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Abstract. This paper proposes and investigates a model for the spread of an infection into a plant population,

considering the effects of both primary and secondary infections. We determine the basic reproduction number

of the plant pathogens R0 and prove that if R0 > 1, then the positive equilibrium is globally stable, provided that

several auxiliary inequalities, determined using the geometric approach of Li and Muldowney [23], hold. Also,

we find a necessary condition for the existence of optimal controls by applying Pontryagin’s Minimum Principle.

Finally, a numerical example is given to illustrate the applicability of our analytical findings.
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1. Introduction

The issue of food security has first come to public attention in the 1970s, when a widespread

world food crisis broke out. As the continuous population growth and the global climate change

put an ever increasing pressure on food production, food security concerns may remain promi-

nent for at least the next fifty years [1]. With an estimated fourteen percent of world crops lost
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due to various plant diseases [2], detailed knowledge of plant epidemiology is vital from both

an economic and humanitarian viewpoint. In particular, an ability to predict the spread of crop

diseases and the results of deploying control strategies may help towards increasing crop yield

and hence influence governmental policies.

To prevent crop diseases, farmers often resort to using chemicals [3]. However, pesticide

abuse leads to unwanted consequences which include the resistance-driven evolution of pathogen-

s and the accumulation of chemical residues into the human food chain and the environment.

This is enough motivation for an increase in the legislative constraints on using pesticides [4].

There is also pressure on the use of pathogen-resistant crop varieties due to the time and cost

of breeding resistance and to the ethical objections of certain consumers concerning genetic

modification, as well as on the use of cultural controls, which are labor intensive and lead to

reduced yield. Hence, experimentalists have become more interested in biological control [5],

approach which relies on the deployment of pathogen antagonists to reduce disease spread.

Recently, certain deterministic, mechanistically based epidemiological models were pro-

posed to study how to influence and control the spread of soil-borne plant pathogens. For

example, Kleczkowski et al. investigated the interactions between Rhizoctonia solani and Tri-

choderma viride in [6, 7, 8], while Gubbins and Gilligan analyzed the dynamics between S-

poridesmium sclerotivorum, and its host, Sclerotinia minor, in a disturbed or closed environ-

ment in [9, 10, 11, 12]. Furthermore, Bailey et al. studied the efficiency of the biological

control of soil-borne diseases in a controlled environment [13]. In [15], Jeger et al. allowed

tissue that is colonised by the antagonist to enter the removed class, which implies that the de-

ployment of the antagonist leads to the removal of host tissue. In the model of Xu et al. [16], the

colonised tissue becomes susceptible again instead, assumption which seems more biologically

plausible. Gilligan analyzed in [14] the likely efficacy of control by investigating its effect on

epidemiologically meaningful parameters which play important roles in pathogen invasion and

persistence. Also, Cunniffe and Gilligan considered how microbial antagonists affect the spread

of pathogens through a general plant population in [17].

However, the above-mentioned body of work did not target the estimation of optimal dynamic

control regimes. In this paper, we extend an existing compartmental model for an interaction
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between plant hosts and soil-borne pathogens [13] and use optimal control theory [18, 19, 20,

21, 22] to evaluate how the deployment of an antagonist affects key epidemiological quantities

such as the rates of primary and secondary infection. We also consider the minimization of

the size of infected plant population, of the amount of inoculum as well as of the total cost of

biological control.

The remaining part of paper is organized as follows. In Section 2, we consider the local and

global stability properties of the compartmental model. Section 3 is concerned with the corre-

sponding optimal control problem. Section 4 includes a numerical example which validates our

previous analysis. Finally, the basic outcomes of our analytical findings and their ecological

interpretations are drawn in Section 5 on the basis of the theoretical and numerical frameworks

developed in the previous sections.

