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Abstract. Vector borne diseases are spreading very rapidly in the populations all over the World. Thus, there is

need to mobilize people about transmission of the disease in order to eradicate it. In this paper we propose a de-

terministic mathematical model through non-linear ordinary differential equations in order to gain an insight into

dynamics of yellow fever between primates, human beings and Aedes mosquito for the purpose of controlling the

disease. In the analysis of the model we investigate the basic reproduction number, R0, between primates, vectors

and human host. The disease threshold parameter is obtained using next generation matrix approach and is of the

form R2
0 = Rh +Rm, where Rh and Rm are the reproduction number of human-vector and vector-primate compart-

ments respectively. It is proved that the global transmission dynamics of the disease are completely determined by

the basic reproduction number. In order to study the effect of model parameters to R0, the sensitivity analysis of

basic reproductive number, R0, with respect to epidemiological and parameters is performed. Results call attention

to parameters regarding to daily bitting rate of mosquitoes, birth rate of vectors, probability of transmission from

infectious vector to susceptible human and vice versa, recruitment of human host which includes unvaccinated

immigrants as well as the incubation period for both vector and humans. Thus, quick and focused interventions,

like personal protection and destruction of breeding sites, may be effective for controlling the disease transmission.

Keywords: yellow fever; primates; humans; vector born infectious disease; sensitivity analysis.

2010 AMS Subject Classification: 92B05.

∗Corresponding author

Received July 21, 2014

1



2 MONICA KUNG’ARO, LIVINGSTONE S. LUBOOBI, FRANCIS SHAHADA

1. Introduction

Yellow Fever (YF) is among the vector-borne infectious diseases caused by viruses which

is primarily transmitted by disease transmitting biological agents, called vectors. It is a viral

hemorrhagic fever caused by yellow fever virus (YFV) and is transmitted through the bite of an

infected female yellow fever mosquito [26]. It only infects humans, other primates and several

species of mosquito [36]. The disease is endemic in tropical and subtropical areas of Africa and

South America.

A dramatic resurgence of YF has occurred since 1980s in both sub-Saharan Africa and South

America [27]. Increasing migration, accelerating urbanization, and improved travel infrastruc-

ture are global trends that increase the risk of YF spreading to parts of the world where the

disease had disappeared. There are three epidemiologically different infectious cycles, in which

the YFV is transmitted from mosquitoes to humans and/or other primates [2]: jungle (sylvatic),

intermediate (savannah), and urban. In the ‘urban cycle’, only the yellow fever mosquito Aedes

aegypti is involved.

Besides the urban cycle there is, both in Africa and South America, a sylvatic cycle (forest

cycle or jungle cycle), where Aedes africanus (in Africa) or mosquitoes of the genus Haem-

agogus and Sabethes (in South America) serve as vectors. In the jungle, mosquitoes infect

mainly non-human primates; and the disease is mostly asymptomatic in African primates. In

South America, the sylvatic cycle is currently the only way humans can infect each other [2].

People who are bitten by Aedes africanus or Haemogogus in the jungle become infected and

can carry the virus to urban centres, where Aedes aegypti acts as a vector. It is because of this

sylvatic cycle that yellow fever cannot be eradicated [2].

In Africa the third infectious cycle, ‘savannah cycle’ or intermediate cycle, occurs between

the jungle and urban cycle. Different mosquitoes of the genus Aedes are involved. In recent

years, this has been the most common form of transmission of yellow fever in Africa [37]. In

humans, yellow fever’s incubation period is three to six days. During this time, there are gen-

erally no symptoms identifiable to the host [30]. After that time, a person infected begins with

an abrupt onset of symptoms, including fever and chills, intense headache and lower backache,

muscle aches, nausea and extreme exhaustion.



REPRODUCTION NUMBER FOR YELLOW FEVER DYNAMICS 3

The World Health Organization estimated that YF causes 200,000 illnesses and 30,000 deaths

every year in unvaccinated populations and today 90% of the infections occur in African conti-

nent [30].

