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Abstract. In this paper, a dynamics behavior of a delayed hepatitis B infection model with exposed state and

humoral immunity is studied. The basic reproductive number R0 and humoral immune reproductive number R1 are

introduced. By using suitable Lyapunov functional and LaSalle invariant principle, it is proved that when R0 < 1,

the infection-free equilibrium Q0 is globally asymptotically stable; if R1 < 1<R0, the infected equilibrium without

immunity Q1 is globally asymptotically stable. When R1 > 1, the sufficient conditions to the local stability of the

infected equilibrium with immunity Q2 can be obtained. The time delay can change the stability of Q2 and lead

to the existence of Hopf bifurcations. The stabilities of periodic solutions are also investigated. Finally, numerical

simulations are carried out.
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In recent years, considerable attention has been paid to study the mathematical modeling of

virus infection, such as the human immunodediciency virus (HIV) and the hepatitis B virus

(HBV)( see [1,2,3]). Immunity response plays an important role in resistance to the virus infec-

tions, a specific immunity is composed of humoral immunity (B cells) and cellular immunity

(T cells). The dynamic models of cellular immunity (see [4,5,6]) and humoral immunity (see

[7,8,9]) have all been studied by many people, however, the humoral immunity is more effective

than cellular in some infection processes (see [9]). Some researchers have investigated the virus

infection model with delay (see [10,11,12,13]). Wang [14] discussed the following model with

delayed humoral immunity.



T ′(t) = λ −βT (t)V (t)−dT (t),

I′(t) = βT (t)V (t)−aI(t),

V ′(t) = kI(t)−uV (t)−qB(t)V (t),

B′(t) = gB(t− τ)V (t− τ)− cB(t),

(1)

where T (t), I(t), V (t) and B(t) denote the concentration of the uninfected cells, the infected,

the virus and the B cells at time t, respectively. Constant β is the infection rate of the uninfected

cells. Constant λ , k and g are birth rate of the uninfected cells, the virus and the B(t) cells,

respectively. Constant d, a, u, and c represent, respectively, the death rate of the uninfected

cells, the infected cells, the virus and the B cells. Constant q is removed rate of virus. τ

represents the time that antigenic stimulation needs for generating immunity response. [15,16]

all considered the exposed state, the infected cells were divided into the latently infected cells

(such cells contain the virus but are not producing it) and the actively infected cells (such cells

are producing the virus), [15] discussed a HIV infection model and [16] discussed a HBV

infection model.

In this paper, based on the model (1), we set up the following model
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

T ′(t) = λ −dT (t)−βT (t)V (t),

E ′(t) = βT (t)V (t)−aE(t)− kE(t),

I′(t) = kE(t)−bI(t),

V ′(t) = pI(t)−uV (t)−qB(t)V (t),

B′(t) = gB(t− τ)V (t− τ)− cB(t),

(2)

where T (t), V (t), B(t), λ , β , d, u, q, g, c, and τ have the same biological meanings as those

in the model (1). E(t) and I(t) denote the concentration of the latently infected cells and the

actively infected cells, respectively, the latently infected cells convert to actively infected cells

with rate constants k. Constant a and b represent, respectively, the death rate of the latently

infected cells and the actively infected cells. Constant p is birth rate of the virus.

We denote by C the Banach space of continuous functions ϕ : [−τ,0]→ R5 equipped with

the suitable sup-norm, let

C+ = {ϕ = (ϕ1,ϕ2,ϕ3,ϕ4,ϕ5) ∈C,ϕi ≥ 0 f or all θ ∈ [−τ,0], i = 1,2,3,4,5}.

The initial conditions for system (2) is given as

T (θ) = ϕ1(θ),E(θ) = ϕ2(θ), I(θ) = ϕ3(θ),V (θ) = ϕ4(θ),B(θ) = ϕ5(θ),θ ∈ [−τ,0].

where ϕ = (ϕ1,ϕ2,ϕ3,ϕ4,ϕ5) ∈C+.

This paper is organized as follows. In section 2, we analyze the global asymptotic stabilities

of the infection free equilibrium and the infected equilibrium without B cells response. In

section 3, we study the local stability of the infected equilibrium and the existence of Hopf

bifurcations. In section 4, we discuss the orbital asymptotic stabilities of the periodic solutions.

