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Abstract. In this paper, we consider a diffusive predator-prey model with predator cannibalism. Using
the energy estimates and Gagliardo-Nirenberg-type inequalities, the existence and uniform boundedness
of global solutions for the model are proved. Meanwhile, the sufficient conditions for global asymptotic

stability of the positive equilibrium for this model are given by constructing a Lyapunov function.
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1. Introduction

Cannibalism is a ubiquitous biological phenomenon, particularly important among
many arthropod and fish species [9]. In a survey article on evolution and intraspecific pre-
dation, Polis demonstrated that cannibalism is an interesting and important mechanism
in population dynamics [18]. Cushing listed three dynamic phenomena duo to canni-
balism: (1) Stabilizing self-regulation of the cannibalistic population; (2) survival of the
population in circumstances in which absence of cannibalism would result in extinction;

(3) cannibalism can be the source of multiple steady states and consequently of hysteresis
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effects [5]. In 2009, Sun, Zhang and Jin in [24] considered the following reaction diffusion

equation with predator cannibalism

Uy — Dy, Ay = rug (1 — 4 — 2w

k 14+ahuq’ (
1.1)
. _ baujugs ___aug
Uzt Du2 Auy = 1+ahuy CUz 1+ahuy’

where a,b,e, h,k,r and D,, (i = 1,2) are positive constants, u;(xz,t),us(x,t) denote the
density of prey and predator species; r, k are the intrinsic growth rates and environment
capacity, respectively. b is transform factor from prey to predator, h denotes handling
time, e is death rate of the predator. D,, and D,, are called diffusion coefficients, au3/(1+
ahuy) is the rate of intra-specific competition of the predator. For more details on the
backgrounds about this system, one can see [24].

Rescaling the system (1.1) such that

u > ahuy, v (a/T)ug, t— tr, L b/(hr), m — ahk, s+ d/r, di — D, /(ahr), dy—

Dy, /a yield

up = diAu+u(l — 1) — 5, xeN, t>0,
vt:dgAijl“”—sv—i, reQ, t>0,

. b e (1.2)
Opu = 0,v =0, r eI, t>0,

u(z,0) = up(x), v(z,0) = v(x), x €,
\
where Q C R” is a bounded smooth domain, n is the outward unit normal vector of the
boundary 92, 9,, = 9/0n. The functions ug(z) and vg(x) are nonnegative which are not

identically zero.

The system (1.2) has a positive equilibrium E* = (u*,v*) if and only if
m(l —s) > s, (1.3)

where

., ms—Il+1)—1+ym*(l—s—12+2m(l+s+1)+1
u =
2 Y

*

V= (L)1 ).
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In [24], Turning pattern was proved under different assumptions by numerical simula-
tion.
In recent years, the SKT type cross-diffusion systems have attracted the attention of
a great number of investigators and have been successfully developed on the theoretical
backgrounds. The above work mainly concentrates on: (1) The instability and stability
induced by cross-diffusion, and the existence of nonconstant positive steady-state solutions
[13, 19, 23]; (2) the global existence of strong solutions [7, 8, 10, 14, 15, 16, 25, 27];
(3) the global existence of weak solutions based on semi-discretization or finite element
approximation [4, 6, 11, 12]; and (4) the dynamical behaviors [14, 15], etc.
We are concerned with the following predator-prey model with predator cannibalism

with full cross-diffusion
(

u; = A(dyu + a1u? + appuv) + u(l — L) — Tt xreQ, t>0,

v; = Adyv + ao1uv + aopv?) + ﬁ—z — SV — 11—2, xreQ, t>0, (1.4)

Opu = Opv = 0, x €N, t>0, |
ku(x,()) = up(z), v(z,0) = vy(z), x €,

where  is a bounded domain in RY with smooth boundary 9%, n is the outward unit
normal vector of the boundary 0€2. The initial data ug and vy are continuous nonnegative
functions which are not identically zero. The homogeneous Neumann boundary condition
indicates that the system is self-contained with zero population flux across the boundary.
The parameters dy,ds are the diffusion rates, ay; (i = 1,2) are referred as self-diffusion
pressures, and «a;; (1,7 = 1,2, i # j) are cross-diffusion pressures. For more details on
the backgrounds about self-diffusion and cross-diffusion, one can see [10].

