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Abstract: Tuberculosis (TB) is bacterial infectious disease caused by pathogen Mycobacterium tuberculosis. TB 

inflicts many human deaths and suffering globally and Tanzania in particular due to absence, failure and delayed 

interventions. A continuous time deterministic model to assess the impact of vaccination and treatment on 

transmission dynamics of one-strain tuberculosis for the purpose of eliminating TB from community is considered. 

The model analysis is carried out by computing effective reproduction number 
e

R  used to investigate the impact of 

vaccination and treatment interventions. Numerical sensitivity analysis of 
e

R is performed. We find that the 

parameters for proportion of babies vaccinated at birth and treatment of active TB cases have high impact on 
e

R . 

Numerical simulation results show that TB clears from community when 1
e

R   and the combination of both 

vaccination and treatment has desirable effect of curbing TB infections than when one strategy is taken at a time. 

We recommend that vaccination coverage of newly born babies should be accompanied by treatment of active TB 

individuals for significant reduction of disease transmission. 
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1. Introduction 

Tuberculosis (TB) is bacterial infectious disease caused by pathogen Mycobacterium 

tuberculosis with more than one-third of the world human population as its reservoir [4, 11, 13]. 

A global annual estimate of 8.6 million people develop Tuberculosis, of which 1.3 million die 

from disease. It is reported in [23] that, the burden of disease caused by TB is high in developing 

world where poor nutrition, congested accommodation and emergency of HIV are manifested. 

The global estimates of incidence, prevalence and mortality rates per 100,000 population in 2012 

were respectively 255, 303 and 26 and Tanzania incidence, prevalence and mortality rates per 

100,000 population were  165, 176 and 13 respectively as per [23]. It therefore raises a quest to 

find desirable means to curtail TB morbidity and mortality rates. 

Tuberculosis disease is mainly of two types: pulmonary and extra-pulmonary TB. Pulmonary TB 

is a common form of TB that affects lung while extra-pulmonary TB affects other parts of body 

and organs including central nervous system and bone [22]. This particular study focuses on 

pulmonary TB. Tuberculosis is an epidemic disease spreading in the air when the infectious 

person with pulmonary TB expel bacteria by coughing, singing, sneezing, speaking and so on [7]. 

An individual with active TB has usual symptoms which are general weakness or tiredness, fever, 

weight loss, loss of appetite and night sweats. Further symptoms are coughing, coughing up of 

sputum and/ or blood, shortness of breath and chest pains if the infection in the lung get worse 

[9]. TB draws back economics of the world and Tanzania in particular as it affects men than 

women and especially the productive working group [22]. A small proportion of about 10% of 

infected individuals with Mycobacterium tuberculosis develop TB and become infectious within 

two years upon infected [18]. Most become latent for the rest of their lives as long as their 

immune system is not compromised [7]. The recovered individuals from TB do not acquire the 

permanent immunity. Some of them they become latent again. Even with treatment interventions, 

the rates of reinfection TB are higher than those of new TB [18]. Mathematical modeling of 

epidemiology of Tuberculosis has recently become the powerful tool to study the dynamics of 

the disease and impact of various intervention strategies in order to advise public health policy 

makers to construct suitable intervention programs to combat TB infections. [14]  formulated a 

mathematical model of tuberculosis with vaccination. They found that immunizing patients 

towards infection serves as guideline to a typical active TB control. [1] used an age structured 

mathematical model of TB to explore the benefit of vaccine, drug regimen and diagnostics. They 

find that, the combination of vaccine, drug regimen and diagnosis reduce TB incidence by 71% 
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and neonatal vaccination decreases TB incidence by 39% to 52% by the year 2050. [3] 

formulated and analyzed one-strain deterministic tuberculosis model that captures the effects of 

case findings and treatment intervention strategy. They find that case finding accompanied by 

treatment has high impact on TB dynamics than when each measure is taken separately at a time. 

[6] formulated one-strain and two strain tuberculosis models which involve treatment of drug 

sensitive and drug-resistant TB. They find that, the lack of compliance with antibiotic treatment 

cause relapse that leads to resistant TB to drug regimens. This article concentrates on 

formulating  a one strain TB model with vaccination and treatment strategies in order to 

investigate their impact on TB transmission dynamics of population that is purely homogeneous. 

To add more complex interactions to the dynamics of TB, we subdivide the infectious class into 

mild and severe groups. 