2. The model and its dynamical analysis

2.1. The model

In this section, we establish local and global stability results for an epidemiological model

of plant-pathogen-antagonist interaction within a deterministic environment, giving first an adi-

mensalization of the model. We assume that the population of plant hosts is divided into two

classes, susceptible (S) and infected (I). During the course of each season, the primary infection

is triggered by the inoculum. The plants which are infected in the primary infection wave then

become an additional source of infection as soon as the fungus spreads to susceptible plants,

which starts the secondary infection wave. In this regard, we denote by X = X(t) the density

of external pathogen inoculum at time t. The antagonist agent variables, denoted by u1 and u2,

have the potential to decrease the rates of primary infection and secondary infection, respec-

tively. By the above considerations, we may introduce the model of concern in this paper in the
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following form

dS
dt

= η(K− (S+ I))−
(

βpX
1+u1

+
βsI

1+u2

)
S,(1a)

dI
dt

=

(
βpX

1+u1
+

βsI
1+u2

)
S−µI,(1b)

dX
dt

= νI− γX .(1c)

In the above model, the growth of the susceptible host class is linear, governed by the rate η and

both susceptible and infective plants contribute towards the carrying capacity K. The quantities

βp, βs are the per capita rate of the primary and secondary infection, respectively, µ denotes the

removal rate of infected hosts, γ is the decay rate of external inoculum and ν is the release rate

of inoculum by infectious hosts.

In order to simplify the dynamical analysis of the model, we now introduce the dimensionless

variables and parameters Ŝ = SK−1, Î = IK−1, X̂ = ηXν−1K−1, t̂ = ηt, β̂p = βpνKη−2, β̂s =

βsKη−1, µ̂ = µη−1, γ̂ = γη−1. With these notations, the system (1a)–(1c) is transformed into

the following adimensional one

dŜ
dt̂

= 1− (Ŝ+ Î)−

(
β̂pX̂

1+u1
+

β̂sÎ
1+u2

)
Ŝ,(2a)

dÎ
dt̂

=

(
β̂pX̂

1+u1
+

β̂sÎ
1+u2

)
Ŝ− µ̂ Î,(2b)

dX̂
dt̂

= Î− γ̂X̂ .(2c)

By denoting N̂ = Ŝ+ Î and summing up the first two equations, it is seen that the system (2a)–

(2c) is equivalent to the following one

dN̂
dt̂

= 1− N̂− µ̂ Î,(3a)

dÎ
dt̂

=

(
β̂pX̂

1+u1
+

β̂sÎ
1+u2

)
(N̂− Î)− µ̂ Î,(3b)

dX̂
dt̂

= Î− γ̂X̂ .(3c)

One notes that the system (2a)–(2c) has two nonnegative equilibria: the trivial equilibrium

E1(1,0,0) and the positive equilibrium E2(Ŝ∗, Î∗, X̂∗). Biologically speaking, E1 corresponds to
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the ideal (from a grower’s viewpoint) pathogen-free state, while E2 corresponds to the stationary

state of coexistence between pathogens and hosts. Here,

Ŝ∗ =
γ̂ µ̂(1+u1)(1+u2)

β̂p(1+u2)+ γ̂ β̂s(1+u1)
,

Î∗ =
1

1+ µ̂

(
1− γ̂ µ̂(1+u1)(1+u2)

β̂p(1+u2)+ γ̂ β̂s(1+u1)

)
,

X̂∗ =
1

(1+ µ̂)γ̂

(
1− γ̂ µ̂(1+u1)(1+u2)

β̂p(1+u2)+ γ̂ β̂s(1+u1)

)
.

Let us observe that the basic reproductive number of plant pathogens R0 is given by

R0
.
=

1
µ̂

(
β̂p

γ̂(1+u1)
+

β̂s

1+u2

)
=

β̂p(1+u2)+ γ̂ β̂s(1+u1)

γ̂ µ̂(1+u1)(1+u2)
.

With this notation, the coordinates of the positive equilibrium are given by

Ŝ∗ =
1

R0
, Î∗ =

1
1+ µ̂

(
1− 1

R0

)
, X̂∗ =

1
(1+ µ̂)γ

(
1− 1

R0

)
.

That is, while E1 exists regardless of the value of the basic reproductive number R0, E2 exists if

and only if R0 ≥ 1 and is indeed a positive equilibrium if and only if R0 > 1.

2.2. The local stability of the equilibria

To discuss the local stability of the trivial equilibrium E1(1,0,0) of the system (2a)–(2c), we

observe that the Jacobian matrix of the system (2a)–(2c) at E1 is given by

(4) J =


−1 −1− β̂s

1+u2
− β̂p

1+u1

0 β̂s
1+u2
− µ̂

β̂p
1+u1

0 1 −γ̂

 ,

the associated characteristic equation being

(λ +1)

[
λ

2 +

(
γ̂− β̂s

1+u2
+ µ̂

)
λ + µ̂ γ̂− γ̂ β̂s

1+u2
−

β̂p

1+u1

]
= 0.