The local existence of solutions for the system (1.4) is an immediate consequence of a
series of important papers [1, 2, 3] by Amann. Roughly speaking, if ug(x) and vo(z) in
W (€) with p > n, then (1.4) has a unique nonnegative solution u, v € C'([0,T), W} (€2)) N
C>((0,T),C>=(Q)), where T € (0, 00| is the maximal existence time for the solution. If

the solution (u,v) satisfies the estimate

sup {“u(',t)HWpl(Q), ||U(',t)||Wpl(Q) 0<t< T} < 00,



4 YUJUAN JIAO
then 7' = +o0. Moreover, if ug(z), vo(z) € W2(RQ), then u,v € C([0,00), W2(Q)).
For the following SKT system

(

ur = diA[(1 4+ av +yu)u] +au(l —u—cv), €, t>0,

v = doA[(1 4 6v)v] 4+ bv(1l — du — v), reN, t>0, (P)
Opu = 0,v =0, red, t>0,

\u(x,O) = up(z), v(z,0) = vy(z), x €.

Yamada in [27] proposed four open problems:

(1) The global existence of solutions of (P) in the case § > 0 and the space dimension
N > 6;

(2) the global existence in the case v = 0;

(3) in order to study the asymptotic behavior of u,v as t — oo, need to establish the
uniform boundedness of global solutions; and

(4) the global existence of solutions for the following full SKT system

(

u = diA[(1 4+ av + yu)u] + au(l — u — cv), reQ, t>0,
v = doA[(1 4 Bu + 6v)v] 4+ bv(1 — du — v), reN, t>0,

Opt = 0pv =0, red, t>0,

U(JZ,O) = U0<$>, ’U(JI,O) = ’(J()(LL’), T € ()
\
with a, v, 8, 6 > 0.

Very few global existence results for (1.4) are known. The main purpose of this paper

is to establish the uniform boundedness of global solutions for the system (1.4) in one

space dimension. For convenience, we consider the following system

.

up = (dyu + a1 u? + apun) g +u(l — %) — e, 0<a <1, t>0,

vt:(dgv+a21uv+aggv2)m+m—”—sv—i O<x<l1, t>0, (15)
1.5

uz(x,t) = vg(x,t) =0, x=0,1, t >0,

\u(w,O) = up(z), v(z,0) = vo(x), 0<x<l.
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We firstly investigate the global existence and the uniform boundedness of the solutions
for (1.5), then prove the global asymptotic stability of the positive equilibrium (u*, v*) of
(1.5) by an important lemma from [26]. The proof is complete and complement to the
uniform convergence theorems in papers [20, 21, 22] .
It is obvious that (u*,v*) is the unique positive equilibrium of the system (1.5) if (1.3)
holds.
For simplicity, we denote || - [lwr,1) by | - |kp and || - [[zeo,1) by | - [,. Our main results

are as follows.

Theorem 1.1. Let ug,vg € W$(0,1), (u,v) is the unique nonnegative solution of

system (1.5) in the maximal existence interval [0,7"). Assume that
8aiay > a2y, Sy > o). (1.6)

Then there exist ¢y > 0 and positive constants M, M’ which depend on d;, o, 1, m, s, such

that

sup {|u(-,0)]12, [v(-,t)h2:t € (to,T)} < M, (1.7)
max {u(z,t), v(z,t) : (z,t) € [0,1] x (t,, 1)} < M, (1.8)

and T = 4o00. Moreover, in the case that dy,dy > 1, dy/d;, € [d,d], where d and d are

positive constants, M’, M depend on d, d, but do not depend on dy, ds.

Remark 1.1. Since the continuous embedding H'(Q) < L>(Q2) holds only in one
dimensional space , we can only establish the uniform maximum-norn estimates about

time for the solution in one dimensional space.

Theorem 1.2. Assume that all conditions in Theorem 1.1 are satisfied. Assume further

that

4d1d2U*U* > M2 (Oélgu* + a21v*)2 , (19)

414 u)? >m 4 (1+u) + (1 +u" + 0" —1)?] (1.10)
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and (1.3) hold, M is given by (1.8). Then the unique positive equilibrium (u*,v*) of (1.5)

is globally asymptotically stable.

