii) of Theorem 4, (iii’) of Theorem 5 and Theorem 1, there exists χ,ϕ ∈

[t0, t] such that

|u(t)| ≤ εL
η

+
λρ

η

∫ t

t0
α(s)p(|u(s)|)ds

+
λ 2

η

∫ t

t0
(γ(s) f (|u(s)|)ds+

λ 2

η

∫ t

t0
β (s)g(|u(s)|)ds, ∀t > 0.

(28)

As before, we apply the Theorem3 to (28) leads to

|u(t)| ≤ εL
η

ϒ
−1
[

ϒ(1)+
λ 2

η

∫ t

t0
β (s)g

[
Ω
−1
(

Ω(1)+
λ 2

η

∫ s

t0
γ(α) f (T3(α))dα

)
T3(s)]ds]Ω−1

(
Ω(1)+

λ 2

η

∫ t

t0
γ(s) f (T3(s))ds

)
T3(t),
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for

T3(t) = F−1
(

F(1)+
λ 2ρ

η

∫ t

t0
α(s)ds

)
.

Using conditions (iv) of Theorem 4 and (ii”), (iii”) of Theorem 6 , we arrive at

|u(t)| ≤ εL
η

ϒ
−1
[

ϒ(1)+
λ 2

η
n2g
[

Ω
−1
(

Ω(1)+
λ 2

η
n6 f (T ∗3 )

)
T ∗3 ]]Ω

−1
(

Ω(1)+
λ 2

η
n6 f (T ∗3 )

)
T ∗3 ,

and

T ∗3 (t) = F−1
(

F(1)+
λ 2ρ

η
n7

)
.

Hence,

|u(t)−u(t0)| ≤ |u(t)| ≤ K3ε,

where

K3 =
L
η

ϒ
−1
[

ϒ(1)+
λ 2

η
n2g
[

Ω
−1
(

Ω(1)+
λ 2

η
n6 f (T ∗3 )

)
T ∗3 ]]Ω

−1
(

Ω(1)+
λ 2

η
n6 f (T ∗3 )

)
T ∗3 ,

�

Theorem 7. Let the assumptions (ii)-(iv), conditions (i) of Theorem 4 and (ii’), (v’) of Theorem

5 hold. Then, the equation (25) has the Hyers-Ulam stability, if u(t) ∈C3(R+) is any solution

satisfying

|(P1(t,u(t),u′(t)u′′(t))′+np(t)P2(t,u(t),u′(t))u′(t)

+Q(t,u(t))| ≤ ε,
(29)

there exists a solution u0(t) ∈C3(R+) of equation (25) such that

|u(t)−u(t0)| ≤ |u(t)| ≤ K4ε,

where Hyers-Ulam constant of (25) is given as

K4 =
L
δ

Ω
−1
(

Ω(1)+
nλ 6

δ
n5ω

(
F−1

(
F(1)+

λb(λ )4ρ

δ
n4

)))
F−1

(
F(1)+

λb(λ )4ρ

δ
n4

)
.
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Proof. We evaluate and simplify the inequality (29) to get

−ε

∫ t

t0
u′(s)ds≤

∫ t

t0
(P1(s,u(s),u′(s))u′′)′u′(s)ds+

n
∫ t

t0
p(s)P2(s,u(s),u′(s))(u′(s))2ds+

∫ t

t0
Q(s,u(s))u′(s)ds≤ ε

∫ t

t0
u′(s)ds.

(30)

Using assumptions (i), (ii), (iii) and considering the right hand side of first inequality of (30) in

the form ∫ t

t0
(h(s)κ(u(s))b(u′(s))4u′′(s))′u′(s)ds+n

∫ t

t0
p(s)y(s)v(s)ω(u(s))(u′(s))6ds

+
∫ t

t0
ψ(s)σ(u(s))ds≤ ε

∫ t

t0
u′(s)ds.