Mathematical models have become an important tool in analysing the spread and control of

infectious diseases. Thome et al. [31] conducted a study on optimal control of Aedes aegypti

mosquitoes by the sterile insect technique (SIT) and insecticide. They presented a mathemati-

cal model to describe the dynamics of mosquito population when sterile male mosquitoes are

introduced as a biological control, besides the application of insecticide. Their results showed

that application of insecticide is needed at the beginning of the control in order to reduce the

Aedes aegypti populations.

Monath and Cetron [22] conducted a study to address transmission and prevention of YF

in persons traveling to the tropics. They argued that because YF is maintained in nature by

transmission between monkeys and mosquitoes and because it cannot be eradicated, prevention

and control of the disease requires continuous immunization of human populations at risk.

Another theoretical study was done by Amaku et al. [1] to address the question as to why

dengue and yellow fever coexist in some areas of the world and not in others? They developed

a theoretical model which includes humans and two mosquito species, Aedes aegypti (which

transmits both infections: yellow fever and dengue) and Aedes albopictus (which transmits

only dengue). Their results shows that in Asia, vaccination of the local community is virtually

absent but travelers from endemic areas are demanded to produce a vaccination certificate at

entrance of the countries of this region so as to reduce the probability of importation of the

disease. They recommended on the role of vaccination of population in the endemic regions

aiming to control yellow fever epidemic. Most of these papers, consider one host only.

In this paper, we propose a mathematical model of YF that assesses the dynamics of YF

between two hosts (primates and human beings) with one vector. The developed model is of

type SEIRV for human host and SEI for the vector and primates. The model is based on the

basic model of Dengue transmission (the YF like disease) by Yang and Ferreira [35]. Modi-

fications have been made to incorporate primates as another host, vaccination, treatment and

immigration.
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2. Materials and Methods

2.1 Model Formulation

We formulate a model for the spread of YF in the human, vector and primates populations

with the total population sizes at time t given by NH(t), NV (t) and NM(t) respectively. The

populations are further compartmentalized into epidemiological classes as shown in the model

flow diagram in Figure 1. The vector and primate compartments of the model do not include the

immune class as they never recover from the infection, that is their infective period ends with

their death due to their relatively short life cycle.

As indicated in the compartmental diagram Figure 1, the model divides the human population

into 5 classes: susceptible, SH , vaccinated, VH , exposed, EH , infectious, IH and recovered

(immune), RH . People enter susceptible class either through per capita birth at a constant rate

bH or through immigration (Λ) whereby proportion ρ of the immigrants enter to the vaccinated

class. Susceptible individuals may choose to be vaccinated at the rate ε .

We divide the vector (mosquito) population into 3 classes: susceptible, SV , exposed, EV , and

infectious, IV . Female YF mosquitoes enter the susceptible class through birth then moves from

the susceptible to the exposed class and later to the infectious class. The mosquito remains

infectious for life [7] and leave the population through a per capita density-dependent natural

death rate.

We also divide the primates population which is the source of infection [11] into 3 classes:

susceptible, SM, exposed, EM, and infectious, IM. When an infected primate is bitten by a tree-

hole breeding mosquito, the mosquito acquires the virus and then the mosquito can pass the

virus on to any number of other primates and humans it may bite when it comes across them.

When human is bitten by an infected mosquito, the human may acquire the virus. The infected

human returns to the city, where an urban mosquito (Aedes aegypt) serves as a viral vector

spreading infection rapidly by bitting other humans.

The developed model rely on the following assumptions, the new born babies do not have the

disease, the efficacy of the vaccine is 100% effective for not more than ten years, the disease
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Parameters of the model are as shown in Table 1:

TABLE 1. Description of parameters of the model system (4)

Symbol Description

β1 Transmission probability of vector to human

β2 Transmission probability of human to vector

β3 Transmission probability of primate to vector

β4 Transmission probability of vector to primate

δh Progression rate from eh to ih

δv Progression rate from ev to iv

δm Progression rate from em to im

bh Birth rate of human

bv Birth rate of vector

bm Birth rate of primates

a Daily bitting rate

γ Recovery rate

α Death rate due to disease for human

ω rate of relapse of vaccinated and recovered human

ε vaccination rate of susceptible human

ρ proportion of immigrant who are vaccinated

σ arrival rate of immigrant per individual per time

µh natural death rate of human

µv natural death rate of vector

µm natural death rate of primates

has no epidemiological effect on the demographic dynamics of the vector (mosquito), we ignore

bites of an infected female mosquito onto an infected human host.

