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Abstract.  In this paper, an SEIRS epidemic model with non-monotonic incidence rate is introduce and drive the 

necessary condition of the model are locally asymptotically stable, globally asymptotically stable or stable. The 

Global stability of the model is proved by constructing a Lyapunov function. Some numerical simulations are given 

to illustrate the analytical results. 
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1. Introduction  

Mathematical models are important tools in analyzing the spread and control of infectious 

diseases. The study of infectious disease by the means of mathematical modeling provides the 

behavior of the disease and helps to understand the planning of the eradication policy. The basic 

and important research subject in mathematical epidemiology is the global stability of the 

equilibrium states of the epidemic models. Generally, an epidemic model admits two types of 

equilibrium states. The first is the disease-free equilibrium whose global stability means 

biologically that the disease always dies out. The second is the endemic equilibrium, if is 

globally asymptotically stable, the disease persists at the endemic equilibrium level if it is 

initially present. 
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Epidemic models have been studied by many authors. Most of them are interested in the 

formulation of the incidence rate. The form of the incidence rate that is used in the classical 

Kermack-Mckendrick model (1927) is the simple mass action SI where  , S and I denote the 

transmission rate, the number of susceptible population and infectious population respectively. 

The standard incidence is ,SI N where N is the total population size and is called  the daily 

contact rate. In epidemiology using a compartmental approach, one may assume that a 

susceptible individual first goes through a latent period (and is said to become exposed or in the 

class E) after infection, before becoming infectious. The resulting models are of SEIR or SEIRS 

types, respectively, depending on whether the acquired immunity is permanent or otherwise. 

These types of models have attracted the attention of many authors and a number of papers have 

been published in this area. For example, Greenhalgh [7] considered an SEIR model that 

incorporates density dependence in the death rate. Cooke and Driessche [3] introduced and 

analyzed the SEIRS model with two delays. Greenhalgh [8] studied Hopf bifurcations in the 

SEIRS type models with density dependent contact rate and death rate. Li and Muldowney [11] 

and Li et al. [13] studied the global dynamics of the SEIR models with a non-linear incidence 

rate as well as standard incidence rate. Li et al. [12] analyzed the global dynamics of the SEIR 

model with vertical transmission and a bilinear incidence. Rinalid [15] analyzed epidemic 

models with latent period. In 2003, Zhang and Ma [22] analyzed the global dynamics of the 

SEIR model with saturating contact rate. All the models discussed above are of SEIR-type 

epidemic models, which are described by a system of ordinary differential equations. Ruan and 

Wang [16] studied an epidemic SIR model with a specific nonlinear incident rate and presented a 

detailed qualitative and bifurcation analysis of the model and Kar and Batabyal [17] proposed an 

SIR model with non-monotonic incidence rate suggested by Xiao and Ruan [4] incorporating 

with a treatment function.  

In recent year, many authors generalized new incidence rate function and applied in 

different epidemic models. For example, Kar and Batabyal [17] proposed an SIR model with 

non-monotonic incidence rate suggested by Xiao and Ruan [4] incorporating with a treatment 

function and G. Ujjainkar [5] generalized the model of Kar and Batabyal [17] with two inhibitory 

parameters and also I [1] analyzed an SIR model with new incidence saturating rate function. 

Here I presented an SEIRS model with a new modulated saturated incidence rate suggested by G. 

Ujjainkar [5] without any treatment function. 
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2. The Mathematical Model 

In this mathematical model, the SEIRS model has been adopted and different analyses to 

test for the stability of disease free epidemic equilibrium of the model. Has been carried out the 

four compartmental models which consist of the Susceptible Individuals (S), Exposed 

individuals infected, but not infectious (E), Infected individuals (I) and Recovered individuals (R) 

with new modulated (non-monotonic) saturated incidence rate. 

 

 

Figure-1. The Model Diagram 
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Where B is the recruitment rate of the population, is the rate of losing immunity at time t, is 

the rate of developing infectivity, is the recovery rate, d is the birth rate. 
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They considered a non-monotonic saturated incidence rate of the form
2

1 21

kSI

I I  
.This 

represents the inhibition effect of the behavioral change of the susceptible individuals where 

there is an increase in the number of infective individuals, 1 and 2 are the parameter measures 

of the inhibitory effects. It assumes that the birth rate and death rate are not equal. 