In section 5, we carry out numerical simulations to illustrate our results. In section 6, we give a

brief remark to conclude this work.

2. Global stabilities of two boundary equilibria

2.1. Reproductive numbers and equilibria
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As pointed in [17], the basic reproductive number of system (2) is R0 =
βλkp

udb(k+a)
,

system (2) always has an infection-free equilibrium

Q0 = (T0,0,0,0,0) = (
λ

d
,0,0,0,0).

If R0 > 1, in the absence of an immune response, there exists an immune-free infection equilib-

rium Q1 = (T1,E1, I1,V1,0), where

T1 =
λ

dR0
, E1 =

λ (R0−1)
(a+ k)R0

,

I1 =
kλ (R0−1)
bR0(a+ k)

, V1 =
pλk(R0−1)
ubR0(a+ k)

.

As pointed in [18], if the immune responses can potentially develop, the conditions gV1 > c

must hold. We define the humoral immune reproductive number R1 as follows,

R1 =
gV1

c
=

gpλk(R0−1)
cubR0(a+ k)

=
dg
cβ
· λβkp−ubd(a+ k)

ubd(a+ k)
.

When the humoral immune response develops that is R1 > 1 , system (2) has an infected equi-

librium with humoral immune responses Q2 = (T2,E2, I2,V2,B2), where

T2 =
λg

dg+βc
,

E2 =
λβc

(a+ k)(dg+βc)
,

I2 =
kE2

b
, V2 =

c
g
,

B2 =
pgI2

cq
− u

q
=

λβgkp−ub(a+ k)(dg+βc)
qb(a+ k)(dg+βc)

.

Note that R1 > 1 can imply λβgkp > ub(a+ k)(dg+βc), which ensure B2 be positive.

2.2. The stability of equilibrium

Since R0 denotes the average number of the free virus released by a infected cell which is

infected by the first virus, when R0 < 1, no virus would be released by the infected cell, and the

infected people will finally be free of virus infection, when R0 > 1, the number of virus would
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increase persistently, the infected people would be infected. We use the following the theorem

to describe this phenomenon.

Theorem 2.1. If R0 < 1, the infection-free equilibrium Q0 of system (2) is globally asymptoti-

cally stable. If R0 > 1, Q0 is unstable.

Proof. Consider a Lyapunov function

W0(t) = T0[
T (t)
T0
− ln

T (t)
T0

]+E(t)+
a+ k

k
I(t)+

b(a+ k)
pk

V (t)+
qb(a+ k)

gpk
B(t)

+
qb(a+ k)

pk

∫ t

t−τ

B(θ)V (θ)dθ .

Calculating the derivative of W0(t) along solutions of system (2), we obtain

W ′0(t) = (1− T0

T (t)
)T ′(t)+E ′(t)+

a+ k
k

I′(t)+
b(a+ k)

pk
V ′(t)

+
qb(a+ k)

gpk
B′(t)+

qb(a+ k)
pk

[B(t)V (t)−B(t− τ)V (t− τ)]

= (1− T0

T (t)
)[λ −dT (t)−βT (t)V (t)]+ [βT (t)V (t)− (a+ k)E(t)]

+
a+ k

k
[kE(t)−bI(t)]+

b(a+ k)
pk

[pI(t)−uV (t)−qB(t)V (t)]

+
qb(a+ k)

gpk
[gB(t− τ)V (t− τ)− cB(t)]+

qb(a+ k)
pk

[B(t)V (t)−B(t− τ)V (t− τ)]

=
−d(T (t)−T0)

2

T (t)
+βT0V (t)− b(a+ k)u

pk
V (t)− qb(a+ k)c

gpk
B(t)

=
−d(T (t)−T0)

2

T (t)
+βT0[1−

(a+ k)bu
βT0 pk

]V (t)− (a+ k)qbc
gpk

B(t)

=
−d(T (t)−T0)

2

T (t)
+βT0(1−

1
R0

)V (t)− (a+ k)qbc
gpk

B(t).