Remark 1.2. The system (1.5) has no nonconstant positive steady-state if all condi-

tions of Theorem 1.2 hold.

2. Global solutions

In order to establish the uniform Wj-estimates of the solutions for system (1.5), the
following Gagliardo-Nirenberg-type inequalities and the corresponding corollary play im-

portant roles ( see [17]).

Theorem 2.1. Let Q2 C R" be a bounded domain with 9€2 € C™. For every function

ue Wm(Q),1<q,r < oo, the derivative D7u (0 < j < m) satisfies the inequality
| D7ul, < C(ID™ulfluly™ + Julg),

provided one of the following three conditions is satisfied: (1) r < ¢, (2) 0 < n(r —
q)/(mrq) <1, or (3) n(r —q)/(mrq) =1 and m —n/q is not a nonnegative integer, where
l/p=j/n+a(l/r—m/n)+ (1 —a)/q for all a € [j/m,1), and the positive constant C
depends on n,m, j,q, 7, a.

Corollary 1. There exists a positive constant C' such that

uly < C(luay?[uli? + Jul),  Yue Wi(0,1), (2.1)
uls < C(lualy?[uly” + Jul),  Yue Wi(0,1), (2.2)
luls < C(lual3°[ufi” +uly),  Yu € W3(0,1), (2.3)
[tz < O Jutgaly*[uli” + Julr),  Vu € W (0,1). (2.4)

Throughout this paper, we always denote that C'is Sobolev embedding constant or other
kind of universal constant, A;, B;,C; are some positive constants which depend only on

a;j (1,7 =1,2),l,m and s, K are positive constants depending on d;, v;; (4,5 = 1,2),l,m
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and s . When dy,dy > 1,dy/d; € [d,d], K; depend on d, d, but do not depend on d; and
ds.

Proof of Theorem 1.1. Step 1, estimate |ul, |v];.
Taking integration of the two equations in (1.5) over (0, 1), respectively, and letting

z =Ilu+ v, we have

d 1 1 2 1 l l
— zd:c:/ lu(l—ﬂ)—sv— v dxg/ u— —u?)de < 2
dt J, 0 m 1+wu 0 m 4

So, there exists a positive constant My which depends on [, m and s, such that

1 1
/ u dx,/ vdr < My, t> 0. (2.5)
0 0

Moreover, there exists a positive constant M} which depends on I, m, s and L'—norm of
g, Vg, such that
1 1
/ U dx,/ vdr < M(/), t>0. (2.5)
0 0
Step 2, estimate |us, |v]s.
Multiplying the first two equations in system (1.5) by u, v, respectively, and integrating

over (0,1), we have

1 1 1 1
Ld wlde < —d / uidr — / [(2001u + apv)ul + arpvuu, ] do + / u?dz,
1d ! 1 1 1
—p vide < —dg/ vidw - / [(aglu + 204221))7J§ + agluxvvx} dx + l/ vidr,

from which it follows that

1d 1 1
—— [ (W +0v*)dz < —d/ (ui+v§)d:c—|—/ 2dx+l/ 2cl:zc—/ q(tug, vy )d
24t Jo 0 0 0

1 1
S—d/ (u? +v)dm+(1+l)/ u® + v?) /qur,vx
0 0 0

where d = min{d;, dy}. Some tedious calculations yield that
q(Ug, v2) =(2011u + a190)u2 + (19U + Q910 UV, + (Qo1u + 200090) 02

is positive definite quadratic form of w,, v, if (1.6) holds. So (1.6) implies that
1d

1 1 1
—— | (W +v*)ds < —d/ (w2 +v2) do+ (1+1) / (v +2?) da. (2.6)

Now, we proceed in the following two cases.
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(i) t > 7. The inequality (2.1) implies that |u|$ < C (|ug|3|ulf + |ul$) < OMG (Jus|3 + MZ).

3
So we have fol uldr > <f01 u2dx> — Mg, and

CME
b 2 1 Lo ’ 2
— uy +v;)de < — {/ u® +v d:c} + 2M;. 2.7
It follows from (2.6) and (2.7) that
1d ! 1 3 1 1
—— | (W +v*)de <dS -0y / (u? +v*) dz +2M§+—(1+l)/ (v* 4+ v?) dx ¢ .