(31)

Integrating inequality (31), as before, applying Lemma 2 and Theorem 1 there exists ξ ∈ [t0, t]

such that

u′(ξ )
∫ t

t0
h(s)κ(u(s))b(u′(s))4u′′(s)ds+n

∫ t

t0
p(s)y(s)v(s)ω(u(s))(u′(s))6ds

+
∫ t

t0
ψ(s)σ(u(s))ds≤ ε

∫ t

t0
u′(s)ds, t ≥ 0.

(32)

Now, we use condition (1’) of Theorem 6 on the third term of (32) and reapplying mean value

Theorem 1 for the integrals to the first and second terms to obtain∫ t

t0
ψ(s)

d
ds

Φ(u(s))ds≤ ε

∫ t

t0
u′(s)ds−u′(ξ )b(u′(τ))4u′′(τ)

∫ t

t0
h(s)κ(u(s))ds

−nu(µ)6
∫ t

t0
p(s)y(s)v(s)ω(u(s))ds, t > 0.

(33)

where t0 ≤ τ ≤ t and t0 ≤ µ ≤ t.

Integrating by parts the first term of (33), simplify further, since ψ(t) a nondecreasing, then

ψ ′(t)≥ 0 and ψ(t)> 0 there exists constant δ > 0 such that ψ ≥ δ and using conditions (i) of

Theorem 4, (ii’) of Theorem 6, we have

|u(t)| ≤ Lε

δ
+

λb(λ )4ρ

δ

∫ t

t0
h(s)κ(|u(s)|)ds+

nλ 6

δ

∫ t

t0
p(s)y(s)v(s)ω(|u(s|))ds, t > 0

As before, applying the Theorem 2 we obtain

|u(t)| ≤ Lε

δ
Ω
−1
(

Ω(1)+
nλ 6

δ

∫ t

t0
p(s)y(s)v(s)ω

(
F−1 (F(1)

+
λb(λ )4ρ

δ

∫ s

t0
h(α)dα

))
ds
)

F−1
(

F(1)+
λb(λ )4ρ

δ

∫ t

t0
h(s)ds

)
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and using the conditions (iv’), (v’) of Theorem 5 to have

|u(t)| ≤ Lε

δ
Ω
−1
(

Ω(1)+
nλ 6

δ
n5ω

(
F−1

(
F(1)+

λb(λ )4ρ

δ
n4

)))
F−1

(
F(1)+

λb(λ )4ρ

δ
k4

)
.

Hence,

|u(t)−u(t0)| ≤ |u(t)| ≤ K4ε,

for

K4 =
L
δ

Ω
−1
(

Ω(1)+
nλ 6

δ
n5ω

(
F−1

(
F(1)+

λb(λ )4ρ

δ
n4

)))
F−1

(
F(1)+

λb(λ )4ρ

δ
n4

)
.

�

Example 1. Consider the following equation(
1
t4 u4(t)(u′′(t)

)′
+

(
1
t4 u6(t)u′(t)

)′
+

1
t2 u2(t)(u′(t))+

1
t4 u2(t) =

1
t6 u2(t)(u′(t))8, t > 0,

where H(t,u(t),u′(t)) = 1
t6 u2(t)(u′(t))8, α(t) = 1

t4 , γ(t) = 1
t4 , β (t) = 1

t2 , r(t) = 1
t4 , φ(t) = 1

t6 .

By criteria of Theorem 4 and inequality (20) we have

|u(t)| ≤ Lε

σλ
ϒ
−1
[

ϒ(1)+
λ n

σ∫ t

t0

1
s6 ϖ

[
Ω
−1
(

Ω(1)+
1

σλ

∫ s

t0

1
α4 ρ (T (α))dα

)
T (s)

]
ds
]

Ω
−1
(

Ω(1)+
1

σλ

∫ t

t0

1
s4 ρ (T (s))ds

)
T (t)

where

T (t) = F−1
(

F(1)+
λ

σ

∫ t

t0

1
s2 ds

)
.