Obviously
−d(T (t)−T0)

2

T (t)
≤ 0 and −(a+ k)qbc

gpk
B(t)≤ 0. If R0 < 1, βT0(1− 1

R0
)V (t)≤ 0, so

we have W ′0(T,E, I,V, B) ≤ 0 for all T,E, I,V,B > 0, therefore the infection-free equilibrium

Q0 is stable. W ′0(T,E, I,V,B) = 0, if and only if T = T0, V = 0 and B = 0. Let M be the

largest invariant set in {(T,E, I,V,B) ∈ R5 |W0(T,E, I,V,B) = 0}, then from the second and

third equation of system (2) we also obtain E = I = 0, so M = Q0. Then we get the global

asymptotical stability of Q0 by the LaSalle’ s invariance principle.
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The characteristic equation of system (2) at the equilibrium Q0 is

(s+ c)(s+d){s3 +(a+ k+b+u)s2 +[bu+(a+ k)(b+u)]s+(a+ k)bu(1−R0)}= 0, (3)

clearly, if R0 > 1, Eq.(3) has a positive real root, and thus Q0 is unstable. This completes the

proof of Theorem 2.1. �

As we pointed above, when R0 > 1, the infection will existent persistently; when R1 < 1

the immune response can not potentially develop, so when R1 < 1 < R0, the infected host

would finally be infected without immune, and we use the following theorem to describe this

phenomena.

Theorem 2.2. If R1 < 1<R0, the equilibrium Q1 of system (2) is globally asymptotically stable.

If R1 > 1, Q1 is unstable.

Proof. If R0 > 1, there exists the equilibrium Q1. Construct a Lyapunov functional

W1(t) = T1[
T (t)
T1
− ln

T (t)
T1

]+E1[
E(t)
E1
− ln

E(t)
E1

]+
a+ k

k
I1[

I(t)
I1
− ln

I(t)
I1

]+
b(a+ k)

pk
V1[

V (t)
V1

− ln
V (t)
V1

]+
qb(a+ k)

gpk
B(t)+

qb(a+ k)
pk

∫ t

t−τ

B(θ)V (θ)dθ .

The derivative of W1(t) along the trajectories of system (2) satisfies

W ′1(t) = (1− T1

T (t)
)T ′(t)+(1− E1

E(t)
)E ′(t)+

a+ k
k

(1− I1

I(t)
)I′(t)+

b(a+ k)
pk

(1− V1

V (t)
)V ′(t)

+
qb(a+ k)

gpk
B′(t)+

qb(a+ k)
pk

[B(t)V (t)−B(t− τ)V (t− τ)]

= (1− T1

T (t)
)[λ −dT (t)−βT (t)V (t)]+(1− E1

E(t)
)[βT (t)V (t)− (a+ k)E(t)]

+
a+ k

k
(1− I1

I(t)
)[kE(t)−bI(t)]+

b(a+ k)
pk

(1− V1

V (t)
)[pI(t)−uV (t)−qB(t)V (t)]

+
qb(a+ k)

gpk
[gB(t− τ)V (t− τ)− cB(t)]+

qb(a+ k)
pk

[B(t)V (t)−B(t− τ)V (t− τ)]

= dT1(2−
T (t)
T1
− T1

T (t)
)+(a+ k)E1(4−

T1

T (t)
− T (t)

T1
· V (t)

V1
· E1

E(t)
− E(t)

E1
· I1

I(t)

− I(t)
I1

V1

V (t)
)+

(a+ k)c
gpk

(R1−1)B(t).
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Obviously 2− T (t)
T1
− T1

T (t)
≤ 0 and 4− T1

T (t)
− T (t)

T1
·V (t)

V1
· E1

E(t)
− E(t)

E1
· I1

I(t)
− I(t)

I1

V1

V (t)
≤ 0. If

R1 < 1, we have W ′1(T,E, I,V,B)≤ 0 for all T,E, I,V,B > 0, therefore the infected equilibrium

without immunity Q1 is stable. W ′1(T,E, I,V,B) = 0, if and only if T = T1, V = V1, E = E1,

I = I1 and B = 0, so Q1 is global asymptotical stability.

