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Abstract. The Lake Victoria fishery is dominated by three commercial fish species namely Nile perch, Nile tilapia

and small pelagic silver fish.The current excessive use of fishing efforts in the lake have devastating consequences

to the extent of diminishing these fish species. The purpose of this study is to propose a bioeconomic mathematical

model based on Lotka-Volterra dynamics by introducing taxes to the profit per unit biomass of the harvested fish

of each species with the intention of controlling fishing efforts.The results of the formulated model showed that the

co-existence steady state with taxation was both locally and globally assymptotically stable.The optimal harvesting

policy was established using Pontryagin’s maximum principle. The numerical example illustrated that imposition

of optimal taxations resulted into optimal harvesting efforts and hence optimal harvesting levels which favour the

sustainability of fish species.

Keywords: Lake Victoria; optimal taxation; optimal harvesting; net economic revenues; Pontryagin’s maximum

principle.
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Overfishing of commercial fish species in Lake Victoria namely Nile perch, Nile tilapia and

small pelagic silver fish is a serious problem due to rapid growth of industrialization and pop-

ulation. As per 2011 Regional Catch Assessment Survey (CAS) reports conducted by Lake

Victoria Fisheries Organisation (LVFO) indicated that there as been a rapid decline of these

fish species. The fish stocks for the named fish species has been decreasing beyond the min-

imum stock required to sustain regeneration. Given the economic importance of the fishery,

management measures aiming at controling fishing efforts are needed for sustainability of the

species.

According to [1] fishing pressures on Lake Victoria fisheries resource has been a major con-

cern for many researchers. Possible control instruments for regulating harvesting efforts as were

pointed out by [3] could be taxation, license fees, lease of property rights, seasonal harvesting,

fishing period control, creating reserve zones and many more depending on the nature of the

fishery. Fishery in Lake Victoria is of an open access, in which taxation method could apply

as the efficiency method. Several authors have suggested that taxation is an effective control

instrument which can be used by governments or fishing regulatory agencies to regulate the ex-

tent of fishing efforts. [10] proposed a mathematical model to study the growth and exploitation

of a schooling fish species by imposing a tax on the catch to control the overexploitation of fish

species [2] discussed a dynamical model for a single species fishery, which depends partially

on logistically growing resource with functional response and taxation as a control instrument

to protect fish population from overexploitation, [9] studied a fishery model containing predator

fish and prey fish in which the predator was the commercial fish by including spawning periods

and taxation [5] studied a dynamic model for fishery resource with reserve area and taxation [4]

further analysed a non-linear mathematical model to study the dynamics of an inshore-offshore

fishery under variable harvesting by considering taxation as the control instrument. However,

from the above literature survey, it may be pointed out that no attempt has been made to study

the optimal taxation policy of a three species fishery in which they interact in a predator-prey

manner and all species being subjected to harvesting.

2. Mathematical model
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The following are variables and parameters used in developing the model.

TABLE 1. Description of variables and parameters

Variables Descriptions

r1 Intrinsic growth rate of Nile perch

r2 Intrinsic growth rate of Nile tilapia

r3 Intrinsic growth rate of small pelagic silver fish

x Stock biomass of Nile perch

y Stock biomass of Nile tilapia

z Stock biomass of small pelagic silver fish

α Predation rate of Nile tilapia to Nile perch

β Predation rate of Nile perch to Nile tilapia

γ Predation rate of Nile perch to small pelagic silver fish

ψ Predation rate of Nile tilapia to small pelagic silver fish

E1 Fishing effort for Nile perch

E2 Fishing effort for Nile tilapia

E3 Fishing effort for small pelagic silver fish

q1 Catchability coefficient of Nile perch

q2 Catchability coefficient of Nile tilapia

q3 Catchability coefficient of small pelagic silver fish

K1 Carrying capacity of Nile perch

K2 Carrying capacity of Nile tilapia

K3 Carrying capacity of small pelagic silver fish

Consider the Nile perch population in a lake growing logistically, prey to both the Nile tilapia

and small pelagic silver fish and also subjected to harvesting.The dynamics of Nile perch pop-

ulation is governed by:

(1)
dx
dt

= r1

(
1− x

K1

)
x−αyx+βyx+ γxz−E1q1x.
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Similarly the Nile tilapia population in a lake grows logistically, prey to both the Nile perch and

small pelagic silver fish and also subjected to harvesting.