However, we also assume that the rate of relapse of vaccinated individual back to suscepti-

bility is the same as that of recovered individuals and no vertical transmission of the infection
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in the vector population. Migration of primates was ignored, that is to say; mosquitoes that go

to the primates habitats are the ones infected by the bites of infected primates and can infect

susceptible primates.

2.2 Model Flow Diagram and Description

Basing on the above assumptions, the model for transmission dynamics of YF in human,

vector and primates population is as shown in Figure 1.

When an infectious female Aedes aegypt mosquito bites a susceptible human, there is some

FIGURE 1. model flow diagram for transmission dynamics of YF.

finite probability that the parasite will be passed on to the human and the person will move

to the exposed class. After a certain period of time, people from the exposed class enter the

infectious class at a rate δ that is the reciprocal of the duration of the latent period.

After some time, the infectious humans undergo treatment and recover at the rate γ , hence

move to the recovered class. The recovered humans have some immunity to the disease and

do not get clinically ill, after some years, they lose their immunity and return to the susceptible

class at the rate ω . Humans leave the population through natural death rate µH , and through a
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per capita disease-induced death rate α , which is small in this case. However, like any other

vector born diseases the YF disease induced death rate is very small in comparison with the

recovery rate [31].

2.3 Model Equations

Applying the assumptions, definition of variables and parameters and description of terms

above, the differential equations which describe the dynamics of YF in the human, vector and

primates population are formulated as shown below:

Human:

(1)

dSH(t)
dt

= bhNH +(1−ρ)Λ+ω(VH +RH)−λvh− εSH−µhSH ,

dVH(t)
dt

= ρΛ+ εSH−ωVH−µhVH ,

dEH(t)
dt

= λvh−δhEH−µhEH ,

dIH(t)
dt

= δhEH− (µh +α)IH− γIH ,

dRH(t)
dt

= γIH−µhRH−ωRH ,

Vector:

(2)

dSV (t)
dt

= bvNV − (λhv +λmv)−µvSV ,

dEV (t)
dt

= (λhv +λmv)−δvEV −µvEV ,

dIV (t)
dt

= δvEV −µvIV ,

Primates:

(3)

dSM(t)
dt

= bmNM−λvm−µmSM,

dEM(t)
dt

= λvm−δmEM−µmEM,

dIM(t)
dt

= δmEM−µmIM.

where; λvh =
aβ1SHIV

NV
, λhv =

aβ2SV IH

NH
, λmv =

aβ3SV IM

NM
and λvm =

aβ4SMIV
NV

.

In the model the term λvh =
aβ1SHIV

NV
denotes the rate at which susceptible human hosts SH get

infected from the infected vector IV (force of infection from vector to human), λhv =
aβ2SV IH

NH
denotes the rate at which susceptible vector SV get infected from the infected human host IH
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(infection force from human host to vector), λmv =
aβ3SV IM

NM
denotes the rate at which the sus-

ceptible vector SV get infected from the infected primate IM (force of infection from primate

to vector) and the term λvm =
aβ4SMIV

NV
denotes the rate at which the susceptible primates SM

get infected from the infected vector IV . However, it is observed that the infected vector IV can

transmit the infection to both the human hosts and the primates.

The total population sizes NH(t), NV (t) and NM(t) can be determined by:

NH(t) = SH(t)+VH(t)+EH(t)+ IH(t)+RH(t),

NV (t) = SV (t)+EV (t)+ IV (t),

NM(t) = SM(t)+EM(t)+ IM(t).

Also, adding from the differential equations, of the model system (1), (2), and (3) for the human

host population, vector population and primates population, we have;

dNH(t)
dt

= Λ+(bh−µh)NH−αIH ,

dNV (t)
dt

= (bv−µv)NV ,

dNM(t)
dt

= (bm−µm)NM.

The total population sizes of female mosquitos and primates, NV and NM is stationary for bv =

µv and bm = µm, declines for bv < µv and bm < µm and grows exponentially for bv > µv and

bm > µm respectively.