  

3. Equilibrium points 

When the time derivatives are equal to zero, a disease free equilibrium (DEF)

( , , , ) ( , , , )
B
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Clearly, the above equation will have a positive root if   0 and R 0 1 , where R0 is basic 

reproduction number given as follows: .
( )( )

Bk
R

d d d



 


 
0  

Now *

[ ( )( ) ( )( ) ]

[ ( )( )]

d d d k d d
dI

d d d


     


  

       


 

1

22
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Lemma 3.1.  The system (1) has a disease-free equilibrium points if .
B

N
d

  

Proof. Consider ( ) ( ) ( ) ( ) ( )N t S t E t I t R t    . 

Then ( )
dN

B dN t
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t

B
N t

d
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This implies the conclusion. 
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4. Stability 

4.1. Local Stability of DEF 

Let x S S  0 , E E , I I and R R . 

System (1) becomes, 
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By linearizing (1), we have 

non linear terms
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This can be written in matrix from
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Lemma 4.1. If R 0 1then the disease free equilibrium P0 is locally asymptotically stable, P0 is 

stable if R 0 1and P0 is unstable if .R 0 1
 

Proof. The characteristic equation of (3) at P0 is
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( )( )[ ( )( ) ] .
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Thus, the then the disease free equilibrium P0  is locally asymptotically stable if R 0 1 , P0  is 

stable if R 0 1and P0 is unstable if .R 0 1
 

4.2. Global Stability of DEF 

Define Lyapunov function: 
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If ,I 0 L 0 but if I  0 and ,R 0 1 L 0 therefore, the disease free equilibrium is globally 

asymptotically stable.  

4.3. Local Stability of Endemic Equilibrium 
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The resulting Jacobin matrix is   
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The characteristic equation is   
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characteristic equation of (4), it is found that ( ) and ( )d d      1 2 are two eigen 

values always negative. To obtain the other eigenvalues of (4) consider
 

* * * * *( ) ( )( ) ( ) .d k S I d d kS k S I d                  2 2 22 0
 

If * *d k S I     22 and 
* * * * *d d d kS d k S I k S I         2 2 2 all the roots are in the 

left – half plane. Therefore, the endemic equilibrium is stable. 

 

5. Numerical Simulations 

To see the dynamical behavior of system (1), solve the system by using the parameters:   

Case I. , . , . , , . , . , , . ,B k d           1 215 0 398 0 7 0 0 04 0 0033 1 0 143 then the 

basic reproduction number .R 0 1 (figure 2). 

Case II. Take , . , , . , . , . , , . ,B k d           1 23 0 398 0 0 7 0 04 0 0033 1 0 143  

then the basic reproduction number .R 0 1 (figure 3). 

Case III. Take , . , . , . , . , , . ,B k d           1 23 0 398 0 1 0 04 0 0033 1 0 143 then 

the basic reproduction number .R 0 1 (figure 4). 
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Case IV.
  

, . , . , . , . , , . ,B k d           1 23 0 398 0 7 0 04 0 0033 1 0 143 then the 

basic reproduction number .R 0 1 (figure 5). 

For the choice of parameters in above cases all the four component ( ), ( ), ( ), ( )S t E t I t R t  

approach to their steady state values as time goes to infinity, the disease becomes endemic. 
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Figure-2      Figure-3 
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Figure-4      Figure-5 

Case V.
 

. , . , . , , . , . , , . .B k d           1 20 01 0 398 0 7 0 0 04 0 0033 1 0 143 then 

the basic reproduction number .R 0 1 (figure 6). 
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Figure-6 

For the choice of parameters in Case V all the four component ( ), ( ), ( ), ( )S t E t I t R t  approach to 

unstable as time goes to infinity, there the disease becomes dies out. 

Case VI. Taking all the parameters of Case V and interchange the value of 1and 2or both are 

equally probable (i.e. .  1 2 0 7 or .  1 2 0 1 ) or they have distinct values (i.e. 

. , .  1 20 1 0 7 or . , .  1 20 7 0 1) the all components are also unstable. 

 

6. Conclusion 

This paper investigates an SEIRS model with a non-monotone incidence function. The global 

behavior of the model is studied and basic reproduction number R0 is defined. It has been noted 

that when R 0 1, the model has locally and globally asymptotically stable and when R 0 1the 

disease is endemic. It is worth nothing that R0 does not depend on the parameters1and2but 

numerical simulations illustrate the importance of the parameters1and2 .  

Corollary 1. If  2 0and  1 , then the model coincides with that of Adebimpe. O. et. al. 

[14].  

Corollary 2.   If  2 and  1 0 , then the model coincides with that of  D. Xiao and S. Runa 

[4] into the three components of epidemic i.e. ( ), ( ), ( )S t I t R t .  
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