Clearly,−1 is one of the eigenvalues. From the Routh-Hurwitz criterion, we know that the other

two eigenvalues have negative real parts if and only if

γ̂− β̂s

1+u2
+ µ̂ > 0, µ̂ γ̂− γ̂ β̂s

1+u2
−

β̂p

1+u1
> 0,
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which altogether imply that

1
µ̂

(
β̂p

γ̂(1+u1)
+

β̂s

1+u2

)
< 1.

Consequently, a necessary condition for the local stability of E1 is R0 < 1, while the stability of

E1 remains undetermined if R0 = 1. Having obtained these hints, we shall further investigate

the stability of E1 in the next subsection.

We now turn our attention to the stability of the positive equilibrium E2(Ŝ∗, Î∗, X̂∗). The

Jacobian matrix of the system (2a)–(2c) at E2 is given by

(5) J =


−1−A −1−B −C

A B− µ̂ C

0 1 −γ̂


with

A =
µ̂

1+ µ̂
(R0−1), B =

β̂s

R0(1+u2)
, C =

β̂p

R0(1+u1)
.

The associated characteristic equation can be expressed as

λ
3 +a1λ

2 +a2λ +a3 = 0,

in which

a1 = A+1−B+ µ̂ + γ̂ =
µ̂

1+ µ̂
(R0−1)+ µ̂− β̂s

R0(1+u2)
+ γ̂ +1,

a2 = γ̂(A+1−B+ µ̂)+Aµ̂−B+ µ̂ +A−C

=
µ̂ γ̂

1+ γ̂
(R0−1)+ µ̂− β̂s

R0(1+u2)
+ γ̂ + µ̂(R0−1),

a3 = Aµ̂ γ̂−Bγ̂ + µ̂ γ̂ +Aγ̂−C = γ̂ µ̂(R0−1).

It then follows from the Routh-Hurwitz criterion that all three eigenvalues have negative real

parts if and only if a3 > 0, a1 > 0, a1a2−a3 > 0. Since µ̂− β̂s
R0(1+u2)

=
β̂p

R0γ̂(1+u1)
, it is obvious

that R0 > 1 is a sufficient rather than necessary condition for a1 > 0 and a1a2−a3 > 0, while it is

both necessary and sufficient for a3 > 0. From the above analysis, we then obtain the following

result.
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Theorem 2.1. Suppose that R0 > 1. Then the unique positive equilibrium E2 of the system

(2a)–(2c) is locally asymptotically stable.

2.3. The global stability of the equilibria

From obvious biological considerations, we shall study the dynamics of the system (2a)–(2c)

in the feasible domain

Ω =
{(

Ŝ, Î, X̂
)
|Ŝ > 0, Î, X̂ ≥ 0 and Ŝ+ Î ≤ 1, X̂ ≤ 1

γ̂

}
.

It can be easily verified that Ω is positively invariant with respect to the system (2a)–(2c). In

the following we shall investigate the global stability of the trivial equilibrium E1 in Ω.

Theorem 2.2. Suppose that R0 ≤ 1. Then the trivial equilibrium E1 of the system (2a)–(2c) is

globally asymptotically stable in Ω.

Proof. Let us consider the following Lyapunov functional

U1(Ŝ, Î, X̂) =
∫ Ŝ

1

(
1− 1

τ

)
dτ + Î +

(
µ̂− β̂s

1+u2

)
X̂ ,

and observe that R0 ≤ 1 implies that µ̂ > β̂s
1+u2

. Computing the time derivative of U1 along the

solutions of the system (2a)–(2c), one finds that

dU1

dt̂
=

(
1− 1

Ŝ

)[
1− (Ŝ+ Î)−

(
β̂pX̂

1+u1
+

β̂sÎ
1+u2

)
Ŝ

]
+

(
β̂pX̂

1+u1
+

β̂sÎ
1+u2

)
Ŝ− µ̂ Î

+

(
µ̂− β̂s

1+u2

)
(Î− γ̂X̂)