2. Model Formulation 

Our population  model is subdivided into six compartments and is developed from the basic 

SEIT (Susceptible-Exposed-Infectious-Treated) compartmental model. A compartment of 

Vaccinated population ( V ) is added to form SVEIT model. In addition compartment of 

infectious population ( I ) is subdivided into two compartments which are severely infected 

population ( 1I ) and mildly infected population ( 2I ). Severely infected population ( 1I ) 

progresses faster to treatment group compared to mild infected population ( 2I ). In this model 

susceptible population will be recruited at a rate λ . Some susceptible individuals will come into 

contact with infectious individuals and being infected at a rate of β. A proportion, ρ  of babies 

will be vaccinated at birth while the remaining proportion  1 ρ  will be left out of vaccination 

to join the susceptible population. Once vaccinated babies loose immunity they become 

susceptible at per-capita rate θ  , whereby 1/ θ  is the period after which a vaccinated baby looses 

immunity. The Latently infected individuals progress to active TB through endogenous 

reactivation. The proportion (1 )η  of Latently infected individuals progresses fast to severely 

infected class, 1I  while the remaining proportion, η  progresses slowly to mildly infected class, 

2
I  at the same per-capita rate 𝜀. Under usual circumstances mildly infected individuals take a 

long time to progress to treatment group, T  than severely infected individuals. That is a 

proportion,  of mildly infected individuals progresses to treatment group, T  while the 

remaining proportion,  1   progresses to severely infected class, 1I at the same per-capita rate 

ω . The severely infected individuals progress to treatment group at a rate of υ . The treatment 
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group, T  is assumed to undergo exogenous re-infection and relapse back to Latent group with 

infection level, γ . The infectious individuals 1I  and 
2

I  are assumed to die at disease induced 

mortality rates of 
1
δ  and 

2
δ  respectively while the rest die naturally at a rate of μ . All variables 

and parameters are assumed to be non-negative. 

In addition the following assumptions are taken into consideration during the formulation of the 

model: 

a. All individuals are born susceptible. 

b. The members of population mix homogeneously. 

c. Age, sex, social status, do not affect the probability of being infected. 

d. Natural recovery is negligible and hence ignored. 

e. Vaccinated population looses immunity and become Susceptible. 

f. No more Vaccination can be administered to an individual infected with TB or to 

someone who previously was vaccinated. 

g. Once recovered from Treatment an individual reverts to be Latent and may 

experience another episode of disease. 

h. Once an individual is infected he/she will not recover if no treatment is given. 

The description of model formulation in section 2, together with their assumptions lead to 

compartmental diagram in Figure 1. 

 

Figure 1: Schematic flow diagram showing dynamics of tuberculosis, where 
1 2

I I I  .  
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The full description of variables and parameters used to formulate the model are in Table 1 and 

Table 2 respectively: 

Table 1: Description of variables of the model. 

Variable Description 

)(tS  The Susceptible who are at risk of being infected at time t . 

)(tL  The latently infected individuals at time t . 

)(tV  Vaccinated individuals at time t . 

)(1 tI  Individuals who are severely infected with TB at time t . 

)(2 tI
 

Individuals who are mildly infected with TB at time t . 

)(tT  Individuals Treated against TB at time t . 

 

Table 2: Description of Parameters of the model. 

Parameter Description 

  Per capita birth rate. 

β Per capita infection rate. 

ρ Proportional of babies who are being vaccinated at birth. 

θ The rate at which a vaccinated individual looses immunity. 

𝜀 The rate of progression from Latent class to both severely and mildly Infected 

classes. 

η Proportional of Latently infected population progressing to mild infected class.  

μ Per capita natural death rate. 

1  Per capita additional death rate of severely infected class. 

2  Per capita additional death rate of mildly infected class. 

  Proportional of mildly infected class who are treated. 

  The rate at which a mildly infected individual is transferred to both severely 

infected and treatment classes. 

υ The rate at which a severely infected candidate is transferred to treatment class. 

γ The factor that reduces the level of reinfection. 
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2.1 Equations of the Model. 

Basing on assumptions made and relationship that exists between variables shown in Figure 1, 

the system of six ordinary differential equations that describes the dynamics of tuberculosis in 

presence of vaccination and treatment is given by: 

 

 
 

 

   
 

   

 

 

1 2

1 2 1 2

1

2 1 1

2

2 2

1 2

1 2

1 2

1

1 1 ( )

.

