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Abstract: In this paper, a deterministic Tuberculosis (TB) model is formulated with the aim of assessing the 

effects of vaccination, screening and treatment on the transmission of TB infections. The analysis of the model 

shows that its dynamics are completely determined by the effective reproduction number, Reff . If Reff < 1 the 

disease-free equilibrium exists and is locally and globally asymptotically stable whereas an endemic equilibrium 

exists if Reff > 1 and is globally asymptotically stable, the disease persistence occurs. Furthermore, when the 

effective reproduction number is equal to one, that is Reff = 1, a backward bifurcation occurs. Numerical results 

are presented for the justifications of theoretical results. 
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1. Introduction 

Tuberculosis is a chronic infectious disease caused mainly by Mycobacterium tuberculosis 

(M tuberculosis, Mtb). Worldwide 8.6 million people fall ill due to TB, of which 1.3 million 
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people die annually. In developing countries especially in Africa, the TB incidences, 

prevalence, and deaths per 100,000 populations is 262, 293, and 26 respectively and Tanzania 

incidences, prevalence and deaths per 100,000 populations is 177, 183, and 14 as per [25]. 

Therefore it is becoming essential to find a viable alternative to minimize the prevalence of 

the disease. 

Basically there are two types of tuberculosis: pulmonary tuberculosis which affects the lungs 

and it is the commonest and infectious form of the disease and extra-pulmonary tuberculosis 

that affects organs other than the lungs, such as pleura, lymph nodes, pericardium, spine, 

joints, abdomen or genito-urinary tract [17]. In general, it can affect any part of the body. 

This study concentrates only on the pulmonary TB where person to person transmission of 

Mtb is via the respiratory route, which can occur both through close contacts between 

individuals and through infectious bacilli being carried throughout buildings by air currents 

that makes ventilation an important preventative measure [12] 

Tuberculosis occurs in two forms namely: latent tuberculosis and active tuberculosis 

(progressive TB). The most common form of the disease is latent tuberculosis. Many people 

remain latent and are at risk of developing active TB as a consequence of either exogenous or 

endogenous re-infection of latent bacilli. In the absence of HIV, it is estimated that 10% of 

infected individuals develop active tuberculosis and the rest have strong immunity which 

limits multiplication of tubercle bacilli [3, 5, 13]. 

Tuberculosis is the seventh most important cause of global premature mortality and disability 

and is projected to remain among the 10 leading causes of disease burden even in the year 

2020 [18]. The disease spread from one individual to another through air as an individual 

with active TB coughs, sneezes, speaks, spits, kisses and sings. Upon infection, the body 

slowly develops immunity within 1-2 months to kill the organisms and the infection heals, or 

it develops into active infection [1]. The symptoms include coughing up blood or sputum, 

excessive weight loss, fever, loss of appetite, shortness of breath to people at an advanced 

stage of TB, fatigue, night sweats, chest pain and a bad cough lasting longer than two weeks 

[21]. The realization that TB had not been defeated by effective antimicrobial treatment in 

developing countries where crowded accommodation, poor nutrition, emergence of AIDS and 

resistance to the limited number of antituberculosis drugs available lead to the need for more 
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comprehensive and renewed concern over the disease.  

Modeling is used to quantify uncertainty due to different gaps in our knowledge to help 

identify research priorities. The influence for the use of mathematical modeling in theory and 

practice of disease management and control have increased due to the fact that, the approach 

helps in figuring out decisions that are of significant importance on the outcomes and provide 

comprehensive examinations that enter into decisions in a way that gives quick approach and 

control of the disease with main interest of developing more effective public health 

interventions. [20] developed a SEIJT (Susceptible-Exposed-Undetected Infected-Detected 

Infected-Treated) model on the effect of Direct Observation Therapy Strategy (DOTS) in 

Nigeria. Their results showed that, provided that the fraction of detected infectious 

individuals exceeded a critical value, there exists a globally stable disease free equilibrium. 

However, if this critical detection level is not reached, the disease-free equilibrium will be 

unstable even with the very high probability successful treatment under DOTS. [23], focused 

on the density of individuals with an aim of calculating the size of the area an individual is 

supposed to occupy in order to eliminate the TB epidemic. This study recommended that, in 

order to minimize the TB incidence in a population, the characteristic area per individual 

should be at least 0.25 square kilometres. [11] presented a mathematical model on of effect of 

bacillus calmette-guérin vaccine in preventing mother to child transmission of tuberculosis. 

Their findings show that, tuberculosis can be eradicated completely if the total removal rate 

from the infectious class is greater than the total number of latent infections produced 

throughout the infectious period. This can be achieved by effective immunization of new 

born infants against infection using BCG vaccines. [26] conducted a study on Early Therapy 

for Latent Tuberculosis Infection. Their results shows that tuberculosis control programmes 

develop the ability to find and treat active cases of disease; they further suggested that, the 

next step in tuberculosis control should be to develop methods of preventing new cases. 