The dynamics of Nile tilapia population is governed by:

(2)
dy
dt

= r2

(
1− y

K2

)
y+αyx−βyx+ψyz−E2q2y.

The small pelagic silver fish being prey to both the Nile perch and Nile tilapia, subjected to

harvesting and growing logistically, then its popualation dynamics is governed by:

(3)
dz
dt

= r3

(
1− z

K3

)
z− γxz−ψyz−E3q3z.

In order to keep sustainable fishing of the three fish species in this lake, we take some actions to

fishing efforts through taxation and thus E1, E2 and E3 are dynamic variables(i.e. time depen-

dent). Let p1, p2 and p3 be the fixed selling price per unit biomass of Nile perch, Nile tilapia

and small pelagic silver fish respectively and let c1, c2 and c3 be the fixed cost of harvesting per

unit of effort for the Nile perch, Nile tilapia, and small pelagic silver fish respectively.

Therefore, the economic revenue for the three fish species will be:

R1(t) = p1q1E1x− c1E1,(4a)

R2(t) = p2q2E2y− c2E2,(4b)

R3(t) = p3q3E3z− c3E3.(4c)

Let τ1 > 0, τ2 > 0 and τ3 > 0 be the imposed taxes per unit harvested of Nile perch, Nile

tilapia and small pelagic silver fish biomasses respectively. The net ecomic revenue is obtained

by introducing taxes to the fixed selling price per unit biomass of fish species. Hence (4) is

modified to be:

R1net (t) = (p1− τ1)q1E1x− c1E1,(5a)

R2net (t) = (p2− τ2)q2E2y− c2E2,(5b)

R3net (t) = (p3− τ3)q3E3z− c3E3.(5c)
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Using (1), (2), (3) and (5) we obtain the dynamics of the system governed by the following

system of first order differential equation:

dx
dt

= x(r1−q1E1−a1x−ρy+ γz),(6a)

dy
dt

= y(r2−q2E2 +ρx−a2y+ψz),(6b)

dz
dt

= z(r3−q3E3− γx−ψy−a3z)(6c)

dE1

dt
= φ1[(p1− τ1)q1E1x− c1E1],(6d)

dE2

dt
= φ2[(p2− τ2)q2E2y− c2E2],(6e)

dE3

dt
= φ3[(p3− τ3)q3E3z− c3E3],(6f)

x(0)> 0, y(0)> 0, z(0)> 0, E1(0)> 0, E2(0)> 0, E3(0)> 0, where ai =
ri
Ki

> 0 for i = 1,2,3

and φ j for j = 1,2,3 are adjustment coefficients (stiffness parameters).

2.1. Equilibrium points of the model

The system in (6) has the following equilibrium points:

P̄1



x∗

y∗

z∗

E∗1

E∗2

E∗3


=



0

0

0
r1
q1

r2
q2

r3
q3


, P̄2



x∗

y∗

z∗

E∗1

E∗2

E∗3


=



c1
q1(p1−τ1)

0

0

0

0

0



P̄3



x∗

y∗

z∗

E∗1

E∗2

E∗3


=



0
c2

q2(p2−τ2)

0

0

0

0


, P̄4



x∗

y∗

z∗

E∗1

E∗2

E∗3


=



0

0
c3

q3(p3−τ3)

0

0

0


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P̄5



x∗

y∗

z∗

E∗1

E∗2

E∗3


=



0

0
c3

q3(p3−τ3)

1
q1
(r1 + γz∗)

1
q2
(r2 +ψz∗)

1
q3
(r3−a3z∗)