=

(
1− 1

Ŝ

)[
1− (Ŝ+ Î)

]
+

β̂pX̂
1+u1

− µ̂ γ̂X̂ +
β̂sγ̂X̂
1+u2

=

(
1− 1

Ŝ

)
[1− (Ŝ+ Î)]+ µ̂ γ̂X̂

[(
β̂p

(1+u1)γ̂
+

β̂s

1+u2

)
1
µ̂
−1

]

=

(
1− 1

Ŝ

)[
1− (Ŝ+ Î)

]
+ µ̂ γ̂X̂ [R0−1].

Since (1− 1
Ŝ
)[1− (Ŝ+ Î)]≤ 0, we obtain that if R0 ≤ 1, then dU1

dt̂ ≤ 0, with equality if and only

if R0 = 1 and Ŝ+ Î = 1. The use of LaSalle’s Invariance Theorem then concludes the proof.
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To discuss the global stability of the unique positive equilibrium E2, we shall again consider

Ω as the feasible domain. We then start by indicating a brief outline of the geometrical approach

introduced by Li and Muldowney in [23], which will be of use in what follows.

Let x 7→ f (x) ∈ Rn be a C1 function defined on an open set D⊂ Rn. Consider the system

(6) x′ = f (x)

and denote by x(t,x0) the solution of (6) with initial data x0, that is, x(0,x0) = x0. We make the

following two assumptions:

(H1): There exists a compact absorbing set K ⊂ D;

(H2): The system (6) has a unique equilibrium x̄ in D.

The system (6) is said to be uniformly persistent if there exists a constant c > 0 such that for

any solution x(t,x0) of (6) one has

lim inf
t→∞

x1(t)≥ c, lim inf
t→∞

x2(t)≥ c, . . . , lim inf
t→∞

xn(t)≥ c.

If the system (6) is uniformly persistent and D is bounded, then the system (6) admits a compact

absorbing set.

The equilibrium x̄ is said to be globally stable in D if it is locally stable and all trajectories

in D are convergent to x̄. For n≥ 2, by a Bendixson criterion we mean a condition satisfied by

f which precludes the existence of non-constant periodic solutions of (6). It is known that the

classical Bendixson’s condition div f (x)< 0 for n = 2 is robust under C1 local perturbations of

f . For higher dimensional systems, the C1 robustness properties are discussed in [23]. A point

x0 ∈ D is said to be a wandering point for (6) if there exists a neighborhood U of x0 and T > 0

such that U ∩ x(t,U) is empty for all t > T . Thus, for instance, all equilibria and limit points

are non-wandering.

The following global stability principle is established in Li and Muldowney in [23] for au-

tonomous systems in any finite dimension.

Theorem 2.3. Suppose that (H1) and (H2) hold. Assume that (6) satisfied a Bendixson criterion

that is robust under C1 local perturbations of f at all non-equilibrium non-wandering points

for (6). Then x̄ is globally stable in D provided that it is stable.
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The following Bendixson criterion is also given in [23]. Let N =

 n

2

 and x 7→ P(x) be a

N×N matrix-valued function that is C1 for x ∈D. Assume that P−1(x) exists and is continuous

for x ∈ K, the compact absorbing set, and define

(7) q̄2 = limsup
t→∞

sup
x0∈K

1
t

∫ t

0
µ(B(x(s,x0)))ds,

where

(8) B = Pf P−1 +P
∂ f [2]

∂x
P−1.

In the above, the matrix Pf is obtained by replacing each entry of P by its derivative in the

direction of f and µ(B) is the Lozinskiı̆ measure of B with respect to a vector norm | · | in RN ,

µ(B) = lim
h→0+

|I +hB|−1
h

.

Let us also recall that the second additive compound of a matrix A = (ai j)1≤i, j≤3 is

A[2] =


a11 +a22 a23 −a13

a32 a11 +a33 a12

−a31 a21 a22 +a33

 .

It is shown in [23] that, if D is simply connected, then the condition q̄2 < 0 rules out the

presence of any orbit that gives rise to a simple closed rectifiable curve that is invariant, such

as periodic orbits, homoclinic orbits, and heteroclinic cycles. Moreover, this condition is robust

under C1 local perturbations of f near any non-equilibrium point that is non-wandering. In

particular, the following global-stability result is proved in Li and Muldowney [23].