Screening is a strategy used in a population to identify an unrecognized disease in individuals 

without signs or symptoms [14]. 

In this paper, we present a TB model with vaccination, screening and treatment interventions 

in a homogenous population. The bifurcation and stability of the equilibrium points for the 

model are investigated. 

http://en.wikipedia.org/wiki/Population
http://en.wikipedia.org/wiki/Disease
http://en.wikipedia.org/wiki/Medical_sign
http://en.wikipedia.org/wiki/Symptoms
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2. Model Formulation  

The total population )(tN is divided into eight compartments depending on the 

epidemiological status of individuals: Vaccinated )(tV , Susceptible )(tS , Exposed )(tE , 

Screened )(tET , infectious at severe stage )(1 tI , infectious at mild stage )(2 tI , Treated 

)(tT and Recovered )(tR . In this model, individuals are recruited into the population by 

either immigration at the rate   or per capita birth rate . We assume that proportions   

of newborns in the population and   of the immigrants were vaccinated at birth to protect 

them against infection. Furthermore, the immunized class increases due to the coming in of 

the immunized children and reduces due to expiration of duration of vaccine efficacy at the 

rate  and death for reasons that are not related to the disease (natural death) at the rate  . 

Susceptible population increases due to the coming in of new births not vaccinated against 

the infection and those who were vaccinated but lose their immunity. When some susceptible 

individuals come into contact with infectious individuals at a rate, c , they get infected and 

progress to latently infected class at  a force of infection rate  . More importantly, 

screening is done to individuals with no symptoms (the susceptible and exposed individuals) 

and a proportion  of those who found to be latently infected opt to go for treatment when 

their TB is still at latent stage and recovers at the rate, , while the remaining proportion 

)1(  of the latently infected individuals may not have opportunity for treatment or they 

stubbornly refuse to go for early treatment until their TB progresses to active stages at the 

rate  . A proportion η of the latent/exposed individuals that do not go for early treatment, 

their TB progress to severe infectious stage  due to their weak immunity and later go for 

treatment after realizing the severity of the disease or been forced by their relatives or friends. 

This group goes for treatment at the rate   and recover at the rate 1 , where  <1 .Those 

with strong immunity ( 1 ) will deviate to infectious class  in which their TB status is 

at mild stage. Individuals leaves at the rate   in which, the proportion 1 recovers 
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naturally, 2  goes for treatment and the remaining proportion 3  their TB advances to 

severe stage. Due to the nature of the disease, the infection will only kill individuals whose 

TB progresses to the severe infectious class. In other words, there is no TB induced deaths at 

mild stage. Moreover, individuals in the recovery class, R  are temporarily recovered. Soon 

they revert back to the latently infected class, E   after been reinfected by either 1I  or 

2I at the rate   where   is the reduction in susceptibility due to prior endogenous 

infection. We assume that each class conforms to natural death at the rate µ while infectious 

individuals in  die due to TB at the rate d . 

Furthermore, the following assumptions are made in formulation of the model 

i. The mixing in this model is homogeneous, that is, all susceptible individuals are equally 

likely to be infected by infectious individuals in case of contact.  

ii. Recruits are either vaccinated or susceptible.  

iii. Individuals at mild stage may recover naturally or by treatment; otherwise advances to 

severe stage. 

iv. On recovery there is temporal immunity. 

v.  People in each compartment have equal natural death rate   

The above description leads to the compartmental diagram in Figure 1.The parameters 

indicated in Figure 1 are described in Table 1. 

 

Figure 1: Flow diagram for a TB transmission model with vaccination, screening and treatment. 
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Table 1: Parameters used in the model formulation and their description 

Parameter Description 

  Recruitment rate of the immigrants into the population. 

  Per capita birth rate. 

  Proportion of babies vaccinated at birth. 

  Proportion of vaccinated immigrant babies. 

c  Per capita contact rate. 

  Probability of acquiring TB infections per contact with one infectious 

individual. 

  Level of infectiousness of severely infected. 

  Proportion of latently infected individuals who go for treatment after screening. 

  Progression rate from latency to active TB. 

  Proportion of latently infected individuals that progress to severe TB. 

  The departure rate from mild stage  

1  Proportion of infectious individuals at mild stage who recover naturally. 

2  Proportion of infectious individuals who are treated at mild stage. 

3  Proportion of infectious individuals at mild stage who progress to severe stage. 

  Rate at which the infectious individuals at severe stage are isolated for 

treatment. 

1   Recovery rate of treated infectious individuals who are at severe conditions  

d  The tuberculosis induced mortality rate. 

