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Abstract. In this paper, we prove a fixed point like theorem for a generalized nonexpansive mapping in q-

spherically complete T0-ultra-quasi-metric spaces.
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1. Introduction

In [1], Agyingi proved that every generalized contractive mapping defined in a q-spherically

complete T0-ultra-quasi-metric space has a unique fixed point. This work is based on a previous

result established by Petalas et al. in [3] where it was proved that every contractive mapping on

a spherically complete non-Archimedian normed space has a unique fixed point. This existence

result, as observed by Petalas et al., fails when the map in nonexpansive. In this paper, we

shall prove a fixed point like theorem for a generalized nonexpansive mapping in q-spherically

complete T0-ultra-quasi-metric space. The concept of q-spherically completeness has been in-

troduced by Isbell and studied for T0-ultra-quasi-metric spaces by Künzi and Otafudu in [3].
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2. Preliminaries

In this section, we recall some elementary definitions from the asymmetric topology which

are necessary for a good understanding of the work below.

Definition 2.1. Let X be a non empty set. A function d : X ×X → [0,∞) is called an quasi-

pseudometric on X if:

i) d(x,x) = 0 ∀ x ∈ X , and

ii) d(x,z)≤ d(x,y)+d(y,z) ∀x,y,z ∈ X .

Moreover, if d(x,y) = 0 = d(y,x) =⇒ x = y, then d is said to be a T0-quasi-pseudometric. The

latter condition is referred as the T0 condition.

Definition 2.2. (Compare[2]) Let (X ,d) be a quasi-pseudometric space. We say that X is an

ultra-quasi-pseudometric space if d satifies the strong triangular inequality

d(x,z)≤max{d(x,y),d(y,z)} ∀x,y,z ∈ X .

Moreover, if d satisfies the T0 condition, then X is said to be a T0-ultra-quasi-pseudometric

space.

Remark 2.1.

• Since the strong triangular inequality implies the classical triangular inequality, in the

definition on ultra-quasi-pseudometric, we don’t really need a quasi-pseudometric s-

pace. Hence an equivalent definition is:

d is an ultra-quasi-pseudometric ⇐⇒


d(x,x) = 0 ∀ x ∈ X ,

d(x,z)≤max{d(x,y),d(y,z)}

∀x,y,z ∈ X .

• Let d be an ultra-quasi-pseudometric on X , then the map d−1 defined by d−1(x,y) =

d(y,x) whenever x,y ∈ X is also a an ultra-quasi-pseudometric on X , called the conju-

gate of d.
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• It is easy to verify that the function ds defined by ds(x,y) = max{d(x,y),d(y,x)}, i.e.

ds := d ∨ d−1 defines an ultra metric on X whenever d is a T0-ultra-quasi- pseudo-

metric.

Definition 2.3. (Compare[1]) A map f : X → X where (X ,d) is an (ultra-)quasi-pseudometric

space is called is called nonexpansive if

d( f (x), f (y))≤ d(x,y),

whenever x,y ∈ X .

Definition 2.4. (Compare[1]) A map f : X → X where (X ,d) is an (ultra-)quasi-pseudometric

space is called generalized nonexpansive if for each x,y ∈ X with d(x,y)> 0, we have that

d( f (x), f (y))≤max{d(x,y),d( f (x),x),d(y, f (y))}.

3. q-Spherically Complete Spaces

In this section, we recall some results about q-spherical completeness, which we take from

[1].

Let (X ,d) be an ultra-quasi-pseudometric space. For x ∈ X and ε ≥ 0,

Cd(x,ε) = {y ∈ X : d(x,y)≤ ε}

denotes the closed ε-ball at x.

Definition 3.1. (Compare[1]) Let (X ,d) be an ultra-quasi-pseudometric space. Let (xi)i∈I be a

family of points of X and let (ri)i∈I and (si)i∈I be families of non-negative real numbers. We say

that the family (Cd(xi,ri),Cd−1(xi,si))i∈I has the mixed binary intersection property provided

that

d(xi,x j)max{ri,s j},

for all i, j ∈ I.



4 COLLINS AMBURO AGYINGI∗, YAÉ ULRICH GABA

Definition 3.2. Let (X ,d) be an ultra-quasi-pseudometric space. We say that (X ,d) is q-

spherically complete provided that each family (Cd(xi,ri),Cd−1(xi,si))i∈I that has the mixed

binary intersection property is such that

∩
i∈I
(Cd(xi,ri)∩Cd−1(xi,si)) 6= /0.

Examples of such spaces can be found in [2].

Proposition 3.1. [[1]] Let (X ,d) be an ultra-quasi-pseudometric space. Then (X ,d) is q-

spherically complete if and only if (X ,d−1) is q-spherically complete.

Proposition 3.2. [[1]] Let (X ,d) be an T0-ultra-quasi-pseudometric space. If (X ,d) is q-

spherically complete, then (X ,d) is spherically complete.

4. Main results

The terminology fixed point like comes from the fact that for nonexpansive maps, the exis-

tence of fixed point is not guaranteed. Nevertheless, such maps leave invariant a specific ball,

say B. In other words if T : X → X is a nonexpansive map on X , then there exists a ball B such

that T (B) = B.

Theorem 4.1. Suppose (X ,d) is q-spherically complete T0-ultra-quasi-pseudometric space and

T : X → X is a nonexpansive map. Then either T has at least one fixed point or there exists a

closed ball B radius r such that T : B→ B. Moreover, d(a,Ta) = d(Ta,a) = r for each a ∈ B .

Proof. Let a ∈ X . Let us denote by

Ca
d =Cd(a,d(Ta,a)) and Ca

d−1 =Cd−1(a,d(a,Ta)),

with d(Ta,a) = d(a,Ta). Set

Ca =Ca
d ∩Ca

d−1

and A := {Ca,a ∈ X}. Define the relation Ca 4Cb on A by

Ca 4Cb if and only if Cb ⊆Ca.
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Then (A ,4) is a partially ordered set. With this relation and the Zorn’s lemma, Agyingi [1]

proved that A has a maximal element Cz.

Consider now such maximal element Cz. For any b ∈Cz, we have

d(b,T b)≤max{d(b,z),d(z,T z),d(T z,T b)}= d(z,T z),

and

d(T b,b)≤max{d(T b,z),d(z,T z),d(T z,b)}= d(T z,z).

Therefore, we conclude that for any h ∈ Cb, d(z,h) ≤ d(z,T z) and d(h,z) ≤ d(T z,z), which

entails that Cb ⊆Cz and then T b ∈Cz.

Now, if we assume that d(b,T b)< d(z,T z) then

d(b,z) = d(z,T z)> d(b,T b).

This implies that z ∈Cz
d but z /∈Cb

d , which is impossible from the maximality of Cz. Thus

d(b,T b) = d(z,T z) =: r for any b ∈Cz.

Similarly, if we assume that d(T b,b)< d(T z,z) then

d(z,b) = d(T z,z)> d(T b,b).

This implies that z ∈Cz
d−1 but z /∈Cb

d−1 , which is impossible from the maximality of Cz. Thus

d(T b,b) = d(T z,z) for any b ∈Cz.

Hence

d(b,T b) = d(z,T z) = d(T z,z) = d(T b,b) = r for any b ∈Cz.

This completes the proof.
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