(2.8)
This means that there exist positive constants 71 and M; depending on d; (i,7 = 1,2),l,m
and s, such that
/1 u?dw, /1 vide < My, t > . (2.9)
0 0

When d > 1, M; is independent of d because the zero point of the right-hand side in (2.8)

can be estimated by positive constants independent of d.
(ii) ¢ > 0. Repeating estimates in (i) by (2.5)’, we can obtain that there exists a
positive constant M| depending on d; (i,j = 1,2),1,m,s and the L', L?-norm of ug, vy,

such that

1 1
/ uzdx,/ vide < My, t>0. (2.9)
0 0
When d > 1, M is independent of d.
Step 3, estimate |ug|a, |Vg|2.

Introducing the following scaling
u=—, v=—, t=dit. (2.10)

Denoting ¢ = dy/dy, and using u, v,t instead of 1,7, t, respectively, then system (1.5) is

reduced to )
u = Prp + f(u,v), O<xz<l1, t>0,
vy = Qur + g(u,v), O<z<l1, t>0,
(2.11)
ug(x,t) = v, (x,t) =0, x=0,1, t >0,
u(z,0) = uo(z), v(z,0) =vo(z), 0<z <1,

\
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where

P =u+anu® +apuv, Q=&+ anuw + anv?, f(u,v) =di'u—% - 22 g(u,v) =

We still proceed in the following two cases.

(i) t > 7 = dy7y. Tt is clear that

1 1
/ U dx,/ vdx < Modl_l,
0 0
1 1
/ uzdL/ vidr < Mydy?, (2.12)
0 0
[Py, |Qh < AyKqdy
where K, = (1 +&) + Mid;" and A; = max{ My, ai1 + a1a, o1 + aga}.

Multiplying the first two equations in (2.11) by P, @, integrating them over the domain

(0, 1), respectively, and then adding up the two integration equalities, we have

%y’() / 2dr — f/ dx—/ q(ug, vy)dx

1
+ / (1 4 20111 + agp0)ug f + appuvg f] de + / (€ + ao1u + 20900) 019 + o1vusg] dx
0 0

where 7(t fo (P? + Q?)dz. Tt is not hard verify by (1.6) that there exists a positive

constant C3 depending only on «;; (i, = 1,2), such that
q(ue,v) > Cs(u+ ) (uf +v7).

Thus,

1 1
7 (t) < — /0 uldr — & vtdx—Cg/O (u +v)(u? +v})dr

1 1
+/ [(1+ 2011w + cqpv)ug f + apuvy flde + / [(€ + it + 20000) 09 + a1 vug] da.
0 0
(2.13)
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Using Young inequality, Holder inequality and (2.12), we can obtain the following esti-

mates

1 1 2/3 1 1/3 1 1/3
/ uw? dr < </ u? das) (/ u’ d:z:) < Mf/gd;A‘/B (/ u’ dx) ,
0 0 0 0
1 1 1/3 1 2/3 1 2/3
/ ut do < (/ u? dx) (/ u® dx) < M11/3d1_2/3 (/ u® dx) )
0 0 0 0
1 1/2 1 1/6 1 1/3 1 1/3
T < (/ u? dx) (/ v? dac) (/ K dx) < Mf/gdf4/3 </ Ok dx) ,
0 0 0 0

O\.L
<
<
[N
(oM

(2.14)
Applying the above estimates and Gagliardo-Nirenberg-type inequalities to the terms
on the right-hand side of (2.13), we have

_/1 200 < — = /Pzdg:+/ f2dux,
—g/ vfdx<—§/ Q? dx+§/0 g*dx

1 1
/ f2dq: < / (dIZu2 +m 2t + o + 2m’1u3v) dz
0 0

1 1 2/3 1 2/3
< Myd;* + (m—2 +5+ 2m—1) MR [( / u5dx) + ( / v5dx> ] ,
0 0
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1 1
f/ ¢dr < f/ (l2u2v2 + s2d7 2% + vt + 25d1_11)3) dx
0 0