The characteristic equation of system (2) at the equilibrium Q1 take the form

(s+ c−gV1e−sτ)H0(s) = 0, (4)

where H0(s) is a polynomial with respect to s. Let H1(s) = (s+ c− gV1e−sτ). So we have

H1(0) = c(1−R1) and lim
s→∞

H1(s) > 0. Clearly, if R1 > 1, equation H1(s) = 0 has a positive

real root, Eq.(4) has a positive real root, and thus Q1 is unstable. The proof of Theorem 2.2 is

completed. �

3. The positive equilibrium and Hopf bifurcation

When the humoral immune reproductive number R1 > 1, the virus would stimulate antibody

immune response, so the infected one will have a certain immunity, since the proof methods

are different, when τ = 0 and τ > 0. We use Theorem 3.1 and Theorem 3.4 to describe this

phenomena.

Theorem 3.1. If R1 > 1, the equilibrium Q2 is locally asymptotically stable when τ = 0.

Proof. The characteristic equation of system (2) at the positive equilibrium Q2 is

H(s;τ) = s5 +A1s4 +A2s3 +A3s2 +A4s+A5 +(M1s4 +M2s3 +M3s2 +M4s+M5)e−sτ

= 0,
(5)

where

A1 = d +P+a+b+u+Q+ c,

A2 = (d +P)(a+b+ c)+(d +P)(u+Q)+ab+ac+bc+(u+Q)(a+b+ c),

A3 = (d +P)(u+Q)(a+b+ c)+(d +P)(ab+ac+bc)+(u+Q)(a+b)c+abc,

A4 = (d +P)(u+Q)(a+b)c+(d +P)abc+Pab(u+Q),

A5 = Pabc(u+Q),
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and
M1 =−c,

M2 =−c(d +P+a+b+u),

M3 =−c((d +P)(a+b)+(d +P)u+(a+b)u+ab),

M4 =−c((d +P)(a+b)u+(d +P)ab−abQ),

M5 =−c(Pabu−Qabd),

P = βV2, Q = qB2, and a = a+ k. If τ = 0, Eq.(5) becomes

H(s;0) = s5 +a1s4 +a2s3 +a3s2 +a4s+a5, (6)

where

a1 = A1 +M1 = d +P+a+u+b+Q > 0,

a2 = A2 +M2 = (d +P)(a+b)+(d +P)(u+Q)+ab+(a+b)(u+Q)+ cQ > 0,

a3 = A3 +M3 = (a+b)Qc+(d +P)Qc+(d +P)(a+b)(u+Q)+(d +P)ab > 0,

a4 = A4 +M4 = (d +P)(a+b)Qc+Pab(u+Q)+abQc > 0,

a5 = A5 +M5 = Qabc(d +P)> 0.

By the Routh-Hurwitz criterion, we know that if

41 = a1 > 0,

42 = a1a2−a3 > 0,

43 = a3(a1a2−a3)−a1(a1a4−a5)> 0,

all roots of Eq.(6) have negative real parts. By some calculations, we obtain that

a1a2−a3 = B1a2 +B2a+B3c+B4,

where
B1 = (P+d)2,

B2 = (P+d)(P+Q+d +u)+d(Q+u),

B3 = (u+Q)Q,

B4 = (P+d)(Q+u)(P+Q+d +u).
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Hence, we complete the proof for a1a2−a3 > 0, we also obtain that

a3(a1a2−a3)−a1(a1a4−a5)

= D1a2c+D2a2 +D3a3c+D4a3 +D5ac2 +D6ac+D7a+D8c2

+D9c+D10,

where

D1 = [(P+Q+b+d +u)2 +b](Q+u)Q,

D2 = (P+Q+b+d +u)(Q+u)[(P+Q+d +u)(P+d)+2bP]

+ (P+Q+b+d +u)2(P+d)b+b(Q+u)(P+d)(Q+u+b),

D3 = Q(u+Q),

D4 = P(u+Q)(P+Q+d +u)+ [d(Q+u)+b(P+d)](P+Q+b+d +u),

D5 = Q2(Q+u),

D6 = [(P+d)(Q+u)(P+Q+b+d +u)+(Q+b+u)(Q+u)(P+b+d)]Q,

D7 = (P+d)(Q+b+u)2[(P+d)(P+Q+b+d +u)+b(Q+u)],

D8 = (Q+u)(P+b+d)Q2,

D9 = Q[b(Q+u+b)(Q+u)(P+b+d)+(Q+u)(P+d)2(P+Q+b+d +u)