Theorem 2.4. Assume that D is simply connected and that the assumptions (H1) and (H2) hold.

Then the unique positive equilibrium x̄ of (6) is globally stable in D if q̄2 < 0.

To prove the existence of a compact absorbing set K for the system (2a)–(2c), we start by

proving the uniform persistence of (6).

Theorem 2.5. If R0 > 1, then (6) is persistent.
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Proof. First, we prove that E1 cannot be the ω-limit point of any orbit starting in the interior of

Ω. To this purpose, let us introduce

α = min

{
R0−1,

β̂p

µ̂ γ̂(1+u1)

}

take ε ∈ (0,α) and define

L(Ŝ, Î, X̂) = Î +

(
β̂p

γ̂(1+u1)
− εµ̂

)
X̂ .

Then L≥ 0 and the time derivative of L along the solutions of the system (2a)–(2c) is given by

dL
dt̂

=

(
β̂pX̂

1+u1
+

β̂sÎ
1+u2

)
Ŝ− µ̂ Î +

(
β̂p

γ̂(1+u1)
− εµ̂

)
(Î− γ̂X̂)

= X̂

(
β̂p

1+u1
(Ŝ−1)+ εµ̂γ̂

)
+ µ̂ Î

[(
β̂p

γ̂(1+u1)
+

β̂sŜ
1+u2

)
· 1

µ̂
− (1+ ε)

]

= X̂

(
εµ̂γ̂−

β̂p

1+u1
(1− Ŝ)

)
+ µ̂ Î

(
R0− (1+ ε)− β̂sŜ

1+u2
(1−S)

)
.

Consequently, dL
dt̂ > 0 for S close enough to 1 and E1 cannot be the ω-limit point of any orbit

starting in the interior of Ω. Since the system (2a)–(2c) does not have other ω-limit points on the

boundary of Ω, this implies that the system (2a)–(2c) is uniformly persistent. This completes

the proof.

Since Ω is bounded, it is then seen that the system (2a)–(2c) admits a compact absorbing set

K. In the following, from the above considerations, we shall obtain a sufficient condition for

the global stability of the steady state E2 in Ω.

Theorem 2.6. If the following three conditions are satisfied

(i): R0 > 1;

(ii): 1+ µ̂ >
2β̂p

1+u1
+ β̂s

1+u2
;

(iii): µ̂+γ̂

2 > 1+ β̂s
1+u2

,

then the equilibrium E2 of the system (2a)–(2c) is globally asymptotically stable in the interior

of Ω.
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Proof. Let J be the Jacobian matrix J of the system (2a)–(2c) at E2. Its second additive com-

pound matrix J[2] is as given below

J[2] =


−1− β̂pX̂

1+u1
− β̂s Î

1+u2
+ β̂sŜ

1+u2
− µ̂

β̂pŜ
1+u1

β̂pŜ
1+u1

1 −1− β̂pX̂
1+u1
− β̂s Î

1+u2
− γ̂ −1− β̂sŜ

1+u2

0 β̂pX̂
1+u1

+ β̂s Î
1+u2

β̂sŜ
1+u2
− µ̂− γ̂

 .

Let us also define

P(Ŝ, Î, X̂) = diag(
Ŝ
Î
,
Ŝ
Î
,
Ŝ
Î
).

Then

Pf P−1 = diag(
Ŝ′

Ŝ
− Î′

Î
,
Ŝ′

Ŝ
− Î′

Î
,
Ŝ′

Ŝ
− Î′

Î
)

and the matrix

B = Pf P−1 +PJ[2]P−1

can be written in block form

B =

 B11 B12

B21 B22

 ,

where

B11 =−1−
β̂pX̂

1+u1
− β̂sÎ

1+u2
+

β̂sŜ
1+u2

− µ̂ +
Ŝ′

Ŝ
− Î′

Î

B12 =
(

β̂pŜ
1+u1

β̂pŜ
1+u1

)
B21 =

 1

0


B22 =

 −1− β̂pX̂
1+u1
− β̂s Î

1+u2
− γ̂ + Ŝ′

Ŝ
− Î′

Î
−1− β̂sŜ

1+u2
β̂pX̂
1+u1

+ β̂s Î
1+u2

β̂sŜ
1+u2
− µ̂− γ̂ + Ŝ′

Ŝ
− Î′

Î

 ,

Let us consider on R3 ∼= R

 3

2


the norm given by

|(µ,ν ,ω)|= max{|µ|, |ν |+ |ω|}.