2.4 Dimensionless Transformation

We transform our model equations into normalized quantities such that the total population

for the normalized model is equal to 1. This can be done by scaling the population of each class

by the total species population. We make the following transformation:

sh =
SH

NH
, vh =

VH

NH
, eh =

EH

NH
, ih =

IH

NH
, rh =

RH

NH
, sv =

SV

NV
, ev =

EV

NV
, iv =

IV
NV

,

sm =
SM

NM
, em =

EM

NM
and im =

IM

NM
.
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in the classes SH , VH , EH , IH , RH , SV , EV , IV , SM, EM and IM of the populations re-

spectively. Also, we define σ =
Λ

NH
as the arrival rate of immigrants per individual per unit

time.

Differentiating the scaling equations and solving for the derivatives of the scaled variables,

system (1), (2), (3) becomes the normalised model as:

(4)

dsh

dt
= bh +σ(1−ρ)+ωvh +ωrh−aβ1shiv− sh(ε +bh +σ)+αshih,

dvh

dt
= ρσ + εsh− vh(ω +bh +σ)+αvhih,

deh

dt
= aβ1shiv− eh(δh +bh +σ)+αehih,

dih
dt

= δheh− ih(γ +α +bh +σ)+αi2h,
drh

dt
= γih− rh(ω +bh +σ)+αrhih

dsv

dt
= bv− (aβ2svih +aβ3svim)− svbv,

dev

dt
= aβ2svih +aβ3svim− ev(δv +bv),

div
dt

= δvev− ivbv,

dsm

dt
= bm−aβ4smiv− smbm,

dem

dt
= aβ4smiv− em(δm +bm),

dim
dt

= δmem− imbm.

However, it is easy to show that
dnh

dt
= 0,

dnv

dt
= 0 and

dnm

dt
= 0 for the humans, vector and

primates respectively. Where solutions are restricted to the hyperplanes sh + vh + eh + ih + rh =

1, sv + ev + iv = 1 and sm + em + im = 1.

The YF model system (4) monitors human, mosquito (vector) and primates populations, we

assume that all state variables and parameters of the model are non-negative ∀t ≥ 0. Thus, the

model will be analysed in a suitable feasible region where it makes biological sense. This region

will be obtained as follows:

Lemma 1. Solutions of the normalised model system (4) are contained in the region Φ =

ΦH ∪ΦV ∪ΦM ⊂ Γ5
+×Γ3

+×Γ3
+.
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Proof. We split the model system into three parts; namely the human component (nh), vector

(mosquito) component (nv) and the primates component (nm), given respectively by,

nh = sh + vh + eh + ih + rh, nv = sv + ev + iv and nm = sm + em + im. Such that

ΦH = {(sh,vh,eh, ih,rh) ∈ Γ
5
+ : 0 < sh + vh + eh + ih + rh ≤ 1}

ΦV = {(sv,ev, iv) ∈ Γ
3
+ : 0 < sv + ev + iv ≤ 1}

ΦM = {(sm,em, im) ∈ Γ
3
+ : 0 < sm + em + im ≤ 1}.

Thus,

Φ = ΦH ∪ΦV ∪ΦM ⊂ Γ
5
+×Γ

3
+×Γ

3
+.

that can be shown to be positively invariant with respect to the model system (4). From this

lemma, we conclude that it is sufficient to consider the dynamics of model system (4) in Φ.

In this region, the model can be considered as being epidemiologically and mathematically

well-posed [13].

3. Model Analysis

We now investigate the existence of disease-free equilibrium (E0) and basic reproduction

number. E0 is obtained by setting the derivatives with respect to time of the model system (4),

equal to zero. On computations, the following E0 is obtained as:

(5) E0 =

(
bh +(1−ρ)σ +ω

ω + ε +bh +σ
,

ρσ + ε

ω + ε +bh +σ
, 0, 0, 0, 1, 0, 0, 1, 0, 0

)
.

