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Abstract. We study the existence positive periodic solutions to second order differential equations with singular

nonlinear perturbations. It is proved that such a problem has at least one positive solutions under reasonable

conditions. The proof of the main result relies on a nonlinear alternative principle of Leray-Schauder, together

with a truncation technique.

Keywords: positive solution; singular equation; Leray-Schauder alternative principle.

2010 AMS Subject Classification: 34B15, 34B16, 34D20.

1. Introduction

The main aim of this paper is to present some recent existence results for the positive T−periodic

solutions of second order differential equation

−[p(x)y′]′+q(x)y = f (x,y)+ e(x), 0≤ x≤ T,(1)
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and boundary conditions

y(0) = y(T ), y[1](0) = y[1](T ),(2)

where y = y(x) is a desired solution, and

y[1](x) = p(x)y′(x)

denote the quasi-derivative of y(x), we call the periodic boundary conditions which are impor-

tant representatives of nonseparated boundary conditions. The nonlinearity f ∈ C((R/TZ)×

(0,∞),R). We are mainly interested in the case that f (x,y) has a repulsive singularity at y = 0,

which means that

lim
y→0+

f (x,y) = +∞, uniformly in x.

And we will assume that the coefficients p(x) and q(x) of Eq. (1) are real-valued measurable

functions defined on [0,T ] and satisfy the following condition (H):

(H) p(x)> 0,q(x)> 0,
∫ T

0
1

p(x)dx < ∞,
∫ T

0 q(x)dx < ∞.

It is well know that second order singular differential equations describe many problems in

the applied sciences, such as the Brillouin focusing system and nonlinear elasticity. Therefore,

during the last few decades, the study of the existence of periodic solutions for singular dif-

ferential equations have deserved the attention of many researchers [2, 6, 7, 8, 12, 14, 18, 20].

Recently, it has been found that a particular case of (1), the singular Ermakov-Pinney equation

plays an important role in studying the Lyapunov stability of periodic solutions of Lagrangian

equations [19, 20].

In the literature, two differential approaches have been used to establish the existence results

for singular equations. The first is the variational approach, and the second one is topological

methods, including the degree theory [18, 19, 20], the method of upper and lower solutions

[1, 12], Schauder’s fixed point theorem [7, 13, 5], some fixed point theorems in cones for com-

pletely continuous operators [4, 15, 16] and a nonlinear Leray-Schauder alternative principle

[9, 10, 17].
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The Green function G(x,s) associated with (1) and (2) is positive, it has been proved in [3]

with e(x) ≡ 0 has at least one positive periodic solution when f (x,y) has a repulsive singu-

larity near y = 0 and f (x,y) is superlinear near y = +∞. The proof given in [3] is based on

Krasnoselskii fixed point theorem on compression and expansion of cones.

In this paper, we establish the existence of positive periodic solutions to Eq.(1) through a

basic application of nonlinear alternative principle of Leray-Schauder, generalizing in several

aspects some results in [9, 10]. Our main motivation is to obtain new existence results for

positive periodic solutions of the equation

−[p(x)y′]′+q(x)y =
b(x)
yα

+µc(x)yβ + e(x),(3)

with b,c,e ∈C[0,T ], α,β > 0 and µ ∈ R a given parameter.

The rest of this paper is organized as follows. In Section 2, some preliminary results will be

given. In Section 3, we will state and prove the main results.

2. Preliminaries

Let us denote u(t) and v(t) by the solutions of the following homogeneous equations

−[p(x)y′]′+q(x)y = 0, 0≤ x≤ T,

satisfying the initial conditions

u(0) = 1,u[1](0) = 0,v(0) = 0,v[1](0) = 1,

and set

D = u(T )+ v[1](T )−2.(4)

Lemma 2.1[3] For the solution y(x) of the boundary value problem −[p(x)y′]′+q(x)y = h(x), 0≤ x≤ T,

y(0) = y(T ), y[1](0) = y[1](T ),
(5)

the formula

y(x) =
∫ T

0
G(x,s)h(s)ds, x ∈ [0,T ],
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hold, where

G(x,s) =
v(T )

D
u(x)u(s)− u[1](T )

D
v(x)v(s)

+


v[1](T )−1

D u(x)v(s)− u(T )−1
D u(s)v(x), 0≤ s≤ x≤ T,

v[1](T )−1
D u(s)v(x)− u(T )−1

D u(x)v(s), 0≤ x≤ s≤ T,

is the Green function, the number D is defined by (4).