I IdS
ρ N βS μS θV

dt N

dV
ρN μ θ V

dt

I I I IdL
βS γβT μ ε L

dt N N

dI
η εL ωI μ δ υ I

dt

dI
ηεL μ ω δ I

dt

I IdT
υI ωI μ γβ T

dt N

N S V L I I T


    

  

 
   

      

   

 
     

 

     

  (1) 

By adding the state equations in (1) we end up with rate of change of population, 

   1 1 2 2

dN
λ μ N δ I δ I

dt
      (2) 

2.2 Normalization of the model. 

The model (1) can easily be analyzed after being normalized such that the total population is one. 

The normalization is done by scaling the population of each compartment by total population. 

We transform the actual proportions by setting: 

 1 2

1 2
, , , , ,     

I IS V L T
s v l i i h

N N N N N N
  (3) 

   

where by 
1 2

1.s v l i i h       

Substituting (3) into (2) we end up with: 
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  1 1 2 2

dN
λ μ δ i δ i N

dt
      (4) 

Upon differentiating the proportions in (3) with respect to time t  and make simplification, leads 

to the following dimensionless system:  

 

    

 

     

     

 

  

1 2 1 1 2 2

1 1 2 2

1 2 1 2 1 1 2 2

1

2 1 1 1 2 2 1

2

2 1 1 2 2 2

1 2 1 2 1 1 2 2

1 ,

,

,

1 1

  .

,

,

       

    

       

        

     

      

ds
ρ λ θv λ β i i δ i δ i s

dt

dv
ρλ λ θ δ i δ i v

dt

dl
βs i i γβh i i λ ε δ i δ i l

dt

di
η εl ωi λ δ υ δ i δ i i

dt

di
ηεl λ ω δ δ i δ i i

dt

dh
υi ωi λ γβ i i δ i δ i h

dt

  (5) 

subject to condition 
1 2

1.s v l i i h       All the feasible solutions of system (5) enter the 

region of biological interest defined by 

   6

1 2 1 2
, , , , , : 1s v l i i h s v l i i h


       Ω   

that is positive-invariant. We consider the dynamics of the flow generated by system (5) in Ω . In 

this region, the model (5) is considered to be both biologically and mathematically well posed 

[12]. 

3. Analysis of the model. 

The normalized model (5) will be analyzed qualitatively so as to get some insights on dynamics 

of tuberculosis and to get the better understanding of the effects of treatment and vaccination on 

transmission of TB infections in human population. The threshold that indicates whether the 

disease can be eliminated from or persist to the community will be determined. 

3.1  Existence of Disease Free Equilibrium (DFE) 

Equilibrium points are found by setting zeros to the right hand sides of equations of model (5). 

That is: 

 1 2 0     
di dids dv dl dh

dt dt dt dt dt dt
  (6)  
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Let the disease free equilibrium point of tuberculosis model (5) be,  0

0

0 0 0

1 2

0 0, , , , ,E s v l i i h . 

Supplying information (6) into (5) and  setting 
1 2

0l i i h     in absence of disease attack we 

find that 

 
 0 0
1

;
 

 
 

θ λ ρ ρλ
s v

λ θ λ θ
  (7) 

Therefore the disease free equilibrium of the model  (5) exists and is given by: 

  
 0

0

0 0 0

2

0 0

1

1
, , , , , , ,0,0,0,0 .

  
   

  

θ λ ρ ρλ
E s v l i i h

λ θ λ θ
  (8) 

3.2 Effective Reproduction number, 
e

R   

The effective reproduction number, 
e

R  is defined as the measure of average number of infections 

caused by a single infectious individual introduced in a community in which intervention 

strategies (in our case is treatment and vaccination) is administered [16, 17]. We derive 
e

R  by 

using the next generation operator method [21]. 

If we define F  to be a non-negative m m  matrix and V  to be a non-singular M -matrix such 

that 

 
   0 0

 and  with 1 , ,
i i

j j

E E
F V i j m

x x

    
      

       

  

where 
i
 is the rate of appearance of new infections in compartment i  and 

i i i

    in 

which 
i

  is the rate of transfer of individual into compartment i  by all other means, and 
i

  is 

the rate of transfer of individual out of compartment i . The point 
0

E  is of disease free 

equilibrium as appeared in (8). It follows that the effective reproduction number, 
e

R  of model (5) 

is the spectral radius (dominant eigenvalue) of 
1FV 
 denoted by  1

e
R ρ FV  . 