  Per capita natural mortality death rate. 

  The recovery rate after treatment of the aware infected individuals. 

   Progression from immune to susceptible. 

  Probability of individual to be passive infected from recovery.  
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2.1 The Model Equations 

Based on the assumptions and the inter-relations between the variables and the parameters as 

shown in the model compartments in Figure 1, the effect of screening and treatment on 

tuberculosis transmission dynamics can be described by the following system of ordinary 

differential equations: 

VN
dt

dV
)(   , 

SVN
dt

dS
)()1()1(   , 

ERS
dt

dE
)(    ,     

T
T EE

dt

dE
)(                                                   

123
1 )()1( IdIE

dt

dI
  ,                           (1) 

2
2 )()1( IE

dt

dI
  , 

TII
dt

dT
)( 1221   , 

RITE
dt

dR
T )(211    

where the total population size, RTIIEESVN T  21  

satisfies the equation:    

                  
1dINN

dt

dN
                              (2) 

derived by adding the state equations of  (1)  

and .) ( 21 NIIc +=   

2.2 Dimensionless transformation: We consider the equations for the normalized quantities 

because it is easier to analyze our model in terms of proportions of quantities than of actual 

populations. This can be done by scaling the population of each class by the total population.  

We make the transformation: 
N

V
v   ,

N

S
s  , 

N

E
e T

T  , 
N

E
e  , 

N

I
i 1
1  , 

N

I
i 2

2  , 
N

T
h   
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and
 N

R
r   . 

Differentiating the fractions with respect to time t  and simplifying leads to the system: 

vdikk
dt

dv
)( 1     

sdikvk
dt

ds
)()1()1( 1 

 

edikrs
dt

de
)( 1   

T
T edike

dt

de
)( 1                                      (3)                                                                     

1123
1 )()1( idikdie

dt

di
   

21
2 )()1( idike

dt

di
 

 

hdikii
dt

dh
)( 11221   ,

 

rdikihe
dt

dr
T )( 1211     

 

subject to the restriction 121 =+++++++ rhiieesv T  that leads to studying system (3) in 

the region  

where the model makes biological sense that can be shown to be positively invariant and 

globally attracting in  with respect to our system. 

3. Model Analysis 

The model (3) is analyzed qualitatively to get insights into its dynamical features that give 

better understanding of the effect of screening and treatment on the transmission of TB 

infection in a population. 

3.1 Disease Free Equilibrium (DFE), E0 

The disease free equilibrium of the model (3) is obtained by setting  

021 
dt

dr

dt

dh

dt

di

dt

di

dt

de

dt

de

dt

ds

dt

dv T . 
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In case of no disease, 021  iieeT  the sum of susceptible and vaccinated populations 

is equal to total population. 

The statement above reduces system (3) to: 

* *( ) 0
k

k k v v
k

 
   

 


      

 
  and   

* *

1

(1 ) (1 )
(1 ) (1 ) ( ) 0

k
k v k s s

k

   
    

 

   
        

 
           (4) 

Therefore, the disease free equilibrium (DFE) denoted by 0E  of the model (3.) is given by: 

* *
+ + + - ( + )

( ,  s ,  0,  0,  0,  0,  0, 0) = ( ,   ,   0,  0,  0,  0,  0,  0).
+ + + +

k k k
v

k k

     

                               
 

3.2 The Basic Reproduction Number, R0  

The basic reproduction number, R0, is defined as the effective number of secondary infections 

caused by typical infected individual during his entire period of infectiousness [10]. This 

definition is given for the models that represent spread of infection in a population. We 

calculate the basic reproduction number by using the next generation operator method on the 

system (3). 

The basic reproduction number is obtained by taking the largest (dominant) eigenvalue 

(spectral radius) of: 

1

1 0 0( ) ( )i i

j j

E E

x x




    

    
       

FV  

where i  is the rate of appearance of new infection in compartment i , i  is the transfer of 

infections from one compartment i  to another and 0E  is the disease-free equilibrium. 

The effective reproduction number, effR  of the normalised model system (3) with 

vaccination, screening and treatment is: 

* *

3((1 ) ( )(1 ) ) (1 )

( )( )( ) ( )( )
eff

k c s c s
R

k d k k k k

         

         

     
 

          
         (5) 

where,                              * ( ) ( )

( )

k k
s

k

   

 

   


 
 

Furthermore, the basic reproduction number for the model system (3) is given by: 
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))((

)1(

))()((

))()1(( 3
0



















kk

c

kkdk

ck
R                (6) 

The details for the computation of the basic reproduction number and the comparison 

between the effective reproduction numbers with individual or combination of different 

interventions are shown in [19]. 