We then estimate the Lozinskiı̆ measure µ with respect to the the vector norm | · | as

µ(B)≤ sup{g1,g2},
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where

g1 = µ1(B11)+‖B12‖, g2 = ‖B21‖+µ1(B22).

Here, µ1(B11), µ1(B22) are the Lozinskiı̆ measures of B11 and B22 with respect to the l1 norm,

and ‖B12‖, ‖B21‖ are matrix norms with respect to the l1 vector norm. More specifically,

µ1(B11) =−1−
β̂pX̂

1+u1
− β̂sÎ

1+u2
+

β̂sŜ
1+u2

− µ̂ +
Ŝ′

Ŝ
− Î′

Î

and

‖B12‖=
2β̂pŜ
1+u1

, ‖B21‖= 1.

To calculate µ1(B22), add the absolute value of the off-diagonal elements to the diagonal one in

each column of B22, and then take the maximum of two sums. One obtains

µ1(B22) = max
{
−1− γ̂ +

Ŝ′

Ŝ
− Î′

Î
,1+

2β̂sŜ
1+u2

− µ̂− γ̂ +
Ŝ′

Ŝ
− Î′

Î

}
,

and consequently

g1 =−1−
β̂pX̂

1+u1
− β̂sÎ

1+u2
+

β̂sŜ
1+u2

− µ̂ +
Ŝ′

Ŝ
− Î′

Î
+

2β̂pŜ
1+u1

≤ Ŝ′

Ŝ
− Î′

Î
+

2β̂pŜ
1+u1

+
β̂sŜ

1+u2
− (1+ µ̂)

g2 = 1+
Ŝ′

Ŝ
− Î′

Î
− γ̂ +max

{
−1,1+

2β̂sŜ
1+u2

− µ̂
}

=
Ŝ′

Ŝ
− Î′

Î
− γ̂ +max

{
0,2+

2β̂sŜ
1+u2

− µ̂
}
.

It then follows that

µ(B)≤ Ŝ′

Ŝ
− Î′

Î
− b̄,

where

b̄ = min
{

1+ µ̂− (
2β̂p

1+u1
+

β̂s

1+u2
), µ̂ + γ̂−2(1+

β̂s

1+u2
)
}
> 0.

Along each solution (Ŝ, Î, X̂) of the system (2a)–(2c) with
(
Ŝ(0), Î(0), X̂(0)

)
∈ K, where K is

the compact absorbing set, we have

1
t

∫ t

0
µ(B)ds =

1
t

ln
S(t)
S(0)

− 1
t

ln
I(t)
I(0)
− b̄,

which implies that q̄2 ≤− b̄
2 < 0. This completes the proof.
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3. The optimal control problem

In this section, we discuss the optimal control of the system (2a)–(2c). In order to minimize

the density of infected hosts and of the soil-borne inoculum, we then consider u1 and u2 as two

control variables of the antagonist. Our cost functional, which we attempt to minimize, is

J[u1,u2] =
1
2

∫ T

0
[c1u2

1 + c2u2
2 + Î2 + X̂2]dt̂,

where the parameters u1 and u2 are assumed to be positive and the final time T is fixed.

The associated Hamiltonian function is given by

H =
1
2
(c1u2

1 + c2u2
2 + Î2 + X̂2)+λ1[1− (Ŝ+ Î)− (

β̂pX̂
1+u1

+
β̂sÎ

1+u2
)Ŝ](9)

+λ2[(
β̂pX̂

1+u1
+

β̂sÎ
1+u2

)Ŝ− µ̂ Î]+λ3[Î− γ̂X̂ ].