, P̄6



x∗

y∗

z∗

E∗1

E∗2

E∗3


=



c1
q1(p1−τ1)

0

0
1
q1
(r1−a1x∗)

1
q2
(r2 +ρx∗)

1
q3
(r3− γx∗)



P̄7



x∗

y∗

z∗

E∗1

E∗2

E∗3


=



0
c2

q2(p2−τ2)

0
1
q1
(r1−ρy∗)

1
q2
(r2−a2y∗)

1
q3
(r3−ψy∗)


, P̄8



x∗

y∗

z∗

E∗1

E∗2

E∗3


=



0
c2

q2(p2−τ2)

c3
q3(p3−τ3)

1
q1
(r1−ρy∗+ γz∗)

1
q2
(r2−a2y∗+ψz∗)

1
q3
(r3−ψy∗−a3z∗)



P̄9



x∗

y∗

z∗

E∗1

E∗2

E∗3


=



c1
q1(p1−τ1)

0
c3

q3(p3−τ3)

1
q1
(r1−a1x∗+ γz∗)

1
q2
(r2 +ρx∗+ γz∗)

1
q3
(r3− γx∗−a3z∗)


, ¯P10



x∗

y∗

z∗

E∗1

E∗2

E∗3


=



c1
q1(p1−τ1)

c2
q2(p2−τ2)

0
1
q1
(r1−a1x∗−ρy∗)

1
q2
(r2 +ρx∗−a2y∗)

1
q3
(r3− γx∗−ψy∗)



¯P11



x∗

y∗

z∗

E∗1

E∗2

E∗3


=



c1
q1(p1−τ1)

c2
q2(p2−τ2)

c3
q3(p3−τ3)

0

0

0


, ¯P12



x∗

y∗

z∗

E∗1

E∗2

E∗3


=



c1
q1(p1−τ1)

c2
q2(p2−τ2)

c3
q3(p3−τ3)

0

0
1
q3
(r3− γx∗−ψy∗−a3z∗)


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¯P13



x∗

y∗

z∗

E∗1

E∗2

E∗3


=



c1
q1(p1−τ1)

c2
q2(p2−τ2)

c3
q3(p3−τ3)

0
1
q2
(r2 +ρx∗−a2y∗+ψz∗)

0


, ¯P14



x∗

y∗

z∗

E∗1

E∗2

E∗3


=



c1
q1(p1−τ1)

c2
q2(p2−τ2)

c3
q3(p3−τ3)

1
q1
(r1−a1x∗−ρy∗+ γz∗)

0

0



¯P15



x∗

y∗

z∗

E∗1

E∗2

E∗3


=



c1
q1(p1−τ1)

c2
q2(p2−τ2)

c3
q3(p3−τ3)

0
1
q2
(r2 +ρx∗−a2y∗+ψz∗)

1
q3
(r3− γx∗−ψy∗−a3z∗)


, ¯P16



x∗

y∗

z∗

E∗1

E∗2

E∗3


=



c1
q1(p1−τ1)

c2
q2(p2−τ2)

c3
q3(p3−τ3)

1
q1
(r1−a1x∗−ρy∗+ γz∗)

0
1
q3
(r3− γx∗−ψy∗−a3z∗)


,

¯P17



x∗

y∗

z∗

E∗1

E∗2

E∗3


=



c1
q1(p1−τ1)

c2
q2(p2−τ2)

c3
q3(p3−τ3)

1
q1
(r1−a1x∗−ρy∗+ γz∗)

1
q2
(r2 +ρx∗−a2y∗+ψz∗)

0


and, ¯P18



x∗

y∗

z∗

E∗1

E∗2

E∗3


=



c1
q1(p1−τ1)

c2
q2(p2−τ2)

c3
q3(p3−τ3)

1
q1
(r1−a1x∗−ρy∗+ γz∗)

1
q2
(r2 +ρx∗−a2y∗+ψz∗)

1
q3
(r3− γx∗−ψy∗−a3z∗)


.