By arranging equations of system (5) in such a way that the infectious classes come first we end 

up with a system of equations represented by 

      , 1,2, ,   
i i i i

x f x x x i n   
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where      i i i
x x x   . Each function 

i
f  is continuous and at least twice 

differentiable in the region defined by Ω . 

We derive 
i
 and 

i i i

   respectively to be: 

   11

2

4

2

5

6

1

3

2

0

0
,

0

0

0

i

βs i i γβh i i    
  
  
  

    
  
  
  

      

  

and 

 

     

 

  
    

 

1 1 2 21

2 1 1 1 2 2 12

2 1 1 2 2 23

1 2 1 2 1 1 2 24

5 1 2 1 1 2 2

6 1 1 2 2

1 1

 

1

i

λ ε δ i δ i l

η εl ωi λ δ υ δ i δ i i

ηεl λ ω δ δ i δ i i

υi ωi λ γβ i i δ i δ i h

ρ λ θv λ β i i δ i δ i s

ρλ λ θ δ i δ i v

    
             
       
            
          
 
         

.




  

By considering infected classes only and making use of linearization technique, the Jacobian 

matrices F and V at disease free equilibrium point 
0

E  are respectively given by: 

     
0

0 0 0

0 0 0

1 1β θ λ ρ β θ λ ρ

λ θ λ θ

F

 
 
 


   

 


 
 
 
 

 and    1

2

0 0

.

0

1 1

λ ε

η ε λ δ υ ω

η

V

ε λ ω δ



     

  

 
 


 
  

 

Representing the original parameters by , , , , ,  and a b c d e f g  such that: 

    1 2
, 1 , , 1 , ,            a λ ε b η ε c λ δ υ d ω e ηε f λ ω δ  and 

  1β θ λ ρ
g

λ θ

 



,  

 then the inverse of V and matrix product 
1FV 
 are  computed and respectively found to be: 
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1

1

1
0

1

0 0
a

bf ed d

acf c cf

e

a f

V

f



 
 
 
 

  














 and 

   

1 0 0 0

0 0 0

bf ed g d ce g
g

afc af fc

F

c

V 

   
 
 
 
 


 



 







. 

The matrix product 1FV   is upper triangular matrix whose eigenvalues are located at its main 

diagonal as 
 

0,  0,  and 
bf ed e

g
afc af

 
 

 
.  Thus the effective reproduction number, e

R  is: 

 
 

 
e

bf ed e
g

afc af
R

 
 

 
 . 

Expressing , , , , ,a b c d e f  and g  in terms of original parameters it leads to effective reproduction 

number: 

 
  

 

    

      
2

2 1 2

1 1 1
e

β θ λ ρ η λ ω δ ε ωηε ηε
R

λ θ λ ε λ ω δ λ δ υ λ ε λ ω δ

       
  

          
  (9) 

3.3 Local stability of Disease free equilibrium (DFE) 

Using Theorem 2 from [21], the following result is established. 

Theorem 3.1. The disease free equilibrium of model (5), given the effective reproduction number, 

𝑅𝑒 is locally assymptotically stable if 𝑅𝑒 < 1, and unstable if 𝑅𝑒 > 1. 

Proof. It is enough to show that Disease Free equilibrium point of our system (5) is stable if and 

only if trace and determinant of Jacobian matrix at 
0

E , denoted by  0
J E  are negative and 

positive respectively. Our Jacobian matrix evaluated at disease free equilibrium point is given by: 
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 

 
 

 
 

 

 
   

     

 

1

1

2

2

0

1

2

0 0

0 0 0

0 0 0

0 0 1 1 0

0 0 0 0

1

0 0

1

0

1

1

θ λ ρ θ λ ρ

λ θ λ θ

ρλ ρλ
λ θ δ δ

λ θ λ θ

θ λ ρ θ λ ρ
λ ε

λ

λ θ β δ β δ

J E
β β

θ

η ε λ δ υ ω

ηε λ ω δ

υ ω

θ

λ

λ

    
        
     
 
 
 
   

   

 


 

  
     
    
 

     
   


  



  







  