3.1 The Basic Reproduction Number, R0

One of the most important concerns in the analysis of epidemiological models is the deter-

mination of the asymptotic behaviour of their solutions which is usually based on the stability

of the associated equilibria [21]. These models typically consist of a disease-free equilibrium

and at least one endemic equilibrium. The local stability of the disease-free equilibrium is de-

termined based on a threshold parameter, known as the basic reproductive number.
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An easy way to theoretically compute R0 is to follow the approach described by Van den Driess-

che and Watmough [34]. In model system (4), we consider only the terms in which the infection

is in progression, i.e eh, ih,ev, iv,em and im.

The corresponding equations can be re-written in the following way

(6) x′i = fi(x) = Fi(x)− (V −i (x)−V +
i ), i = 1, ...,6.

where Fi(x) represents the rate of appearance of new infections in compartment i, V +
i (x) rep-

resents the rate of transfer of individuals into compartment i by all other means, other than the

epidemic and V −i (x) represents the transfer of individuals out of the compartment i.

Hence, the following system is obtained:

(7)

deh

dt
= aβ1shiv− eh(δh +bh +σ)+αehih,

dih
dt

= δheh− ih(γ +α +bh +σ)+αi2h,
dev

dt
= aβ2svih +aβ3svim− ev(δv +bv),

div
dt

= δvev− ivbv,

dem

dt
= aβ4smiv− em(δm +bm),

dim
dt

= δmem− imbm.

From (7), we derive Fi and Vi as

(8) Fi =



aβ1shiv

0

aβ2svih +aβ3svim

0

aβ4smiv

0


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and

(9) Vi =



eh(δh +bh +σ)−αehih

ih(γ +α +bh +σ)−δheh−αi2h

ev(δv +bv)

ivbv−δvev

em(δm +bm)

imbm−δmem


Thus, to obtain R0, we compute matrices F and V which are m×m matrices, where m represents

the infected classes, defined by

F =

[
∂Fi

∂x j
(E0)

]
and

V =

[
∂Vi

∂x j
(E0)

]
with 1≤ i, j ≤ m.

We then compute matrix FV−1, defined as the next generation matrix [6]. The R0 is then defined

as

(10) R0 = ρ(FV−1),

where ρ(FV−1) is the spectral radius of matrix FV−1. Thus,

(11) R0 =

√
a2β1β2δhδvs◦h

(δh +bh +σ)(γ +α +bh +σ)bv(δv +bv)
+

a2β3β4δvδm

bm(δm +bm)bv(δv +bv)
,

where s◦h =
bh +(1−ρ)σ +ω

ω + ε +bh +σ
from the first component of E0 in (5).

In our model we have two hosts and one vector, and it is indicated in the model that the

vector can transmit the infection to both the human host and the primates. Thus, for easy

understanding, we can represent the reproduction number as, R0 =
√

Rh +Rm, such that

(12) Rh =
(bh +σ(1−ρ)+ω)a2β1β2δhδv

(ω + ε +bh +σ)(δh +bh +σ)(γ +α +bh +σ)bv(δv +bv)
,

which is the reproduction number of human host and vector compartments. It represents the

infection from vector to human and human to vector. Again, we can represent it as Rh = Rvh×

Rhv. Thus,

Rvh =
aβ1so

hδh

(γ +α +bh +σ)(δh +bh +σ)
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for

so
h =

(bh +σ(1−ρ)+ω)

(ω + ε +bh +σ)
.

It represents the product between transmission probability of the infection from vector to human

and the number of susceptible human host per vector. Also

Rhv =
aβ2δv

(δv +bv)
.

This represents the product between transmission probability of the infection from human host

to vector and the proportion of vectors that survive the incubation period.

We also have,

(13) Rm =
a2β3β4δvδm

bm(δm +bm)bv(δv +bv)

as the reproduction number of primate to vector and vector to primate compartments. Again, it

can be represented as Rm = Rmv×Rvm into which

Rmv =
aβ3δv

bv(δv +bv)

represents the product between transmission probability of the infection from primate to vector

and the proportion of the vector that survive the incubation period.

Rvm =
aβ4δm

bm(δm +bm)

represents the product between transmission probability of the infection from vector to primate

and the proportion of primate that survive the incubation period.