3.3 Local Stability of the Disease Free Equilibrium (DFE), E0 

Theorem 3.1. The disease free equilibrium of the vaccination, screening and treatment model 

system (3) is locally asymptotically stable if <1effR and unstable if >1effR . 

Proof. We show that, the variational matrix, )( 0EJ  of the normalised model system (3) has 

negative trace and positive determinant. The partial differentiation of (3) with respect to 

) , , , , , , ,( 21 rhiieesv T at the disease free equilibrium gives: 


















































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0)(0000

0000)1(00

000)1(00

000000
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00)(00)(

000000

)(
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5

34

3

2

1

0















k

k

m

m

m

scscm

scsdck

dvm

EJ  

where , 

  km1 , )(2   km ,   km3 ,    kdm4  and 

.5  ++= km  

The trace of our matrix )( 0EJ  is given by:  

0))()(-()(Tr 1

2

543210 <+++++++++=  kkmmmmmEJ
 

Now 

)(-0)-1(

)(-)-1(

)(-

-))((det 310







++

+++

++

=

k

kd

scsck

AEJ  

where,  

2

11 ))()()((  +++++++= kkkkA  
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


















))((

)1(

))()((

 ))1)(()1((
1))(det( 3

20








kk

sc

kkdk

sck
AEJ    

                       2= ( 1  -  R )e f fA
 

where, ).)()((12  +++++++= kkdkAA  

This implies that the determinant of our variational matrix, is positive if and only if <1effR . 

Since, the trace of our matrix )( 0EJ is less than zero and its determinant is positive when 

<1effR
 
then, model system (3) is locally asymptotically stable at disease free 

equilibrium, 0.E  

Theorem 3.1 implies that TB can be eliminated from the community when <1effR  if the 

initial size of the sub-populations of the model are in the basin of attraction of the disease free 

equilibrium 0E . That means if <1effR , then on average, an infected individual produce less 

than one new infected individual over the course of infectious period and the infection cannot 

grow.  

3.4 Global stability of the disease-free equilibrium, E0 

In this section, we analyze the global stability of the disease-free equilibrium point by 

applying the [4] approach. 

We write model system (1) in the form: 

s
, 1

2

d
( )

dt

d

dt

s DFE s i

i
i


  


 


X
A X X A X

X
A X

 

where sX  is the vector representing the non-transmitting compartments and iX  is the 

vector representing the transmitting components. The DFE is globally asymptotically stable if 

A has real negative eigenvalues and A2 is a Metzler matrix (i.e. the off-diagonal elements of 

A2 are non-negative).  

From system (1) we have: 1 2( ,  ,  )T

i e i iX ,  ( ,  ,  ,  ,  )T

s Ts v e h rX ,  
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,

1
s DFE s

T

k
v

k

k
s

k

e

h

r

 

 
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 

 
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 
  

   
 
 
 
 
 

X X

 

We need to check whether a matrix A for the non-transmitting compartments has real 

negative eigenvalues and that A2 is a Metzler matrix. 

From the equation for non-transmitting compartments in (3) we have: 

 

1

1

( ) 0 0 0 0

( ) 0 0 0

0 0 ( ) 0 0
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(1 ) ( )

k de s r c s r c

k d i

di k

     

     

   

      
 

      
 
     

A  

A direct computation shows that, the eigenvalues of A are real and negative. This implies that 

the system s
, 1

d
( )

dt
s DFE s i  

X
A X X A X  is globally asymptotically stable at DFE. 

Furthermore, since 10 1i   we have, 1(1 ) 0i  and this implies A2 a Metzler matrix. Thus, 

the DFE is globally asymptotically stable. 

Theorem 3.2. The disease-free equilibrium point is globally asymptotically stable in   if 

1effR   and unstable if 1effR  . 
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3.5 Endemic Equilibrium Point (EEP), E1 

Let the endemic equilibrium of our normalised model system (3) be denoted 

by ) , , ,, , , ,( ***

2

*

1

*****

1 rhiieesvE T . It is obtained by setting the right hand side of each 

equation of the normalised model system (3) equal to zero. 

However, due to the complexity of the problem, we derive the endemic equilibrium point 

) , , , ,( **

2

*

1

***

1 riiesE  without any intervention. 