Trace and determinant of matrix  0
J E  denoted by   0

Tr J E  and    0
det J E  are 

respectively given by: 

     0 1 2
Tr 6 0J E λ θ ε υ ω δ δ           

and 

    

 
   

     

 

 

  
 

      

   

  
 

    

      

2 1

2

2

1

0 1

2

2

2 1

2

2

det

1 1

1
1 1

1 1 1

1 1

0

θ λ ρ θ λ ρ
λ ε

λ θ λ θ

λ θ

β θ λ ρ
η λ ω δ ε ω λ δ υ ηε

λ θλ θ

λ ε λ ω δ λ δ υ

β θ λ ρ η λ ω δ ε ωηε ηε

λ θ λ ε λ

β β

J E λ η ε λ δ

ω δ λ δ υ λ ε

υ

λ ω δ

ω

ηε λ ω δ

λ

A

   
    

   

      

  

 


   


 



 
      

  
 



     

       


        


 
 

 

 

1

1 .
e

A R

 
 
  



 











  

where     2

1 2
0A λ λ θ λ ε λ δ υ λ ω δ        . 

Thus   0
det 0J E   if and only if 1

e
R  . Since the trace of matrix  0

J E is negative and its 

determinant is strictly greater than zero when 1
e

R  , then disease free equilibrium point 
0

E  is 

locally asymptotically stable and completes our proof.    
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The results of Theorem 3.1 indicate that TB clears from community if 1
e

R  . That is when the 

initial population of model (5) is in basin of attraction of disease free equilibrium, 
0

E . 

3.4  Analysis of Effective Reproduction number . 

 If we denote the effective reproduction number 
e

R of model (5)  by 
VT

R (reproduction number 

when vaccination and treatment are administered) and combine denominators of equation (9) we 

end up with: 

 
        

    
2 1

2 1

1 1 1

e VT

β θ λ ρ η λ ω δ ε ω λ δ υ ηε
R R

λ θ λ ε λ ω δ λ δ υ

            
     

  (10) 

We define the threshold  
VT

R  as a number of secondary infections when one infectious individual 

is introduced in a population which is totally susceptible where V  is the number of vaccinated 

newly born babies and T  is treatment administered to active TB individuals. 

In absence of vaccination and treatment we have 

 
  

      
2

0
( , , , ) (0,0,0,0)

2 1 2

1
lim  

VT
ρ θ υ

η λ ω δ ε ωηε ηε
R R β

λ ε λ ω δ λ δ λ ε λ ω δ 

    
   

        
  (11) 

We define 

 

  

   

  

2

0( )

2 1

0(mild)

2

1
,

severe

η λ ω δ ε ωηε
R β

λ ε λ ω δ λ δ

βηε
R

λ ε λ ω δ

    
  

     


  

  (12) 

where 
0(severe)

R and 
0(mild)

R   are basic reproduction numbers for severely  and mildly infected 

classes respectively. 

The relation (11) simplifies to 

 
    

   
2 1

0
( , , , ) (0,0,0,0)

2 1

1
lim  

VT
ρ θ υ

β η λ ω δ ε ω λ δ ηε
R R

λ ε λ ω δ λ δ 

        
   

  (13) 

which is the basic reproduction number (threshold quantity in absence of intervention strategies).  

If vaccination alone is administered then, equation (10) is written as 



DYNAMICS OF ONE-STRAIN PULMONARY TUBERCULOSIS MODEL                             13 

 
   

       

    

 

 
2 1

0 1 0
, 0,0

2 1

1 1 1
lim

VT V
υ

β θ λ ρ η λ ω δ ε ω λ δ ηε θ λ ρ
R R R K R

λ θ λ ε λ ω δ λ δ λ θ 

              
     

  (14) 

Since 
 

 1

1
1

θ λ ρ
K

λ θ

 
 


 then vaccinating babies at birth with TB vaccine helps reducing 

initial disease transmission. Differentiating 
V

R with respect to vaccination rate ρ, we have 

 

    

    
2 1

0

2 1

1
0V

λβ η λ ω δ ε ω λ δ ηεR λ
R

ρ λ θ λ ε λ ω δ λ δ λ θ

            
      

  (15) 

The expression in (15) reveals that 
V

R  is a decreasing function of ρ and inequality (15) confirms 

that increasing the proportion of vaccinated babies at birth has positive impacts on TB control 

and increases the efforts to cut out epidemic. 