3.2 Sensitivity Analysis of R0

In order to determine how best to reduce mortality and morbidity due to YF infection, it is

necessary to study the relative importance of different factors responsible for its transmission

and prevalence [3]. Thus, we perform sensitivity analysis of the basic reproduction number with

respect to model parameters.

The sensitivity analysis will assist in curtailing the transmission of the disease by using ap-

propriate intervention strategies. According to Humby [12] there are more ways of conducting
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sensitivity analysis, all resulting in a slightly different sensitivity ranking. Following the ap-

proaches by [17], [3] and [25], we use the normalized forward sensitivity index which is the

backbone of nearly all other sensitivity analysis techniques and is computationally efficient.

Definition 1. The normalized forward sensitivity index of a variable, h, that depends differen-

tiably on a parameter, l, is defined as:

(14) ϒ
h
l =

∂h
∂ l
× l

h
.

We therefore evaluate the sensitivity indices of R0 at the baseline parameter values given in

Table 2 to each of the seventeen parameters described in Table 1 using Maple software. The

sensitivity index of R0 with respect to a, for example is,

(15) ϒ
R0
a =

∂R0

∂a
× a

R0
= 1.

The detail sensitivity indices of R0, resulting from the evaluation to the seventeen different

parameters of the model are shown in Table 2.

By analyzing the sensitivity indices we observe that, the most sensitive parameter is the

mosquito biting rate, a. Other important parameters include the probability of disease transmis-

sion from infectious mosquitoes to susceptible humans, β1, progression rate of exposed vector,

δv, progression rate of exposed human, δh, human to mosquito disease transmission probability,

β2, and mosquitoes birth rate.

The reproductive number R0 is directly related to the bitting rate of mosquito, transmission

probabilities of vector to human as well as the progression rate of exposed vector, human and

primates and inversely related to birth rate of vector, human and primate and disease induced

death rate of human host.

Since ϒ
R0
a = 1 increasing (or decreasing) a by 10% increases (or decreases) R0 by 10%. In

the same way, increasing (or decreasing) δv, β1 and β2 by 10% increases (or decreases) R0 by

5%. Similarly, increasing (or decreasing) bv by 10% decreases (or increases) R0 by 20%.

Reducing the number of contacts between humans and mosquitoes, through a reduction in

either or both, the probability (frequency) of transmiting the infection, and the daily mosquitoes

biting rate, would have the largest effect on disease transmission. Also, as the latent period of

vector is about the same as the lifespan of mosquitoes, controlling the birth rate of vectors and
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TABLE 2. Sensitivity indices of model parameters to R0

Parameter Description Sensitivity index

a Mosquito daily bitting rate 1

δv Progression rate of exposed vector 0.4999200128

β1 Transmission probability of vector to human 0.4994664012

β2 Transmission probability of human to vector 0.4994664003

δh Progression rate of exposed human 0.4912808422

β3 Transmission probability of primate to vector 0.0005335993926

β4 Transmission probability of vector to primate 0.0005335993926

δm Progression rate of exposed primate 0.0005335980587

ω rate of relapse of vaccinated and recovered human 0.0001434728868

bv Birth rate of vector -0.9999200135

bh Birth rate of human -0.7511775104

bm Birth rate of primates -0.001067197451

α Death rate due to disease for human -0.1302751918

σ arrival rate of immigrant per individual per time -0.0002276878858

γ Recovery rate -0.001833

ε vaccination rate of susceptible human -0.0006476651371

ρ proportion of immigrant who are vaccinated -0.000002334632744

shortening the lifespan of the mosquitoes reduces the basic reproductive number because more

infected mosquitoes will die before they become infectious [3], [17].