If we let 
*

1dika   ,from system (3), we have: 

i)  
a

k
s







* ,  where ) (
*

2

*

1 iic    

ii)   
))((

))()((

21

*

aaa

kaa
e









, 

where ))1())((( 11   aaa ,  ))((2 aaaa   and 

iii)  
))((

)1)()((

21

*

2
aaa

ka
i









 

iv)  
))()((

)1()()1(
))((

21

3*

1
adaaa

a
kai









  

v) 
))()((

)1)()((

21

1*

aaaa

ka
r









 

Substituting 
*

1i  and 
*

2i  in the equation for the force of infection 

                     ) (
*

2

*

1 iic   we have: 

)
))((

)1)()((
(

))()((

)1()()1(
))((

2121

3

aaa

ka
c

adaaa

a
cka



















  

)
))()((

))(1())1()()1((
())((

21

3

adaaa

ada
cka









  

)())(( 321 aaaaa   , 

where, 

)(

)))(1())1()()1((()( 3
3

ad

adack
a









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This implies that: 

0)()( 32

2

321

3

1   aaaaaaaaa  

This can be written as a polynomial: 

  0)  ( 2  CBA                                      (7) 

where, 1aA  , 321 )( aaaaB   and aaaaC 32   

The solutions for the cubic polynomial (7) are  0 and 02  CBA  . In this case 

0 corresponds to the disease free equilibrium, already discussed and 

02  CBA  corresponds to the existence of two endemic equilibria points. 

Furthermore, ))1())((( 1   aaA ,    

                    )1())1(1)()(( 10  RaaaB , and 

                   aaaaC 32   

      
)(

))(1())1()()1((()( 3
2

ad

adacka
aaC









 

))(1())1()()1((()())(( 3

2 adackaaaaC    

Dividing both sides by ))()((2 aaada   , we get: 

))()((

))(1())1()()1((()(
1

))()((

3

2 aaada

adack

aaada

C






 




 

This implies, 

02
1

))((
R

aaa

C


 
 

Thus:
  

           
)1)()(( 0

2 RaaaC                        (8)                                                                 

Significant assessment of the quadratic equation (7) shows that there is a unique endemic 

equilibrium point if 0B   and 0C  or 042  ACB . There are two endemic 

equilibria if 0C , 0B and 042  ACB , otherwise there is none. It is also important to 
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note that the coefficient A  is always positive and C  is positive if 10 R  and negative if 

10 R . This leads to the following theorem: 

Theorem 3.3. 

The tuberculosis model (3) has: 

i. precisely one unique endemic equilibrium if 0C , 10 R , 

ii. precisely one unique endemic equilibrium if 0B  and 0C or 042  ACB , 

iii. precisely two endemic equilibria if 0C ,  0B and 042  ACB , and  

iv. no endemic equilibrium otherwise. 

From iii. we see that backward bifurcation is possible if we set the discriminant 

042  ACB and solve for the critical value of 0R . 

That is, 

))((4
1

2

2

0
aaAa

B
R

c





 

from which it can be shown that backward bifurcation occurs for values of 0R  that are in the 

range 100  RR
c

. 

In addition to that, Theorem 4 gives the condition for existence of endemic equilibrium, 1E  

Theorem 3.4. The endemic equilibrium point 
*

1E exists if 10 R . 

Proof. From the quadratic equation in (7) we have 
A

ACBB

2

42
* 
  which implies 

that, the disease will be endemic if 0*  . In other words, the disease will be endemic if  

0AC  suggesting from (8) that  0)1)()(( 0

2  RaaAa  . This is true if and only if 

10 R . 

Therefore, the endemic equilibrium point 
*

1E  exists if and only if 10 R . 

3.6 Stability Analysis Using Bifurcation Analysis 

Endemic equilibrium points are steady state solutions where the disease persists in the 
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population (all state variables are positive). We use general bifurcation theory to prove the 

existence of at least one endemic equilibrium point for all >1effR  [6].  

When >1effR , it is expected that the disease would be able to invade in the case of a 

backward bifurcation. The centre manifold theory can be used to analyse the stability of DFE 

( 0E ) near =1effR . 

From equation (5):    

* *

3((1- ) + ( + + )(1- ) ) (1- )
= +

( + + )( + + + )( + + ) ( + + )( + + )eff

k c s c s
R

k d k k k k

         

         
 

we let the average number of effective contacts a susceptible has per unit of time  c  be 

the bifurcation parameter and =1effR  be the bifurcation point. 

 If we equate =1effR , and * c  we obtain:  

*

* *

3

( + + )( + + + )( + + )
=

((1- ) + ( + + )(1- ) ) + ( + + + )(1- )

k d k k

k s d k s

     


           
 

Again,  let vx 1 , sx 2 , Tex 3 , ex 4 , 15 ix  , 26 ix   , hx 7 and rx 8  

The model system equation (3) becomes: 

158211
1 )(),...,,( xdxkkxxxf

dt

dx
    

2

2 1 2 8 1 5 6 5 2= ( , ,..., ) = (1- ) + (1- ) + -( (  + ) + + - )
dx

f x x x k x x x k dx x
dt

        

3

3 1 2 8 5 6 2 8 5 3= ( , ,..., ) = ( + )( +  )-( + + - )
dx

f x x x x x x x k dx x
dt

       