In case only treatment is administered, it follows from equation (10) that, 

 
   

     
   

2 1

, 0,0
2 1

1 1
lim

VT T
ρ θ

β η λ ω δ ε ω λ δ υ ηε
R R

λ ε λ ω δ λ δ υ

          
    

  (16) 

 Differentiating 𝑅𝑇 with respect to proportional of treated mildly infected individuals 𝜙 we find 

that 

 
   2 1

0T
R βωηε

λ ε λ ω δ λ δ υ


  

     
  (17) 

Thus 
T

R  is a decreasing function of ϕ and it shows that increasing the proportion of treated 

mildly infected individuals has a positive effect on TB control and increases the efforts to curtail 

TB spread. 

Following an approach employed by [2, 3], the effective reproduction number 
VT

R  can also be 

established by using the following relation: 

2 0VT
R K R , where by expression for 

2
K  is given by: 

          

        

2 1 1

2 1 1

2

1 1 1
1

1

θ λ ρ η λ ω δ ε ω λ δ υ ηε λ δ

λ θ η λ ω δ ε ω λ δ ηε λ υ
K

δ

             
          

 . 
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It follows that, 

          

        

 

        

        

2 1 1

2 1

2 1 1

1 2

2 1 1

1 1 1 1

1

1 1
 0

1

θ λ ρ η λ ω δ ε ω λ δ υ ηε λ δ θ λ ρ
K K

λ θλ θ η λ ω δ ε ω λ δ ηε λ δ υ

θ λ ρ ωηε λ δ η λ ω δ ευ

λ θ η λ ω δ ε ω λ δ ηε λ δ υ

ωη

                
          

           
          


 

Thus 
2 1

0K K  . It follows that  2 0 1 0 2 1 0
0

VT V
R R K R K R K K R       so that 

VT V
R R . This implies 

that the combination of both treatment and vaccination has great impact in reducing disease 

transmission than to take the two measures one at a time. 

Investigating the effect of vaccination in presence of treatment is considered by differentiating   

VT
R  with respect to proportional of vaccinated babies at birth 𝜌 as follows: 

 
     

    
2 1

2 1

1 1
 0VT
βλ η λ ω δ ε ω λ δ υ ηεR

ρ λ θ λ ε λ ω δ λ δ υ

            
      

  (18) 

This implies that increasing vaccination coverage of babies at birth has significant impact to the 

control of TB if accompanied by treatment of active TB. 

We have already showed algebraically that VT V
R R . The general relationship that associates the 

reproduction numbers 0(severe) 0(mild)
,  ,  ,  ,  

VT T V
R R R R R  and 

0
R  algebraically is involving. Graphical 

Illustrations involving these relationships are presented in [15] , by using linear relationship that 

exists between the growth rate of reproduction number with respect to transmission rate β  when 

other parameters remain fixed. 

3.5 Numerical Sensitivity Analysis of Effective Reproduction number, 
e

R . 

In this section numerical sensitivity analysis of effective Reproduction number is performed by 

using parameters in Table 3 whose numerical values are from existing literature as well as 

estimated to suit this particular intended study to determine the relative importance of each 

parameter involved in 
e

R to the transmission of tuberculosis. 
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Table 3: Parameter values for model (5). 

Symbol Value/range (
1

yr


 ) Source 

λ   0.05 Estimated 

β   2.58 Estimated 

ρ   0.4 Estimated 

θ   0.1 Estimated 

ε   0.03 [10] 

η   0.7 (0.7-0.95) [17] 

μ   0.01923 (0.01-0.04) [5] 

1
δ   0.3 (0.07-0.365) [20] 

2
δ  0.2 (0.07-0.365) [20] 

   0.6 Estimated 

ω   0.2 Estimated 

υ   0.3 Estimated 

γ   0.2 Estimated 

 

Sensitivity analysis is used to determine which parameters have high impact on 
e

R  so as to be 

targeted by intervention strategies [8, 19]. The approach of [8] is used to calculate the sensitivity 

indices of 
e

R to the parameters involved in it so as to determine how best to reduce human 

mortality and morbidity due to Tuberculosis. The normalized forward sensitivity index is the 

ratio of relative change of variable to the relative change in parameter. If the variable is a 

differentiable function of the parameter then the sensitivity index may be defined by using partial 

derivatives as follows. 