Lemma 2.2 [3] Under condition (H), the Green’s function G(x,s) of the boundary value prob-

lem (5) is positive, i.e., G(x,s)> 0 for x,s ∈ [0,T ].

In other words, the anti-maximum principle holds. Under this assumption, let us defined the

function

γ(x) =
∫ T

0
G(x,s)e(s)ds,

which is the unique T−periodic solution of the linear equation

−[p(x)y′]′+q(x)y = e(x).

We denote

A = min
0≤s,x≤T

G(x,s), B = max
0≤s,x≤T

G(x,s), σ = A/B.(6)

Thus B > A > 0 and 0 < σ < 1.

Remark 2.3 The existence results are based on the positivity of G(x,s), which plays a very im-

portant role in employing nonlinear alternative principle of Leray-Schauder. If p(x) = 1,q(x) =

m2 > 0, then the Green’s function G(x,s) of the boundary value problem (5) has the form

G(x,s) =


em(x−s)+em(T−x+s)

2m(emT−1) , 0≤ s≤ x≤ T,

em(s−x)+em(T+x−s)

2m(emT−1) , 0≤ x≤ s≤ T.

It is obvious that G(x,s)> 0 for 0≤ s,x≤ T , and a direct calculation shows that

A =
emT/2

m(emT −1)
,B =

1+ emT

2m(emT −1)
,σ =

2emT/2

1+ emT < 1.

Let X =C[0,T ], we suppose that f : [0,T ]×R→ [0,∞) is a continuous function. Define an

operator:

(Ty)(x) =
∫ T

0
G(x,s) f (s,y(s))ds
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for y ∈ X and x ∈ [0,T ].

Lemma 2.4 T is well defined.

Proof. We only need to show that T (X)⊂ X . Let y ∈ X , then we have

min
0≤x≤T

(Ty)(x) = min
0≤x≤T

∫ T

0
G(x,s) f (s,y(s))ds

≥ A
∫ T

0
f (s,y(s))ds

≥ σ max
0≤x≤T

∫ T

0
G(x,s) f (s,y(s))ds

= σ‖Ty‖.

This implies that T (X)⊂ X and the proof is completed.

3. Main results

In this section, we state and prove the new existence results for (1). In order to prove our

main results, the following nonlinear alternative of Leray-Schauder is need, which can be found

in [11]. Let us define the function ω(x) =
∫ T

0 G(x,s)ds and use ‖·‖1 denote the usual L1− norm

over (0,T ), by ‖ ·‖ the supremum norm of C[0,T ]. For a given function a ∈ L1[0,T ] essentially

bounded, we denote the essential supremum and infimum of a by a∗ and a∗, respectively.

Lemma 3.1 Assume Ω is a relatively compact subset of a convex set E in a normed space X .

Let T : Ω→ E be a compact map with 0 ∈Ω. Then one of the following two conclusions holds:

(i) T has at least one fixed point in Ω.

(ii) There exist u ∈ ∂Ω and 0 < λ < 1 such that u = λTu.

Now we present our main existence result of positive solution to problem (1).

Theorem 3.2 Suppose that (1) satisfies (H) and f (x,y) satisfies the following.

(H1) There exists constants σ > 0 and ν ≥ 1 such that

f (x,y)≥ σx−ν for all x ∈ [0,T ].

(H2) There exist continuous, non-negative functions g(y), h(y) such that

f (x,y)≤ g(y)+h(y), for all (x,y) ∈ [0,T ]× (0,∞],
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where g(y)> 0 is non-increasing, h(y)/g(y) is non-decreasing in y ∈ (0,∞).

(H3) There exists a positive number r such that σr+ γ∗ > 0, and

r

g(σr+ γ∗)
{

1+ h(r+γ∗)
g(r+γ∗)

} > ‖ω‖.

Then for each e ∈C(R/TZ,R), (1) has at least one positive T -periodic solution y with y(x) >

γ(x) for all x and 0 < ‖y− γ‖ ≤ r.

Proof. Since (H3) holds, let N0 = {n0,n0 + 1, · · ·}, we can choose n0 ∈ {1,2, · · ·} such that
1
n0

< σr+ γ∗ and

‖ω‖g(σr+ γ∗)

{
1+

h(r+ γ∗)

g(r+ γ∗)

}
+

1
n0

< r.