4538214
4 )( ),...,,( xdxkxxxxf

dt

dx
                      (9)                                                                     

 

556338215

5 )(  )1(),...,,( xdxkdxxxxxf
dt

dx
   

6538216

6 )( )1(),...,,( xdxkxxxxf
dt

dx
 

 

7

7 1 2 8 5 2 1 5 7= ( , ,..., ) =  +  - ( + + - )
dx

f x x x x x k dx x
dt

    
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8

8 1 2 8 4 1 7 1 6 5 6 5 8= ( , ,..., ) = + +  -( (  + ) + + - )
dx

f x x x x x x x x k dx x
dt

      
 

Therefore, the Jacobian matrix at DFE ( 0E ) is given by 

1 1

2 2

2 2 2

3

0

4 3

5

2 1

1 1

0 0 0 0 0 0

( ) 0 0 ( ) 0 0

0 0 0 0 0

0 0 0 0 0 0
( )

0 0 (1 ) 0 0 0

0 0 (1 ) 0 0 0 0

0 0 0 0 ( ) 0

0 0 0 0 ( )

m dx

k d x x

m x x

m
E

m

m

k

k

   

 



   

 

    

    

 
 

    
 
 
 

 
  
 

  
   
 

   

J  

where,   km1 , )(2   km ,   km3 ,    kdm4  and 

  km5 . 

We calculate the left eigenvector v  and the right eigenvector y  which are associated with 

the zero eigenvalue of )( 0EJ . 

Let the right eigenvector be given by Tyyyyyyyy ) , , , , , , ,( 87654321y .  

Multiplying this vector with our Jacobian matrix )( 0EJ  and equating to zero we have: 

3
3

11
))()((

)1()1)((
y

kkkd

k
dxy








 , 

3 2 1 2
2 3

(( )(1 ) (1 ) )( ) ) (1 )

( )( )

k d x d x g x
y y

g k k

          


  

        
 

  
 

where, ))((   kkdg  

free  033  yy  

34 y
k

y





  

3
3

5
))((

)1()1)((
y

kk

k
y









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36

)1(
y

k
y








  

3

1

23

7
))()((

)()1())1()1)(((
y

kdkk

kdk
y








  

3
7

1
1

8 )
))()((

)1)(()(
( y

k

y

kkk

kk
y














  

Similarly, we calculate the left eigenvectors ) , , , , , ,,( 87654321 vvvvvvvvv  satisfying 

1. yv  

In this case, we get:  

087421  vvvvv , 

free  033  vv , 

2
5 3

 

( )

x
v v

d k



 


  
, 

2 3
6 3

 ( ( ))

( )( )

x d k
v v

d k k

    

   

   


    
. 

where  










k

kk
x

)()(
2  

After computing the right and left eigenvalues we use Theorem 2.5 in [5] to establish the 

conditions for the existence of backward bifurcation by determining the sign of a  and b  as 

indicated in the theorem which is restated as Theorem 3.5: 

Theorem 3.5. Consider the following general system of ordinary differential equations with a 

parameter . nnxf
dt

dx
RRR  :),(   and )( RRC

2  nf where 0 is an equilibrium 

point of the system, that is,    0),0(f and 

1. 











 )0,0()0,0(

i

i
x

x

f
fDA is the linearization matrix of the system around the equilibrium 

0 with    evaluated at 0. 

2. Zero is a simple eigenvalue of A and all other eigenvalues of A have negative real parts. 

3. Matrix A  has a right eigenvector y  and a left eigenvector v  corresponding to the zero 
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eigenvalue. 

Let kf  be the thk  component of f  and )0,0(
2

1,, ji

k
n

jik

jik
xx

f
yyva




 



, 

)0,0(
2

1,, 


 

 i

k
n

jik

ik
x

f
yvb ,  the local dynamics of system (9) around 0 is totally governed by 

the signs of a  and b . 

1. 0  ,0  ba . when   0  with 1||  , 0 is locally asymptotically stable, and 

there exists a positive unstable equilibrium; when 10  , 0 is unstable and there 

exists a negative and locally asymptotically stable equilibrium. 

2.  0  ,0  ba . when 0  with 1||  , 0 is unstable; when 10  , 0 is 

locally asymptotically stable, and there exists a positive unstable equilibrium. 

3. 0  ,0  ba . when  0  with 1||  , 0 is unstable, and there exists a locally 

asymptotically stable negative equilibrium; when 10  , 0 is stable, and a 

positive unstable equilibrium appears. 

4. 0  ,0  ba . when  0  changes from negative to positive, 0 changes its stability 

from stable to unstable. Corresponding to a negative unstable equilibrium becomes 

positive and locally asymptotically stable. 