2.2. Stability analysis of the co-existence equilibrium point

2.2.1. Local stability

The local stability of the the co-existence equilibrium point ¯P18 is investigated using the trace-

determinant criteria.That is, an equilibrium point is locally asymptotically stable if the Jacobian

matrix evaluated at that point has a negative trace and positive determinat.
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The Jacobian matrix of the system 6 evaluated at ¯P18 is a 6×6 matrix given by:

(7) J( ¯P18) =



n11 n12 n13 n14 0 0

n21 n22 n23 0 n25 0

n31 n32 n33 0 0 n36

n41 0 0 0 0 0

0 n52 0 0 0 0

0 0 n63 0 0 0


,

where

n11 =
−a1c1

q1(p1− τ1)
,

n12 =
−ρc1

q1(p1− τ1)
,

n13 =
γc1

q1(p1− τ1)
,

n14 =
−c1

(p1− τ1)
,

n21 =
ρc2

q2(p2− τ2)
,

n22 =
−a2c2

q2(p2− τ2)
,

n23 =
ψc2

q2(p2− τ2)
,

n25 =
−c2

(p2− τ2)
,

n31 =
−γc3

q3(p3− τ3)
,

n32 =
−ψc3

q3(p3− τ3)
,

n33 =
−a3c3

q3(p3− τ3)
,

n36 =
−c3

(p3− τ3)
,

n41 = φ1[(p1− τ1)q1E∗1 ],

n52 = φ2[(p2− τ2)q2E∗2 ],

n63 = φ3[(p3− τ3)q2E∗3 ],
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trace[J( ¯P18)] = n11 +n22 +n33

=
−a1c1

q1(p1− τ1)
− a2c2

q2(p2− τ2)
− a3c3

q3(p3− τ3)

= −
[

a1c1

q1(p1− τ1)
+

a2c2

q2(p2− τ2)
+

a3c3

q3(p3− τ3)

]
< 0

and

det[J( ¯P18)] =−n14×n41×−n52×n63×n25×n36 > 0.

Hence, the co-existence equilibrium point P18 is locally asymptotically stable.

2.2.2. Global stability

Global stability was analysed through construction of a suitable Lyapunov function.

Consider the Lyapunov function

V (x,y,z,E1,E2,E3) = m1[x− x∗− x∗ ln(
x
x∗
)]+m2[y− y∗− y∗ ln(

y
y∗
)]

+ m3[z− z∗− z∗ ln(
z
z∗
)]+m4[E1−E∗1 −E∗1 ln(

E1

E∗1
)]

+ m5[E2−E∗2 −E∗2 ln(
E2

E∗2
)]+m6[E3−E∗3 −E∗3 ln(

E3

E∗3
)],

where mi > 0 for i = 1,2, ...,6. The time derivatives of V is given by:

dV
dt

= m1

(
1− x∗

x

)
dx
dt

+m2

(
1− y∗

y

)
dy
dt

+m3

(
1− z∗

z

)
dz
dt

+ m4

(
1−

E∗1
E1

)
dE1

dt
+m5

(
1−

E∗2
E2

)
dE2

dt
+m6

(
1−

E∗3
E3

)
dE3

dt
.

Let

(8)
dV
dt

= m1G+m2H +m3I +m4K +m5L+m6R,

where,

(9) G =

(
1− x∗

x

)
dx
dt

= (x− x∗)[−q1(E1−E∗1)−a1(x− x∗)−ρ(y− y∗)+ γ(z− z∗)],

(10) H =

(
1− y∗

y

)
dy
dt

= (y− y∗)[−q2(E2−E∗2)+ρ(x− x∗)−a2(y− y∗)+ψ(z− z∗)],

(11) I =
(

1− z∗

z

)
dz
dt

= (z− z∗)[−q3(E3−E∗3)− γ(x− x∗)−ψ(y− y∗)+a3(z− z∗)],
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(12) K =

(
1−

E∗1
E1

)
dE1

dt
= φ1(E1−E∗1)[q1(p1− τ1)(x− x∗)],

(13) L =

(
1−

E∗2
E2

)
dE2

dt
= φ2(E2−E∗2)[q2(p2− τ2)(y− y∗)],

and,

(14) R =

(
1−

E∗3
E3

)
dE3

dt
= φ3(E3−E∗3)[q3(p3− τ3)(z− z∗)].