To show (1) has a positive solution, we should only show that

(7) −[p(x)y′]′+q(x)y = f (x,y(x)+ γ(x)),

has a positive solution y satisfying (2). If it is right, then k(x) = y(x)+ γ(x) is a solution of (1)

since

−[p(x)k′]′+q(x)k = −[p(x)(y(x)+ γ(x))′]′+q(x)(y(x)+ γ(x))

= f (x,k(x))+ e(x).

Consider the family of equations

(8) −[p(x)y′]′+q(x)y = λ fn(x,y(x)+ γ(x))+
q(x)

n
,

where λ ∈ [0,1], n ∈ N0 and

fn(x,y) =

 f (x,y) if y≥ 1/n,

f (x,1/n) if y≤ 1/n.

Problem (8)-(2) is equivalent to the following fixed point of the operator equation

y = Tny(9)

where Tn is a continuous and completely continuous operator defined by

Tny(x) = λ

∫ T

0
G(x,s) fn(s,y(s)+ γ(x))ds+

1
n
,
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and we used the fact ∫ T

0
G(x,s)q(s)ds≡ 1. (see Lemma 2.1 with h = q)

Now we show ‖y‖ 6= r for any fixed point y of (9). If not, assume that y is a fixed point of (9)

such that ‖y‖= r. Note that

y(x)− 1
n
= λ

∫ T

0
G(x,s) fn(s,y(s)+ γ(s))ds

≥ λA
∫ T

0
fn(s,y(s)+ γ(s))ds

= σBλ

∫ T

0
fn(s,y(s)+ γ(s))ds

≥ σ max
x∈[0,T ]

{
λ

∫ T

0
G(x,s) fn(s,y(s)+ γ(s))ds

}
= σ‖y− 1

n
‖.

By the choice of n0,
1
n ≤

1
n0

< σr+ γ∗. Hence, we have

y(x)≥ σ‖y− 1
n
‖+ 1

n
≥ σ(‖y‖− 1

n
)+

1
n
≥ σr, for 0≤ x≤ T.(10)

Therefore,

y(x)+ γ(x)≥ σr+ γ∗ ≥
1
n
.

Thus from condition (H2) , for all x ∈ [0,T ],

y(x) = λ

∫ T

0
G(x,s) fn(s,y(s)+ γ(s))ds+

1
n

= λ

∫ T

0
G(x,s) f (s,y(s)+ γ(s))ds+

1
n

≤
∫ T

0
G(x,s) f (s,y(s)+ γ(s))ds+

1
n

≤
∫ T

0
G(x,s)g(y(s)+ γ(s))

{
1+

h(y(s)+ γ(s))
g(y(s)+ γ(s))

}
+

1
n

≤ g(σr+ γ∗))

{
1+

h(r+ γ∗)

g(r+ γ∗)

}∫ T

0
G(x,s)ds+

1
n

≤ g(σr+ γ∗))

{
1+

h(r+ γ∗)

g(r+ γ∗)

}
‖ω‖+ 1

n0
.
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Therefore,

r = ‖y‖ ≤ g(σr+ γ∗)

{
1+

h(r+ γ∗)

g(r+ γ∗)

}
‖ω‖+ 1

n0
.

This is a contradiction, so ‖y‖ 6= r.

Using Lemma 3.1, the Leray-Schauder alternative principle guarantees that

y = Tny

has a fixed point, denoted by yn, i.e., equation

−[p(x)y′]′+q(x)y = fn(x,y(x)+ γ(x))+
q(x)

n
,(11)

has a periodic solution yn with ‖yn‖< r.

In order to pass the solutions of the truncation equation (11) to that of the original equation

(7), we need the fact ‖y′n‖ is bounded. Now we show that

‖y′n‖ ≤ L1r

for a solution y(x) of equation (11).

Integrating (11) from 0 to T , we obtain∫ T

0
q(x)yn(x)dx =

∫ T

0

[
fn(x,yn(x)+ γ(x))+

q(x)
n

]
dx.

Since yn(0) = yn(T ), there exists x0 ∈ [0,T ] such that y′n(x0) = 0, therefore∣∣p(x)y′n(x)∣∣ = ∣∣∣∣∫ x

x0

(p(s)y′n(s))
′ds
∣∣∣∣

=

∣∣∣∣∫ x

x0

[
q(s)y(s)− fn(s,yn(s)+ γ(s))− q(s)

n

]
ds
∣∣∣∣

≤
∫ T

0

[
q(s)y(s)+ fn(s,yn(s)+ γ(s))+

q(s)
n

]
ds

= 2
∫ T

0
q(s)yn(s)ds

≤ 2r
∫ T

0
q(s)ds.