Particularly if 0a and 0 b  then a backward bifurcation occurs at   0 . 

Computation of a  and b  

Since 087421  vvvvv (for 8 7, ,4 ,2 ,1k ) we can only consider 6 ,5 ,3k . 

 The only partial derivatives different from zero are: 

2

3

5 2

f

x x





 
,    

2

3

6 2

f

x x





 
, d

xx

f






53

3

2

and d
xx

f






56

6

2

 

    6566236523 ) ( yydvyydvyyyvca                          (10)                                   

where    

3 2 1 2
2 3

(( )(1 ) (1 ) )( ) ) ( )( )(1 )

( )( )( )( )

k d x d x d k k x
y y

k d k k k

              


      

             
 

       
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3
3

5
))((

)1()1)((
y

kk

k
y








 , 36

)1(
y

k
y








 ,  

2 3
6 3

 ( ( ))

( )( )

x d k
v v

d k k

    

   

   


    
, and 0, 33 vy

 

From (10) we see that 0a  if xy  and  0a  if xy  , 

where 3 2 5 6 3 2 6= (  + ) +y v y y y dv y y   and 656 yydvx  . 

On the other hand, the value of b  can be obtained from: 

                     


























 6

3

2

63

5

3

2
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 are the only partial derivatives different from zero. 

Thus,                    

0) ( 6523  yyxvb   

Since 0b  and 0a or 0a  depending on whether x   is greater or smaller than y , 

then the following theorem holds: 

Theorem 3.6. If xy  , 0a , then model system (9) has backward bifurcation at =1effR . If  

0< , this implies that there exists unstable negative endemic equilibrium point and when 

0> it implies that there exists a stable positive endemic equilibrium point. Therefore the 

endemic equilibrium point EEP is locally asymptotically stable for >1effR but close to 1. 

Figure 2, illustrates a backward bifurcation diagram of the force of infection at equilibrium 

against the basic reproduction number, R0 of the TB model (3) at R0 = 1. Furthermore, EE 

and DFE represent endemic equilibrium and disease-free equilibrium respectively. It can be 

observed from the diagram that as R0 approaches one, the number of TB cases rapidly 

increases giving rise to a situation whereby the disease-free equilibrium co-exist with the 

endemic equilibrium. 
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Figure 2: Backward bifurcation for a screening and treatment model 

 

3.7 Global Stability of the Endemic Equilibrium Point (EEP), E1 

In this section, we study the global properties of the endemic equilibrium point. The 

following theorem provides the global property of the endemic equilibrium point. 

Theorem 3.7. The endemic equilibrium point, E1 is globally asymptotically stable if  

>1effR . 

Proof. In proving this theorem, we apply [15] approach to construct of a suitable Lyapunov 

function of the form:  

*( ln )i i i iL a x x x   

where ia  is properly selected positive constant,  ix  is the population of i
th

 compartment 

and *

ix  is the equilibrium point. This approach has been found to be useful for more 

complex compartmental epidemic models. 

Now, we consider the Lyapunov function candidate, L for system (3.3) as: 
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where 8321 ..., , , , BBBB  are positive constants. 

Differentiating our Lyapunov function with respect to time we get: 
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Substituting in the derivative for the Lyapunov function and collecting like terms we have: 
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                          (11)                                                                       

This can be written as: 
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where, 
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is the balance of the right hand terms of (11).  

Following the approach of [2, 15, 16], P is non-positive for 0,,,,,,, 21 >rhiieesv T . 

Therefore, 0=
dt

dL
if *vv = , *ss = , *ee = , 

*

TT ee = , 
*

11 ii = , 
*

22 ii = , *hh = , *rr =  

and 0<
dt

dL
for 0,,,,,,, 21 >rhiieesv T .Thus if >1effR  then, model system (3) has a unique 

endemic equilibrium point E1 which is globally asymptotically stable. 

4. Numerical Simulations  

In this section we give numerical simulation for model system (3) for the purpose of 

verifying some of the analytical results. This is done by using a set of parameter values 

whose sources are mainly from literature as well as estimation in order to have more realistic 
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simulation results. Table 2 presents the parameter values and their respective sources. 

 

Table 2: Model Parameter values 

Parameter Value Source 

  0.0006yr-1 Estimated 

  0.03767yr-1 Estimated 

  0.4 Estimated 

  0.2 Estimated 

c  2 [13] 

  0.5 [22] 

  0.3 Estimated 

  0.2 [25] 

  0.03yr-1 [9] 

  0.004 [8] 

  0.37yr-1 [8] 

1  
0.2 [20] 

2  
0.798 Estimated 

3  
0.02 Estimated 

  2 [13] 

1  
1.5 [23] 

d  0.3yr-1 [1] 

  
2 [23] 

  0.07yr-1 Estimated 

  0.06 [20] 

In Figures 3 and 4: We show variation of subpopulations with respect to time. 
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Figure 3: Variations of vaccinated, susceptible, exposed and recovered individuals. 