The substitution of equations (9), (10), (11), (12), (13) and (14) into equation (8) and making

necessary simplifications gives the following:

dV
dt

=−[m1a1(x− x∗)2 +m2a2(y− y∗)2 +m3a3(z− z∗)2 +q1m1(x− x∗)(E1−E∗1)

+q2m2(y− y∗)(E2−E∗2)+q3m3(z− z∗)(E3−E∗3)]

+ [ρ(x− x∗)(y− y∗)(m2−m1)+ γ(x− x∗)(z− z∗)(m1−m3)

+ψ(y− y∗)(z− z∗)(m2−m3)]+ [m4φ1q1(x− x∗)(E1−E∗1)(p1− τ1)

+m5φ2q2(y− y∗)(E2−E∗2)(p2− τ2)+m6φ3q3(z− z∗)(E3−E∗3)(p3− τ3)].

(15)

From (15) we have

i) dV
dt = 0 ∀(x,y,z,E1,E2,E3) = (x∗,y∗,z∗,E∗1 ,E

∗
2 ,E

∗
3).

ii) If we choose m1 = m2 = m3 such that

[m1a1(x− x∗)2 +m2a2(y− y∗)2 +m3a3(z− z∗)2 +q1m1(x− x∗)(E1−E∗1)

+q2m2(y− y∗)(E2−E∗2)+q3m3(z− z∗)(E3−E∗3)]>

[m4φ1q1(x− x∗)(E1−E∗1)(p1− τ1)+m5φ2q2(y− y∗)(E2−E∗2)(p2− τ2)

+m6φ3q3(z− z∗)(E3−E∗3)(p3− τ3)],

(16)

then, dV
dt < 0 ∀(x,y,z,E1,E2,E3) 6= (x∗,y∗,z∗,E∗1 ,E

∗
2 ,E

∗
3) for which (16) holds. Therefore, the

co-existence equilibrium point ¯P18 is globally asymptotically stable.

3. Optimal harvesting policy

In this section we investigate the optimal harvesting policy for the dynamics of the system in

(6) in order to maximize the total discounted net revenue using taxation as a control instrument
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on the harvested three fish species. The present value J of a continous time-stream of revenues

is given by:

(17) J =
∫

∞

0
e−δ t [(p1q1E1x− c1E1)+(p2q2E2y− c2E2)+(p3q3E3z− c3E3)] dt,

where δ is the instanteneous rate of annual discount.Thus our objective is to maximize J subject

to the state equations in (6) and to the control constraints

(18) τmini < τ < τmaxi for i = 1,2,3.

To find the optimal level of equilibrium, we use the Pontryagin’s maximum principle. The

associated Hamiltonian function is given by:

H = e−δ t [(p1q1E1x− c1E1)+(p2q2E2y− c2E2)+(p3q3E3z− c3E3)]

+ λ1 [x(r1−q1E1−a1x−ρy+ γz)]

+ λ2 [y(r2−q2E2 +ρx−a2y+ψz)]

+ λ3 [z(r3−q3E3− γx−ψy−a3z)]

+ λ4 [φ1(p1− τ1)q1E1x− c1E1]

+ λ5 [φ2(p2− τ2)q2E2y− c2E2]

+ λ6 [φ3(p3− τ3)q3E3z− c3E3] ,(19)

where λ1, λ2, λ3, λ4, λ5 and λ6 are adjoint variables interms of time(t).Hamiltonian H must be

maximized for τ(t) ∈
[
τmini, τmaxi

]
where i = 1,2,3. Assuming that the control constraints are

not binding (that is, the optimal solution does not occur at τ(t) = τmini or τmaxi for i = 1,2,3).