So,

|y′n(x)| ≤
2r
∫ T

0 q(s)ds
p(x)

≤ 2r‖q‖1

min
0≤x≤T

p(x)
:= L1r.
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In the next lemma, we will show that yn(x)+ γ(x) have a uniform positive lower bound, i.e.,

there exists a constant δ > 0, independent of n ∈ N0, such that

(12) yn(x)+ γ(x)≥ δ

for all n ∈ N0.

The fact ‖yn‖ < r and ‖y′n‖ ≤ L1r show that {yn}n∈N0 is a bounded and equi-continuous

family on [0,T ]. Thus the Arzela–Ascoli Theorem guarantees that {yn}n∈N0 has a subsequence,

{yni}i∈N converging uniformly on [0,T ] to a function y ∈ X . Moreover, yni satisfies the integral

equation

yni(x) =
∫ T

0
G(x,s) f (s,yni(s)+ γ(s))ds+

1
ni
.

Letting i→ ∞, we arrive at

y(x) =
∫ T

0
G(x,s) f (s,y(s)+ γ(s))ds,

where the uniform continuity of f (x,y) on [0,T ]× [δ ,r+γ∗]. Therefore, y is a positive periodic

solution of (1).

Lemma 3.3 There exist a constant δ > 0 such that any solution yn of (11) satisfies (12) for all n

large enough.

Proof. By condition (H3), there exists R1 ∈ (0,R0) and a continuous function g̃0 such that

f (x,y)−q(x)y≥ σR−ν

1 ≥max{q∗(r+ γ
∗),r‖q‖}(13)

for all (x,y) ∈ [0,T ]× (0,R1].

Choose n1 ∈ N0 such that 1/n1 ≤ R1 and let N1 = {n1,n1 +1, . . .}. For n ∈ N1, let

αn = min
0≤x≤T

[yn(x)+ γ(x)] and βn = max
0≤x≤T

[yn(x)+ γ(x)].

We first show that βn > R1 for all n ∈ N1. If not, suppose that βn ≤ R1 for some n ∈ N1. Then

from (13), it is easy to verify

fn(x,yn(x)+ γ(x))> r‖q‖,
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Integrating (11) from 0 to T , we deduce that

0 =
∫ T

0

(
−[p(x)y′n(x)]′+q(x)yn(x)− fn(x,yn(x)+ γ(x))− q(x)

n

)
dx

=
∫ T

0
q(x)yn(x)dx−1/n

∫ T

0
q(x)dx−

∫ T

0
fn(x,yn(x)+ γ(x))dx

<
∫ T

0
q(x)yn(x)dx− r‖q‖T ≤ 0.

This is a contradiction. Thus βn > R1.

To prove (12), we first show

yn(x)+ γ(x)≥ 1
n
, 0≤ x≤ T for n ∈ N1.(14)

Let N1 = P∪Q; here αn ≥ R1 if n ∈ P, and αn < R1 if n ∈Q. If n ∈ P, it is easy to verify (14)

is satisfied. We now show (14) holds if n ∈ Q. If not, suppose there exists n ∈ Q with

αn = min
0≤x≤T

[yn(x)+ γ(x)] = yn(cn)+ γ(cn)<
1
n
.

for some cn ∈ [0,T ]. As αn = yn(cn)+ γ(cn)< R1, by βn > R1, there exists cn ∈ [0,T ] (without

loss of generality, we assume an < cn) such that yn(an)+ γ(an) = R1 and yn(x)+ γ(x)≤ R1 for

an ≤ x≤ cn.

From (13), we easily show that

fn(x,y(x)+ γ(x))> q(x)(yn(x)+ γ(x))+ e(x) for x ∈ [an,cn].

Using Eq.(11) for yn(x), we have, for x ∈ [an,cn],[
−p(x)(y′n(x)+ γ

′(x))
]′

= −
[
p(x)y′n(x)]

′− [p(x)γ ′(x)
]′

= −q(x)yn(x)+ fn(x,yn(x)+ γ(x))+q(x)/n+ e(x)

> q(x)/n≥ 0.