In (9), λi, i = 1,2,3 are the adjoint variables. By using Pontryagin’s Minimum Principle, we

obtain the following equations

H
((

Ŝ(t̂), Î(t̂), X̂(t̂)
)
,u∗(t̂),λ (t̂), t̂

)
= min

u∈U
H
((

Ŝ(t̂), Î(t̂), X̂(t̂)
)
,u(t̂),λ (t̂), t̂

)
dλ1

dt̂
=−∂H

∂ Ŝ
dλ2

dt̂
=−∂H

∂ Î
dλ3

dt̂
=−∂H

∂ X̂
.

We then deduce that

dλ1

dt̂
= λ1 +(λ1−λ2)(

β̂pX̂
1+u1

+
β̂sÎ

1+u2
)

dλ2

dt̂
=−Î +λ1 +(λ1−λ2)

β̂sŜ
1+u2

+λ2µ̂−λ3

dλ3

dt̂
=−X̂ +(λ1−λ2)

β̂pŜ
1+u1

+λ3γ̂.
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From Pontryagin’s Minimum Principle, we may find ∂H
∂ui

and solve for u∗i , i = 1,2, by setting the

partial derivatives of H equal to zero. Thus, from

∂H
∂u∗1

= c1u∗1 +(λ1−λ2)
β̂pŜX̂

(1+u∗1)
2 = 0,

∂H
∂u∗2

= c2u∗2 +(λ1−λ2)
β̂sŜÎ

(1+u∗2)
2 = 0.

We obtain that

u∗1 =−
2
3
+

[(8c1 +108B+12
√

3
√

B(4c1 +27B))c2
1]

1
3

6c1

+
2c1

3[(8c1 +108B+12
√

3
√

B(4c1 +27B))c2
1]

1
3
,

u∗2 =−
2
3
+

[(8c2 +108C+12
√

3
√

C(4c2 +27C))c2
2]

1
3

6c2

+
2c2

3[(8c2 +108C+12
√

3
√

C(4c2 +27C))c2
2]

1
3

with

B = (λ2−λ1)β̂pŜX̂ C = (λ2−λ1)β̂sŜÎ.

Since the final values for the state variables are not pre-set, we use these conditions at the final

time T

(10) λi(T ) = 0, i = 1,2.

4. A numerical example

Our aim is to understand the effect of a combination between two control mechanisms, re-

ferring to both primary and secondary infections, upon the final outcome. As for the epidemio-

logical and demographic parameters, we choose β̂p = 0.5, β̂s = 0.375, µ̂ = 0.25 and γ̂ = 0.8 in

[17]. The primary and secondary control costs are chosen as being c1 = 4 and c2 = 1, respec-

tively. Also, the initial conditions for the state variables are given by Ŝ(0) = 0.15, Î(0) = 0.85

and X̂(0) = 0.8. Figure 1 illustrates the trajectories for the state variables under the optimal

control values u∗1 and u∗2 shown in Figure 2. It is seen that the curves corresponding to the con-

trol mechanism u1 and u2, respectively, have a similar shape, due to similar infection functions
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FIGURE 1. Optimal control trajectories for the state variables.

given in the system (2a)–(2c). In addition, it is obvious that the amount of u1 is lower that the

amount of u2 due to the higher cost of the control mechanism for the primary infection.

4. Concluding remarks

The present paper attempts to formulate and study a differential model for the spread of a

disease into a plant population assuming that the disease is subject to two control mechanisms,

namely the control of the infection rate between susceptible hosts and soil-borne inoculum and

the control of the infection rate between susceptible hosts and infected hosts.

We derive a basic reproduction number R0 and find out that it determines the global dynamics

of (2a)–(2c). If R0 > 1, the unique plant endemic equilibrium E2 is globally asymptotically

stable in the interior of the feasible region provided that several auxiliary conditions are met, so

that the plant disease persists at the endemic equilibrium level if it is initially present.

Also, we derive the optimal control strategies by using a quadratic functional J. Minimiz-

ing the cost, we obtain the optimal controls u∗1 and u∗2, for which the size of the infected plant
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FIGURE 2. Optimal control trajectories for the control mechanisms.

population Î and the amount of pathogen X̂ are both minimized. Optimal control strategies

corresponding to mathematical results show that the density of susceptible plants is increment-

ed 2 times if we consider both primary and secondary infection control mechanisms. Hence,

growers have a variety of options available for controlling plant disease epidemics, being able

to diminish the reliance upon pesticide spraying.
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