1 1/3
< ESPMydyt 4 26s M Pd ( / v5dx)
0

2/3 2/3
(512+£) M, d _2/3[(/01u5dx> +(/01v5dx> ]
1 1
o Zd o Zd
/0 uydx 5/ vy dx

1 ¢ 1 1/3
s-§/ Prdr— > /Q dr + (14 €s%) Midy* + 2€s M2/3d17/3(/ v5da:)
0

1 1 2/3 1 2/3
+ <m +5+ om ! + §l2 +§) MR </ u5dx) + (/ v5dx) :
0 0

(2.15)

and

Similarly, we can obtain

1
/ uy fdx
0

1
S/ Uy (dl_lu +mu? uv) dx
0

d1—2 1 c -2 3 c 1 ) 1
<— udw—l——/ uuda:—l—— dw+—/ uudx+—/ wv dr + = /uudw
25/0 2 ¢ 2 Jo 2 ) 2 )

1 1 -2 B 1 1/3 1 1/3 3 1
< Moyd;® + — T 2R (/ u5dx) +</ v5dx) +—5/ wuldz,

1
20011 / uuy fdx
0

1
<2011 / Uy (dflu +mtu?+ uv) dx
0

2 -2 1 1 1 2l 1
<t / u3d:c+€/ uuldr + ——— 11m / 5dx+€/ uuide +%/ u302dx+6/ uulde
€ 0 0 0 € Jo 0
1 1/3 -2 1 1 1
1
“M2/3d 1078 ( / u5dx) +M ( / uPdz + / v5daz) + 3¢ / uuydz,
0 € 0 0 0
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1
o2 / vug fdx
0

1
§0412/ VU (dflu +m ? + uv) dz
0

2 -2 [l 1 2 -2 pl 1 2 [t !
adyd 5 adym 3 a <
<121 / uv’dx + —/ uulde + —22 / wbvidr + = / uuide + —2 / uvtdz + —/ uugdz
0 2 Jo 0 2 Jo 2e Jo 2Jo

- 2 2e

2 1 1/3 2 ) 1 1 1
_ 1 3
<212 p2/3 41073 / uPda +—a”( +m”) / w’dx + / vidz +—5/ uudr,

1
019 / uv fdx
0

1
§a12/ wvy (dy w4+ m™ e + wo) da
0

2 2 [l 1 2 -2 rl 1 2t !
§a12 1 / Wdr + f/ uvfdx n Q7o / Wdr + f/ uvfdx + 12 wolde + E/ uvfdx
2e 0 2 0 2¢ 0 2 0 2e 0 2 0

2 1 1/3 2 -2 1 1 1
_ 1 3
§%M12/3al1 1073 /u5d93 +M /u5dx+/ vidz +—€/ uv?dr,
1
[ s
0

1
< 5/ vy (luv + sdy Mo +0%) da
0

5212 1 e 1 §282d—2 1 c 1 52 1 c 1
<o i u%daz—l—§ ) voidr + 251 i vd:c—|—§ i vvfda:+2—€ i v3dx+§ i vurde

2.2 2(1 12 - 1 1/3 1 1/3 3 1
gg—sMOdl‘?’JrMMf/?’dl‘”S / WSdz )+ / vda + = / voldz,

1
1 / uvygdx
0

1
<oy / UV (luv + sdflv + vz) dx
0

22 1 1 2 2072 [l 1 5 1
il / utv dr + E/ vide + O6213—1/ u?v dr + E/ vide + %/ w*vdde + E/ vvdz
2e 0 2 0 2e 0 2 0 2e 0 2 0

2 2 1 1/3 2 2 1 1 1
_ 1+1 3
<5 /3 1073 /u5dx +M /u5dx+/ vdx +—€/ vvda,
2¢e 0 2e 0 0 2 0
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1
20099 / vurgdx
0

1
<2099 / VU (luv + sdl_lv + 02) dx
0

Q2. ]2 1 022072 [ 1 a2, ! 1
< 2 / 203dx + 5/ vvide + 22— / vidx + 5/ vopde + —2 / v dr + 6/ vvide
€ Jo 0 € 0 0 0 0
a2, 2 B 1 173 2 (1+12) 1 1 1
< %Mf/?’dl 10/3 (/ u5d1:) + % </ u’dx —|—/ v5dx) + 3&?/ vvide,
0 0 0 0