Hence we have singular control given by (20) and (21) below:

(20)
∂H
∂τ1

= 0,
∂H
∂τ2

= 0 and
∂H
∂τ3

= 0,

(21)
∂H
∂E1

= 0,
∂H
∂E2

= 0 and
∂H
∂E3

= 0.

Applying (20), we obtain

(22) λ4 = λ5 = λ6 = 0.
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Applying (21), we obtain (23)

λ1 = λ1(t) = e−δ t
(

p1−
c1

q1x

)
,(23a)

λ2 = λ2(t) = e−δ t
(

p2−
c2

q2y

)
,(23b)

λ3 = λ3(t) = e−δ t
(

p3−
c3

q3z

)
.(23c)

Again, by Pontryagin’s maximum principle we have

dλ1

dt
=−∂H

∂x
,(24a)

dλ2

dt
=−∂H

∂y
,(24b)

dλ3

dt
=−∂H

∂ z
.(24c)

Considering (24a), we obtain

(25)
dλ1

dt
=−[e−δ t p1q1E1 +λ1(r1−q1E1−2a1x−ρy+ γz)+λ2ρy−λ3γz]

Substituting (23b) and (23c) into (25) and making necessary simplifications, we obtain

(26)
dλ1

dt
−A1λ1 =−A2e−δ t,

where

A1 =−(r1−q1E1−2a1x−ρy+ γz),(27a)

A2 = p1q1E1 +ρy
(

p2−
c2

q2y

)
− γz

(
p3−

c3

q3z

)
.(27b)

Employing an integrating factor I.F = e−A1t to solve (26) resulted into

(28) λ1 = λ1(t) =
A2

A1 +δ
e−δ t +T0eA1t,

where T0 is a constant of integration. Let µ0(t) = λ1eδ t =
(

p1− c1
q1x

)
, the shadow price per

unit biomass of harvested Nile perch. When t→ ∞ then µ0(t) is bounded if and only if T0 = 0

Hence, (28) can be re-written as

(29) λ1 = λ1(t) =
A2

A1 +δ
e−δ t.
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Using (24b), we obtain the following equation

(30)
dλ2

dt
=−e−δ t p2q2E2−λ2(r2−q2E2 +ρx−2a2y+ψz)+λ1ρx+λ3ψz.

Substituting (23a) and (23c) into (30) and making necessary simplifications we obtain

(31)
dλ2

dt
−B1λ2 =−B2e−δ t,

where

B1 =−(r2−q2E2 +ρx−2a2y+ψz),(32a)

B2 = p2q2E2−ρx
(

p1−
c1

q1x

)
−ψz

(
p3−

c3

q3z

)
.(32b)

Applying an integrating factor I.F = e−B1t on attempt to solve (31) resulted into the following:

(33) λ2 = λ2(t) =
B2

B1 +δ
e−δ t +T1eB1t,

where T1 is a constant of integration. Let µ1(t) = λ2eδ t =
(

p2− c2
q2y

)
, the shadow price per

unit biomass of harvested Nile tilapia. When t→ ∞ then µ1(t) is bounded if and only if T1 = 0

Hence, (33) can be re-written as

(34) λ2 = λ2(t) =
B2

B1 +δ
e−δ t.

Using (24c), we obtain

(35)
dλ3

dt
=−e−δ t p3q3E3−λ3(r3−q3E3− γx−ψy−2a3z)−λ1γx−λ2ψy.

Substituting (23a) and (23b) into (35) and making necessary simplifications we obtain

(36)
dλ3

dt
−D1λ3 =−D2e−δ t,

where

D1 =−(r3−q3E3− γx−ψy−2a3z),(37a)

D2 = p3q3E3− γx
(

p1−
c1

q1x

)
−ψy

(
p2−

c2

q2y

)
.(37b)

Applying an integrating factor I.F = e−D1t on attempt to solve (36) resulted into the following

(38) λ3 = λ3(t) =
D2

D1 +δ
e−δ t +T2eD1t,
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where T2 is a constant of integration. Let µ2(t) = λ3eδ t =
(

p3− c3
q3z

)
, the shadow price per

unit biomass of harvested small pelagic silver fish. When t → ∞ then µ2(t) is bounded if and

only if T2 = 0 Hence, (38) can be re-written as

(39) λ3 = λ3(t) =
D2

D1 +δ
e−δ t.