Definition 1. The normalized forward sensitivity index of a variable p that depends on a 

parameter q  is defined as 

 p

q

p q
Υ

q p


 


  (19) 

Since we have explicit formula for effective reproduction number 
e

R  in (12), it follows that the 

normalized forward sensitivity indices of 
e

R with respect to parameters 
i

q  involved in 
e

R is 

given by: 



16                                            MLAY, LUBOOBI, KUZNETSOV, AND SHAHADA 

 e

i

R e i

q

i e

R q
Υ

q R


 


  (20) 

For instance the sensitivity indices of 
e

R  with respect to β  and ρ  are given respectively by:

1eR e

β

e

R β
Υ

β R


   


 and 0.1538eR e

ρ

e

R ρ
Υ

ρ R


   


. By using the same approach the indices  

1 2
, , , , , , ,



e e e e e e e eR R R R R R R R

θ λ η ω δ ε δ
Υ Υ Υ Υ Υ Υ Υ Υ  and eR

ν
Υ  are obtained  and tabulated accordingly and ordered 

from highest sensitive to least sensitive parameter as in Table 4. 

 

Table 4: Sensitivity indices of  evaluated at baseline parameter values given in Table 3. 

Parameter Sensitivity Index 

β  +1.0000 

λ  -0.8382 

ε  +0.6250 

2
δ  -0.3516 

η  +0.3034 

ω  -0.2649 

ρ  -0.1538 

υ  -0.1365 

1
δ  -0.1365 

  -0.1300 

θ  +0.1026 

 

3.6 Interpretations of Sensitivity Indices. 

From Table 4 we find that the parameters , ,β ε η  and θ  have positive indices. This means that, 

increasing (decreasing) one of these parameters while keeping others constant increases 

(decreases) the value of effective reproduction number, 
e

R implying the increase (decrease) of 

endemicity of tuberculosis disease respectively. For instance, 0.3034eR

η
Υ   , implies that 

increasing proportional of latently infected population, η that is progressing to mild infected 

class by 10%, increases the value of 
e

R by 3.034% and hence increases the endemicity of the 

disease. In contrast reducing the proportional η by 10% decreases the value of 
e

R by 3.034% 
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and hence lowering the endemicity of the disease. On the other hand the parameters 

1 2
, , , , ,λ δ ω ρ ν δ  and   have negative indices, implying that increasing (decreasing) one of these 

parameters while keeping the rest constant decreases (increases) the value of effective 

reproduction number, 
e

R and hence decreases (increases) the endemicity of TB. For example, 

0.1538eR

ρ
Υ   , implies that, increasing the proportional of vaccinated babies ρ  by 50% 

decreases the value of 
e

R approximately by 7.69% and hence reducing the endemicity of TB. 

However, decreasing the proportional of vaccinated babies, ρ , by 50% increases the value of 

e
R  by 7.69% and hence increases the endemicity of the disease. In particular, following the 

magnitudes of sensitive indices, 
e

R is most positively sensitive to parameters ,β ε  and η . In 

addition, 
e

R is most negatively sensitive to parameters 
2

, ,λ δ ω and ρ . However 
e

R  is 

moderately negatively sensitive to parameters 
1

,ν δ  and   followed by the least positive sensitive 

parameter, θ . In our case the most sensitive and moderate parameters should be careful 

estimated in order to determine the robustness of model predictions to parameter values and to 

determine parameters which have high impact on 
e

R and which should be targeted by 

intervention strategies [8]. 

4. Numerical Simulations 

In this section numerical simulation of normalized model (5) is carried out in order to illustrate 

the qualitative results by using available parameter values from existing literature as well as 

estimated ones. Unless otherwise stated parameter values appeared in Table 3 will be used 

during the simulation process. 

4.1 Impact of vaccination and treatment rates on effective reproduction number 
e

R . 

In this section we analyze the effective reproduction number 
e

R  in terms of vaccination rate ρ  

of newly born babies and treatment rate υ  of severely infected individuals. The aim here is to 

determine by using the threshold 
e

R  whether or not the vaccination and treatment coverage 

control or eliminate TB from the community. 