1
o1 / vuggdx
0

1
<o / VU (luv + sdl_lv + v2) dx
0

22 1 - 2 24-2 1 - a2, [ 1
g—%l / wodde + = / vurdr + &/ vidr + —/ vurdr + =2 / vidx + E/ vu;da
28 0 2 0 28 0 2 0 28 0 2 0

2 92 1 1/3 2 2 1 1 1
_ 1+1
§04213 ]\412/3d1 10/3 /v5dx +M /u5dx+/ v’dx +3—6/ Uutdx
2e 0 2e 0 0 2 0

By the above inequalities and the condition (1.6), we have

1 1
/ [(1 4+ 2010 + a1av) ug f + apuvy f] dz + / [(€ + agu + 20090) V19 + Qo1vULg] do
0 0

1
< Xs/ (u+v) (uf +v7) dz + % (1+ &%) Mod;®
0

05 2 _92 2/3 ;—4/3 ! 5 5 e Cﬁ ! 5 5
+—(1+£ +d %) M;"d, (v +v°) da + (v +v°) d,
0 0

(2.16)
where A is a constant. Choose a small enough positive number &(ay;,l,m, s) (i,j = 1,2),

such that A\e < C3. Substituting inequalities (2.15) and (2.16) into (2.13), one can obtain

/ 1
vt < _5/ Frad §/ Q2 dx + BiKady® + ByKyd"PY'P 4 ByKyd YR + By,
(2.17)
where
Y = fol (u5 + U5) dl’) KZ - (1+£2)M0+(1+£)M1d1_17 K3 = (1 + 52 + d1—2 + fdl_l) M12/37
Ky=(1+&) M.
Clearly,

P> apu?, Q> anv’.
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It follows from (2.12) and (2.3) to functions P, @ that
1
Y < B5/ (P5/2 + Q5/2) dr < B6Kf/2d;3/2 y1/2 + BGKf/2d;5/2,
0
Y3 < B Y2a? gt 4 B K80, (2.18)
Y3 < ByKydi' 5P + BeIy P d

Moreover, one can obtain by (2.4) and (2.12) that

I ! _
—5/ P2 dx — g/ Q> dr < —Bymin {1, £} K, i + (1+ &) K2d72. (2.19)
0 0

Combining (2.16), (2.18) and (2.19), we have
S0 < — Avmin{1, i al g
Ay (14 O K2 + Kod? + KA 4 Kad[ ™0 + K2P2a°?| (2.20)
+ AKPAP g2 4 AVK Kd] PR 4+ AsK PR d Y s,
Multiplying inequality (2.20) by d%, we have
S(0) S - Avmin{l, €1y
Ay [(L+ ) K+ Kadi + K2y V2 4 Ky VO 4 K2 (2.21)
+ ASKYP AT Py ALK Kod Oy 4 AP Rd Oy,
where y = fol [(dlpx)Q + (dex)Q] dz. The inequality (2.21) implies that there exist 75 > 0

and positive constant M, depending on d;, o; (7, j = 1,2),1,m and s, such that

1 1 o
/ (lex)Qda:,/ (d1Q,)* dx < My, t > 7. (2.22)
0 0

In the case that dy,ds > 1, € € [d, d], the coefficients of inequality (2.20) can be estimated
by some constants which depend on d, d, but do not depend on d;, ds. So Mg depends on
aij (i, =1,2),1,m,s,d and d, but it is irrelevant to dy, dy, when d;,dy > 1 and ¢ € [d, d].
Since

P, P, P, Uy

Qa Qu Qo Vg
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we can transform the formulations of u,, v, into fraction representations, then distribute
the denominators of the absolute value of the fractions to the numerators item and enlarge

the term concerning with u,, v, to obtain
|d1ur|+|dlvx| §L<|dlpm|+|d1Qx|)7 0<x< 17t> 07 (223>

where L is a constant depending only on &, a;; (4,7 = 1,2). After scaling back and
contacting estimates (2.22) and (2.23), there exist positive constant M, depending on

di, a5 (1,7 =1,2),1,m,s and 75 > 0, such that

1 1
/ uidw,/ vidr < My, t> . (2.24)
0 0

When dy,dy, > 1 and £ € [d,@, M, is independent of d, ds.
(ii) ¢ > 0. Modifying the dependency of the coefficients in inequalities (2.12)-(2.14),
namely replacing My, M; with M{, M], there exists a positive constant MJ depending on

di,ij (1,7 =1,2),1,m, s and the W3 —norm of g, vy, such that

1 1
/ uidm,/ vide < M, t>0. (2.24)
0 0

Furthermore, in the case that di,dy > 1, £ € [c_l, Zl], M, depends on d, d, but does not
depend on dq, ds.