Equating (23a) with (29) resulted into the following equation

(40)
p1q1x− c1

q1x
=

A2

A1 +δ
.

Upon substituting (27) into (40) and making algebraic simplifications resulted into the following

E1δ =
1

q1c1
[(c1− p1q1xδ )(r1−2a1xδ −ρyδ + γzδ )+δ (p1q1xδ − c1)

− q1xδ{ρyδ (p2−
c2

q2yδ

)− γzδ (p3−
c3

q3zδ

)}].(41)

Equating(23b) with (34) resulted into the following equation

(42)
B1 +δ

B2
=

q2y
p2q2y− c2

.

Upon substituting (32) into (42) and making algebraic simplifications resulted into the following

E2δ =
1

q2c2
[(c2− p2q2yδ )(r2 +ρxδ −2a2yδ +ψzδ )+δ (p2q2yδ − c2)

− q2yδ{−ρxδ (p1−
c1

q1xδ

)−ψzδ (p3−
c3

q3zδ

)}].(43)

Equating (23c) with (39) resulted into the following equation

(44)
D1 +δ

D2
=

q3z
p3q3z− c3

.

The substitution of (37) into (44) resulted into the following equation

E3δ =
1

q3c3
[(c3− p3q3zδ )(r3− γxδ −ψyδ −2a3zδ )+δ (p3q3zδ − c3)

− q3zδ{−γxδ (p1−
c1

q1xδ

)−ψyδ (p2−
c2

q2yδ

)}].(45)
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At the optimal level, equations (6a), (6b) and (6c) became

r1−q1E1δ −a1xδ −ρyδ + γzδ = 0,(46a)

r2−q2E2δ +ρxδ −a2yδ +ψzδ = 0,(46b)

r3−q3E3δ − γxδ −ψyδ −a3zδ = 0.(46c)

Therefore the optimal values xδ , yδ , zδ , E1δ , E2δ and E3δ are computed using (41), (43),

(45) and (46) where as the optimal taxations, τ1δ , τ2δ and τ3δ are computed using (47) below:

τ1δ = p1−
c1

q1xδ

,(47a)

τ2δ = p2−
c2

q2yδ

,(47b)

τ3δ = p3−
c3

q3zδ

.(47c)

4. Numerical simulation

The following paratemeters summarized in Table 2 gives the equilibrium point at

(x∗,y∗,z∗,E∗1,E
∗
2,E
∗
3) = (20,20,20,20,30,10).

Our main task is to determine the optimal solutions at this particular equilibrium point.

TABLE 2. Parameters for the equilibrium point (x∗,y∗,z∗,E∗1,E
∗
2,E
∗
3) = (20,20,20,20,30,10).

ρ = 0.04 γ = 0.005 ψ = 0.005

a1 = 0.0125 a2 = 0.07 a3 = 0.01

r1 = 0.99 r2 = 0.80 r3 = 0.70

q1 = 0.002 q2 = 0.01 q3 = 0.03

c1 = 100 c2 = 800 c3 = 780

φ1 = 0.10 φ2 = 0.10 φ3 = 0.10

p1 = 2800 p2 = 4500 p3 = 1500

τ1 = 300 τ2 = 500 τ3 = 200
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With the choice of δ = 5 and substitutions of parameters in Table 2 into equations (41),(43),(45)

and (46) resulted into equations (48) and (49) below:

−0.0014x2
δ
−0.27346xδ +0.00136xδ yδ +0.00013xδ zδ +5 = 0,(48a)

−0.007875y2
δ
−0.139625yδ +0.00085xδ yδ +0.0001875yδ zδ +5 = 0,(48b)