This suggests that strategies that can be applied in controlling the disease transmission are

to target the mosquito biting rate and death rate such as the use of mosquito treated bed-nets,

insect repellents, indoor residual spraying, insecticides and larvacides.
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4. Numerical Results and Discussions

In this section we present some numerical results for the model. The values of parameters

are given in Table 3. Most of these values are according to the A. aegypti mosquitoes in vector

borne diseases reported in the literature. At first we investigate the effects of the threshold pa-

TABLE 3. Description of parameters values of model system (4)

Parameter Range of values Source

β1 [0.5-0.8] [7], [1]

β2 [0.37-0.8] [24], [28]

β3 [0.5] estimate

β4 [0.37] estimate

δh [0.05-1] day−1 [10], [8]

δv [0.05-1] day−1 [1], [10]

δm [1] day−1 estimate

bh [3] day−1 [8]

bv [5000] day−1 [5], [8]

bm [2] day−1 estimate

a [0.5-1] [7], [1]

γ [0.05-0.1] day−1 [26], [4]

α [10−3] [10]

ω [0.35] day−1 [10]

ε [0.5] estimate

ρ [0.8] [28]

σ 0.05 estimate

µh [0.0143-0.0167] day−1 [26]

µv [0.25,0.5] day−1 [20]

µm [0.08] day−1 estimate

rameter, that is the basic reproductive number, R0, governing the dynamics of populations and
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the proportion of individuals in each class. We have seen earlier, that R0 obtained was expressed

in the form of R2
0 = Rh +Rm, this is because in our model, we have three different populations:

human host, primates and vector. So the expected basic reproduction number reflects the in-

fection between vector-human and human-vector as well as primate-vector and vector-primate

respectively since the vector is capable of transmitting the infection to both human hosts and

primates.

Indeed, Figures 2, ...,10 in simulation part indicates proportion of susceptible and infectious

as varies with time. Proportion of susceptible human increases up to a certain level but does

not reach 1, indicating that some of them are affected and might die of the disease as time goes,

as compared to the proportions of susceptible primates and vector as their number reaches a

maximum value, indicating that they are not affected as much as humans.

FIGURE 2. Proportion of susceptible human host.

Again, proportion of vector population (transmitters of the infection) can be controlled easily

so long as they go to extinction very rapidly compared to other proportions of populations

(Figure 5 and 9). Also, simulation indicates that the disease prevalence reduces to about zero in

a years time, this means that it is possible to eradicate the infection in human population if we

can have controls such as continuous vaccination to susceptible population. However, we can

not eradicate the disease in the primates.
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FIGURE 3. Proportion of infectious human host.

FIGURE 4. Proportion of susceptible vector.

5. Conclusion

A deterministic mathematical model for YF has been formulated using ordinary differential

equations. The model considers two hosts (humans and primates) and one vector. The repro-

duction number, R0, as a threshold of the epidemic is discussed through sensitivity analysis

and simulation with different parameter settings giving an illustration of the dynamics of the

epidemic.
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FIGURE 5. Proportion of infectious vector.

FIGURE 6. Proportion of susceptible primates.

Results call for attention to parameters regarding daily bitting rate of mosquitoes, recruitment

rate of vectors, incubation period for vectors and human hosts, probability of contact between

susceptible humans and infectious vectors as well as the recruitment of human host which in-

cludes unvaccinated immigrants. Also, numerical results (Fig 9) revealed that in a years time

eradication of the disease is possible to human host but not possible to the primates may be

because the origin of the virus is the primate dead body. Again an increase in the proportion of

infected vector and bitting rate of vector to human will contribute greatly to an increase in YF

transmission dynamics.



20 MONICA KUNG’ARO, LIVINGSTONE S. LUBOOBI, FRANCIS SHAHADA

FIGURE 7. Proportion of infectious primates.

FIGURE 8. Proportion of susceptible populations.

However, human migration plays an important role in the transmission and spread of YF.

They contribute to the sustainability of the YF epidemic either directly (infected immigrants)

or indirectly (health immigrants susceptible to infection by locals). Thus, transmission factors

must closely be monitored to ensure health and well being of everyone in the community.

To provide further insights in planning and assessing the impact of current and future control

strategies, numerous additions in the model will be required to help suggest the best mitigation

strategy, for example thinking of vector control to minimize breeding of mosquito, personal

protection which includes the use of mosquito repellents and treated bed-nets that can reduce the
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FIGURE 9. Proportion of infectious populations.

FIGURE 10. Proportion of populations.

probability of contact between vectors and humans as well as vertical transmission of the disease

to Aedes aegypti. Therefore, to ensure minimization of the outbreak human population should

be educated regarding YF, its transmissions and control for the management of the epidemic.
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