In Figure 3: The susceptible class decreases because some of them progress to latent stage 

after getting infected by infectious individuals, whereas the number of vaccinated individuals 

increases due to increase in number of children vaccinated at birth and arrival of vaccinated 

immigrants. The increase in the proportion of individuals vaccinated is due country policies 

for instance in Tanzania, where the first vaccine (BCG) for newborns is given to every child 

as per the child immunization schedules. In the case of the exposed group, the decrease is as a 

result of screening and treatment intervention and after some years (3.5years) as per our 

graph, an increase is due to exogenous or endogenous reinfection. 

Furthermore, the recovered class increases as a result of the incoming of effectively treated 

infectious individuals from both severe and infectious stages, as well as screened and treated 

latent individuals. 

 

Figure 4: Variations in the infectious population  

In Figure 4: Both infectious individuals at mild and severe stages decrease to zero; this 
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implies that, if all infectious individual are treated, a disease free equilibrium can be attained. 

5.  Sensitivity Analysis 

To determine how best we can do in order to reduce human mortality and morbidity due to 

TB, it is necessary to know the relative importance of different factors responsible for its 

transmission and prevalence. We know that, initial disease transmission is directly related to 

R0.We calculate the sensitivity indices of the reproductive number, R0 to the parameters in the 

model. These indices tell us how vital each parameter is to disease transmission and 

prevalence. Sensitivity analysis is commonly used to determine the robustness of model 

predictions to parameter values (since there are usually errors in data collection and presumed 

parameter values). Thus we use it to discover parameters that have a high impact on R0 and 

should be targeted by intervention strategies. The explicit expression of R0 is given by the 

equation (6). Since R0 depends only on ten parameters, we derive an analytical expression for 

its sensitivity to each parameter using the normalized forward sensitivity index [7] as follows:  
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In a similar fashion, we compute the sensitivity indices for all parameters used in equation 

(10). Table 3 shows the sensitivity indices of R0 with respect to the ten parameters. 
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Table 3: Sensitivity indices of R0 with respect to each parameter 

Parameter Sensitivity Index 

c  +1 

  +1 

  +0.561 

  -0.901 

  -1.851 

k  -0.0103 

3  +0.0043 

  -0.00305 

  +0.0053 

d  -0.0153 

From Table 3, we see that, the most sensitive parameters are per capita birth rate,  , per 

capita contact rate, c, probability of transmission of the disease from an infectious individual 

to a susceptible individual per contact, , and the progression rate from latent to infectious 

stage. For almost all parameters, the sign of the sensitivity indices of R0 (i.e., whether R0 

increases or decreases when a parameter increases) agrees with an intuitive expectation from 

the model parameters. For, 0 0 1
R R

c   Ύ Ύ , this means that, increasing (or decreasing) of c or  

  by 10% increases (or decreases) R0 by 10%. Similarly, 0  0.561
R

  Ύ  means that, 

increasing (or decreasing) of   by 10% increases (or decreases) R0 by 5.61%. The negative 

sign of the sensitivity index of R0 with respect to ,d  , k , and  imply an inverse 

relationship between these parameters and R0. For instance, 10% increase (or decrease) in   

leads to approximately a 9.01% decrease (or increase) in R0. Indeed, if a large number of 

infectious individuals are treated while their TB status is at mild stage then a decrease in the 

transmission rate of the disease is expected. Furthermore, the negative sign on the per capita 

birth rate is due the fact that most of the people are vaccinated at birth to reduce the 

probability of being infected hence an increase in   reduces R0 and vice versa. 
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Therefore, to minimize TB transmission in a population, this study recommends that, the 

combination of vaccination, screening and treatment should be implemented. This is due the 

fact that, vaccination reduces the likelihood of an individual to get infected, screening and 

treatment of latently infected people reduces the progression rate to infectious stage and 

treatment of infectious people will stop them from transmitting the disease. 

 

6. Conclusion 

A deterministic TB model has been formulated with the aim of assessing the effect of 

vaccination, screening and treatment on the transmission of TB infections. It has been proved 

that the disease-free equilibrium is locally and globally asymptotically stable if Reff < 1 and 

unstable otherwise while the endemic equilibrium is locally and globally stable if Reff > 1. 

Furthermore, when the effective reproduction number is equal to one, Reff = 1, a backward 

bifurcation occurs. Analytical solutions and numerical simulation shows that, TB incidence 

can be minimized in a population if the combination of vaccination, screening and treatment 

are implemented.  
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