Summarizing estimates (2.5), (2.9), (2.24) and Sobolev embedding theorem, there exist
positive constants M, M’ depending only on d;,cy; (i,j = 1,2),l,m and s, such that
(1.10) and (1.11) hold. In particular, M, M depend only on ay; (i,j = 1,2),1,m,s,d
and d, but do not depend on di, d», when dy,dy > 1 and € € [c_i, c_l]. Similarly, according
to (2.5),(2.9),(2.24)', there exists a positive constant M” depending on d;, o; (4,) =

1,2),1,m,s and the initial functions wug, vg , such that
’u('7t>’1,27 ”U('at)‘l,Z < Ml/) t>0.

Further, in the case that dy,dy > 1, £ € [c_l,ﬂ, M" depends only on d, d, but does not

depend on dy,dy. Thus, T'= +o00. This completes the proof of Theorem 1.1.

3. Global stability
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In order to obtain the uniform convergence of the solution to system (1.2), we recall
the following result which can be found in [26].

Lemma 3.1. Let a and b be positive constants. Assume that ¢, € C* ([a, +00)),9(t) >
0 and ¢ is bounded from below. If ¢'(t) < —b(t) and ¢’(¢) is bounded from above in
[a, +00), then tlggo P(t) = 0.

Proof of Theorem 1.2. Let (u,v) be a solution for the system (1.5) with initial
functions ug(x),vo(x) > 0. From the strong maximum principle for parabolic equations,

it is not hard to verify that u,v > 0 for ¢ > 0. Define the function

1 " 1 ,
H(U’U):/ (U—U*—u*ln—*>das+/ (U—v*—v*ln—*>dx.
0 u 0 v

Then the time derivative of H(u,v) for the system (1.5) satisfies

dH Lu—u Ly —o*
= udx +/ vedx
U 0 v

dt
1 * * * *
u apu® Q9w av
= — / {—2 (dy 4 20010 + a1a0) U2 + (—— + 2 Yuuv, + —5 (do 4 1w + 2a550) v7]dx
o Lu u v v
1
1 Ch o lH+u*+v -1 1 2}
— — — u—u*)" + u—u*)(v—20")+ v—0v")°| de.
/0 {(m (1+u*)(1+u))( ) (1+u*)(1+u)< I ) 1+u( )
(3.1)
The first integrand in the right hand of (3.1) is positive definite if
4u*v*(dy + 200 ut-an9v) (dy + a1t + 20090) > (U™ + ao1v*u)?, (3.2)

and the condition (1.9) implies (3.2). The second integrand in the right hand of (3.1) is

positive definite if
41+ u*) [ +u) (14 u) —mv*] >m (14 u* +0" = 1), (3.3)

and the condition (1.10) implies (3.3). Consequently, there exists § > 0, such that

% < —5/0 (v —u*)* + (v — v*)?]dz, % < 0, (u,v)# (u",v"). (3.4)

By the maximum-norm estimate in Theorem 1.1 and some tedious calculations, we can

verify (d/dt) [, [(u —u*)? + (v — v*)?|dz is bounded from above. Then from lemma 3.1
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and (3.4), we obtain

1 1
lim [ (u—u)’dr=1lim [ (v—2v")dz=0. (3.5)

t—o00 0 t—o00 0

It follows from (3.5) and Gagliardo-Nirenberg-type inequality |u|s < C |u|i/22|u]§/ ? that

(u,v) converges uniformly to (u*,v*). By the fact that H(u,v) is decreasing for ¢t > 0, it
is obvious that (u*,v*) is globally asymptotically stable. So the proof of Theorem 1.2 is

completed.
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