Further simplification by using the conditions (iii)- (v) of Theorem 4, we arrive at

|u(t)| ≤ Lε

σλ
ϒ
−1
[

ϒ(1)+
λ n

σ
n1ϖ

[
Ω
−1
(

Ω(1)+
1

σλ
n2ρ (T ∗)

)
T ∗
]]

Ω
−1
(

Ω(1)+
1

σλ
n2ρ (T ∗)

)
T ∗,
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where

T ∗ = F−1
(

F(1)+
λ

σ
n3

)
.

where

i
∫ t

t0

1
s6 ds≤ n1

ii
∫ t

t0

1
s6 ds≤ n2

iii
∫ t

t0

1
s2 ds≤ n3

Therefore, Hyers-Ulam constant is given as

K =
L

σλ
ϒ
−1
[

ϒ(1)+
λ n

σ
n1ϖ

[
Ω
−1
(

Ω(1)+
1

σλ
n2ρ (T ∗)

)
T ∗
]]

Ω
−1
(

Ω(1)+
1

σλ
n2ρ (T ∗)

)
T ∗,

Example 2. Consider the following equation(
1
t4 u4(t)(u′′(t)

)′
+n

1
t6 u6(t)u′(t)4

+ t4u2(t) =
1
t6 u2(t)(u′(t))8, t > 0,

where P1(t,u(t),u′(t)) =
1
t4 u4(t)(u′(t))2, P2(t,u(t),u′(t)) =

1
t6 u2(t)(u′(t))3, Q(t,u(t)) =

1
t4u2(t)

, H(t,u(t),u′(t)) =
1
t6 u2(t)(u′(t))8, h(t) =

1
t4 , y(t)p(t)v(t) =

1
t6 , ψ(t) =

1
t4 , φ(t) =

1
t6 .

By criteria of Theorem 5 and using (23) to obtain

|u(t)| ≤ Lε

ν
ϒ
−1
[

ϒ(1)+
λ n+1

ν

∫ t

t0

1
s6 ϖ

[
Ω
−1 (Ω(1)

+
nλ 6

ν

∫ s

t0

1
α6 ω (T (α))dα

)
T (s)

]
ds
]

Ω
−1
(

Ω(1)+
nλ 6

ν

∫ t

t0

1
s6 ω (T (s))ds

)
T (t),

where

T (t) = F−1
(

F(1)+
λb(λ 4)ρ

ν

∫ t

t0

1
s4 ds

)
.

Then, we obtain

|u(t)| ≤ Lε

ν
ϒ
−1
[

ϒ(1)+
λ n+1

ν
n1ϖ

[
Ω
−1
(

Ω(1)+
nλ 6

ν
n4ω (T ∗2 )

)
T ∗2

]]
Ω
−1
(

Ω(1)+
nλ 6

ν
n4ω (T ∗2 )

)
T ∗2 ,
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where

T ∗2 = F−1
(

F(1)+
λb(λ 4)ρ

ν
n5

)
.

The limits are taking as:

i
∫ t

t0

1
s6 ds≤ n1

ii
∫ t

t0

1
s6 ds≤ n4

iii
∫ t

t0

1
s4 ds≤ n5

The Hyers-Ulam constant is given as

K =
L
ν

ϒ
−1
[

ϒ(1)+
λ n+1

ν
n1ϖ

[
Ω
−1
(

Ω(1)+
nλ 6

ν
n4ω (T ∗2 )

)
T ∗2

]]
Ω
−1
(

Ω(1)+
nλ 6

ν
n4ω (T ∗2 )

)
T ∗2 ,

4. CONCLUSION

In this work, Hyers-Ulam stability criteria of third order nonlinear differential equations with

nonlinear damping which is very prominent in finding the stability of some problems such as

hereditary, the surge in birth-rates, spreading of certain contagious diseases and so on. These

problems appear directly in terms of integral equations and in terms of differential equations

with certain criteria which can be reduced to integral equations whereby Gronwall-Bellman-

Bihari type inequality is useful to determine the stability.
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