Figure 2 shows the effect of vaccination rate ρ  and treatment rate υ  of severely infected 

individuals on effective reproduction number 
e

R  when 1.6β  . All other parameters are given 

in Table 3. As expected when the vaccination rate ρ  is fixed then the effective reproduction 
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number 
e

R  decreases as treatment rate of severely infected individuals υ  increases and vice 

versa. The combination of vaccination coverage and treatment of infectious individuals can 

reduce the threshold 
e

R  to less than unity. Therefore the best intervention strategy can be 

vaccination of newly born babies and treatment of severely infected individuals or combination 

of vaccination and treatment. 

 

 

Figure 2: Graph of effective reproduction ratio 
e

R  in terms of ρ and υ  when 1.6β  . All other 

parameters are as in Table 3. 

4.2 Numerical Simulation of model (5) when 1
e

R  . 

The system (5) is solved by using forward Runge-Kutta fourth order scheme and MATLAB 

software with in-built ordinary differential equation (ode 45) solver used to simulate it to 

produce time series plot as shown in Figure 3. In Figure 3 dynamic behaviors of susceptible, 

vaccinated, latently infected, severely infected, mildly infected and treated classes when effective 

reproduction number 0.0169
e

R   is shown. The plot is produced by using estimated parametric 

values 
1 2

0.88; 0.067; 0.00396; 0.4; 0.16; 0.36; 0.6; 0.3; 0.6; 0.3         β θ ε η λ δ ω ρ ν δ  

and 0.5  . With initial values          1 2
0 0.55, 0 0.15, 0 0.1, 0 0.1, 0 0.05    s v l i i  and 

 0 0.05h  , the model (5) attains the asymptotic stability of disease free equilibrium point, 

   * * * * * *

0 1 2
, , , , , 0.7885,0.2115,0,0,0,0 E s v l i i h . In absence of attack, susceptible and 

vaccinated proportions increase with time to their carrying capacities. At disease free equilibrium 
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point both susceptible and vaccinated they add up to the maximum carrying capacity of 

population proportions in the community, i.e. * * 0.7885 0.2115 1s v    . On the other hand, 

latently infected and treated proportions in Figure 3 respectively increase  with time and decrease 

to zero with increasing time. In additional infectious groups (severely and mildly infected 

proportions) decrease and attain disease free equilibrium as time increases. That is in presence of 

intervention (control strategies) the disease seem to clear from community since the effective 

reproduction number is 0.0169 1
e

R   . This result supports the theorem of local stability of 

disease free equilibrium. 

 

Figure 3: Shows the dynamics of susceptible, vaccinated, latently infected, severely infected, 

mildly infected and treated population proportions in presence of interventions with increasing 

time. 

4.3 Phase portraits illustrating dynamical behavior of population proportions at DFE. 

In this section phase portraits to illustrate the dynamics of the model (5) at disease free 

equilibrium point for susceptible class versus latently infected, severely infected, mildly infected, 

and treated classes are plotted by using estimated parametric values 

1 2
0.88; 0.067; 0.00396; 0.4; 0.16; 0.36; 0.6; 0.3; 0.6; 0.3         β θ ε η λ δ ω ρ ν δ  and 
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0.5  . With different varying initial conditions, each curve of both latently infected and treated 

population proportions shown in Figure 4 (a) and Figure 4 (d) respectively increases  for short 

period of time and finally sharply decrease and stabilize at disease free equilibrium point as time 

increases. Figure 4 (b) and Figure 4 (c) show that the proportions of severely infected and mildly 

infected decrease as susceptible proportion increases and stabilize at disease free equilibrium 

point. 

 

(a)                                                                                              (b)  

 

(c)                                                                      (d)  

Figure 4: Shows Phase plane portraits for dynamics of susceptible population proportion and (a) 

latently infected (b) severely infected (c) mildly infected (d) treated population proportions 

showing disease free equilibrium point with varying initial values as time increases. 
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5. Conclusion  

In this paper, a continuous time deterministic model with vaccination and treatment as 

intervention strategies has been formulated to assess their impacts on transmission dynamics of 

Tuberculosis Infections. The disease free equilibrium has been proved to be stable when 

effective reproduction number, 1
e

R   and unstable otherwise. The numerical simulation results 

show that in presence of interventions, both severely and mildly infected population proportions 

decrease to zero and stabilize at disease free equilibrium as time increases. In addition, the 

numerical results show that, the combination of both vaccination and treatment reduce threshold 

e
R  to less than unity and have desirable effect of clearing TB from community than when each 

strategy is taken at a time. 
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