−0.001153846z2
δ
−0.213076919zδ −0.0008269230627xδ zδ

−0.001153846134yδ zδ +4.999999926 = 0,
(48c)

−0.0125xδ −0.04yδ +0.005zδ −0.002E1δ +0.99 = 0,(49a)

0.04xδ −0.07yδ +0.005zδ −0.01E2δ +0.80 = 0,(49b)

−0.005xδ −0.005yδ −0.01zδ −0.03E3δ +0.70 = 0.(49c)

Solving equations (48) and (49), and utilizing (47) we obtain the optimal solutions as summa-

rized in Table 3 below:

TABLE 3. Optimal solutions

Optimal values

xδ = 18.42007701

yδ = 18.68227930

zδ = 18.44046469

E1δ = 52.33009441

E2δ = 32.12458529

E3δ = 11.00278572

τ1δ = 85.57052325

τ2δ = 217.8672519

τ3δ = 90.05722268
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5. Discussion and Conclusions

We conclude that τ1, τ2 and τ3 are important parameters which governs the dynamics of the

system in (6). The behaviour of (x with E1), (y with E2) and (z with E3) with respect to time

t for different values of τ1, τ2 and τ3 are shown in figure 2, 4 and 6 respectively. From these

figure, we observe that the population densities for the Nile perch (x), Nile tilapia (y) and small

pelagic silver fish (z) increased as the tax rates increased, where as the densities (magnitudes) of

harvesting efforts (E1, E2 and E3) decreased as the tax rates increased. Moreover at the optimal

tax rates, the population of fish species and their corresponding harvesting efforts settled down

at their respective optimal level (as illustrated in figure 3, 5 and 7). We also observed that as

the harvesting efforts increased, the population of fish species decreased (as illustrated in figure

8, 9 and 10) and that applying harvesting efforts above the optimal harvesting efforts levels

leads to overfishing of fish species. Suitable tax policies are proper measures to manage fishery,

however we noted that implementations of tax policies has to be done with great care inorder to

attain the bioeconomic equilibrium. Low taxes rates will provide higher net revenues to fishers

[refer (5)] and hence encouraging higher harvesting efforts-this may lead to extinction of fish

species, where as higher taxes rates will results into lower net revenues to fishers which lead

to extrem reduction of fishing efforts and hence abundant of fish species population-this does

not favour the ecosystem. Hence the bioeconomic equilibrium (the balance) is attained at the

optimal taxes rates and at the optimal harvesting efforts levels.
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FIGURE 1. Plot of x,y,z,E1,E2 and E3 verses time(t) for the parameters in Table 2

(a) Variation of x population against time for dif-

ferent tax levels of τ1

(b) Variation of harvesting effort E1 against time

for different tax levels of τ1

FIGURE 2. Effects of taxation rates to the population x(t) and the harvesting effort E1(t)
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FIGURE 3. The trend of population x(t) and E1(t) at the optimal tax τ1δ =

85.57052325

(a) Variation of y population against time for dif-

ferent tax levels of τ2

(b) Variation of harvesting effort E2 against time

for different tax levels of τ2

FIGURE 4. Effects of taxation rates to the population y(t) and the harvesting

effort E2(t)



20 MPELE JAMES, NKANSAH-GYEKYE YAW, MAKINDE DANIEL

FIGURE 5. The trend of population y(t) and E2(t) at the optimal tax τ2δ = 217.8672519

(a) Variation of z population against time for dif-

ferent tax levels of τ3

(b) Variation of harvesting effort E3 against time

for different tax levels of τ3

FIGURE 6. Effects of taxation rates to the population z(t) and the harvesting

effort E3(t)
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FIGURE 7. The trend of population z(t) and E3(t) at the optimal tax τ3δ = 90.05722268

FIGURE 8. Variation of x population against time for different values of har-

vesting effort E1
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FIGURE 9. Variation of y population against time for different values of har-

vesting effort E2

FIGURE 10. Variation of z population against time for different values of fish-

ing effort E3
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