As y′n(cn)+ γ ′(cn) = 0, p(x) > 0, so y′n(x)+ γ ′(x) < 0 for all x ∈ [an,cn) and the function

νn := yn + γ is strictly decreasing on [an,cn]. We use ηn to denote the inverse function of yn

restricted to [an,cn]. Thus there exists bn ∈ (an,cn) such that yn(bn)+ γ(bn) =
1
n and

yn(x)+ γ(x)≤ 1
n

for cn ≥ x≥ bn,
1
n
≤ yn(x)+ γ(x)≤ R1 for bn ≥ x≥ an.
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By using the method of substitution we obtain∫ R1

1/n
f (ηn(ν),ν)dν =

∫ an

bn

f (x,yn(x)+ γ(x))(y′n(x)+ γ
′(x))dx

=
∫ an

bn

fn(x,yn(x)+ γ(x))(y′n(x)+ γ
′(x))dx

=
∫ an

bn

(−[p(x)(y′n(x))]′+q(x)y′n(x)−q(x)/n)(y′n(x)+ γ
′(x))dx

=
∫ an

bn

(−[p(x)(y′n(x))]′(x)(y′n(x)+ γ
′(x))dx+

∫ an

bn

(q(x)yn(x)−q(x)/n)(y′n(x)+ γ
′(x))dx.

By the facts ‖yn‖ < r, ‖y′n‖ are bounded, one can easily obtain that the right side of the above

equality is bounded. As a consequence, there exists L > 0 such that∫ R1

1/n
f (ηn(y),y)dy≤ L.

On the other hand, by (H1), we can choose n2 ∈ N1 large enough such that∫ R1

1/n
f (ηn(y),y)dy≥ σ

∫ R1

1/n
y−νdy > L

for all n ∈ N2 = {n2,n2 +1, . . .}. This is a contradiction. So (14) hold.

Finally, we will show that (12) is right in n ∈ Q. Notice that estimate (14) and employ the

method of substitution, we obtain∫ R1

αn

f (ηn(y),y)dy =
∫ an

cn

f (x,yn(x)+ γ(x))(y′n(x)+ γ
′(x))dx

=
∫ an

cn

fn(x,yn(x)+ γ(x))(y′n(x)+ γ
′(x))dx

=
∫ an

cn

(−[p(x)y′n(x)]′+q(x)yn(x)−q(x)/n)(y′n(x)+ γ
′(x))dx.

Obviously, the right-hand side of the above equality is bounded. On the other hand, by (H1),∫ R1

αn

f (ηn(y),y)dy≥ σ

∫ R1

αn

y−νdy→+∞

if αn→ 0+. Thus we know that αn ≥ δ for some constant δ > 0, the proof is completed.

Corollary 3.4 Assume that there exist continuous functions d, d̂ and λ > 0 such that

0≤ d̂(x)
yλ
≤ f (x,y)≤ d(x)

yλ
for ally > 0andx ∈ [0,T ].

Then problem (1) has at least one positive solution.
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Proof. We will apply Theorem 3.1, (H1) and (H2) are satisfied if we take

h(y) = 0, g(y) = d(x)y−λ .

The existence condition (H3) become

r(σr+ γ∗)
λ > sup

0≤x≤T

∫ 1

0
G(x,s)d(s)ds(15)

for some r > 0. Since λ > 0 and y(x) > 0, we can choose r > 0 large enough such that (15) is

satisfied.

Corollary 3.5 Let the nonlinearity in (1) be

f (x,y) = b(x)y−α +µc(x)yβ , 0≤ x≤ T,

where α > 0,β ≥ 0,b(x),c(x) ∈C[0,T ] are non-negative functions and b(x) > 0 for all x, and

µ is a positive parameter. Then

(i) if β < 1, then (3) has at least one positive solution for each µ > 0,

(ii) if β ≥ 1, then (3) has at least one positive solution for each 0 < µ < µ1, where µ1 is some

positive constant.

Proof. We will apply Theorem 3.1. If we take

g(y) = b0y−α , h(y) = µc0yβ ,

where

b0 = max
0≤x≤T

b(x)> 0, c0 = max
0≤x≤T

c(x)> 0,

then (H2) is satisfied.

Now the existence condition (H3) become

u <
r(σr+ γ∗)

α −‖w‖b0

‖w‖c0(r+ γ∗)α+β
.

for some r > 0, so (3) has at least one positive periodic solution for

0 < µ < µ1 := sup
r>0

r(σr+ γ∗)
α −‖w‖b0

‖w‖c0(r+ γ∗)α+β
.

Note that µ1 = ∞ if β < 1 and µ1 < ∞ if β ≥ 1. We have the desired results.
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