+b(P+d)(Q+u)2],

D10 = b(P+d)(Q+u)(Q+b+u)[(P+d)(P+Q+b+d +u)+b(Q+u)],

Hence, we complete the proof for a3(a1a2−a3)−a1(a1a4−a5)> 0. From the above analysis,

the Theorem 3.1 holds.

From Theorem 3.1, when τ = 0, all roots of Eq.(5) lie to the left of imaginary axis. But, as

τ is increased from zero, some of the roots may cross the imaginary axis to the right. Then the

equilibrium Q2 becomes unstable. Now we consider the existence of purely imaginary roots to
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Eq.(5). We suppose Eq.(5) has a purely imaginary root s = iω(ω > 0). Then we obtain

|iω5 +A1ω
4− iA2ω

3−A3ω
2 + iA4ω +A5|2

= |M1ω
4− iM2ω

3−M3ω
2 + iM4ω +M5|2|e−iωτ |2.

So we have

ω
10 +C1ω

8 +C2ω
6 +C3ω

4 +C4ω
2 +C5 = 0, (7)

where
C1 = A2

1−2A2−M2
1 ,

C2 = A2
2 +2A4−2A1A3−M2

2 +2M1M3,

C3 = A2
3 +2A1A5−2A2A4−M2

3 −2M1M5 +2M2M4,

C4 = A2
4−2A3A5−M2

4 +2M3M5,

C5 = A2
5−M2

5 .

Denote

G(x) = x5 +C1x4 +C2x3 +C3x2 +C4x+C5. (8)

Therefore, if Eq.(5) has a purely imaginary root iω, equation

G(x) = 0 (9)

has a positive real root ω2.

Suppose that Eq.(8) has ñ(1 ≤ ñ ≤ 5) positive real roots, which are xn(1 ≤ n ≤ ñ), respec-

tively. So we have

cos(
√

xnτ) = Qn

=
(M3xn−M1x2

n−M5)(A1x2
n−A3xn +A5)+ xn(M2xn−M4)(x2

n−A2xn +A4)

(M3xn−M1x2
n−M5)2 + xn(M2xn−M4)2 ,

sin(
√

xnτ) = Pn

=

√
xn(M2xn−M4)(A1x2

n−A3xn +A5)−
√

xn(M3xn−M1x2
n−M5)(x2

n−A2xn +A4)

(M3xn−M1x2
n−M5)2 + xn(M2xn−M4)2 .

Let

τ
j

n =


1
√

xn
[arccos(Qn)+2 jπ], i f Pn ≥ 0,

1
√

xn
[2π− arccos(Qn)+2 jπ], i f Pn ≤ 0,

(10)
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where 1≤ n≤ ñ, and j = 0,1,2, ...

Then it’s easy to show that the characteristic equation H(s;τ
j

n) = 0 has a pair of purly imag-

inary roots ±i
√

xn. For every integer j and 1 ≤ n ≤ ñ, let s( j)
n (τ) = α

( j)
n (τ)+ iω( j)

n (τ) be the

root of Eq.(5) near τ
( j)
n satisfying α

( j)
n (τ

( j)
n ) = 0, ω

( j)
n (τ

( j)
n ) =

√
xn. Then we have the following

theorem.

Theorem 3.2.
dα

( j)
n

dτ
|
τ=τ

( j)
n

and
dG
dx
|x=xn have the same sign.

Proof. Differentiating Eq.(5) with respect to τ , we get

(5s4 +4A1s3 +3A2s2 +2A3s+A4)
ds
dτ

+(4M1s3 +3M2s2 +2M3s+M4)e−sτ ds
dτ

− τe−sτ(M1s4 +M2s3 +M3s2 +M4s+M5)
ds
dτ
− se−sτ(M1s4 +M2s3 +M3s2 +M4s+M5)

= 0.

This gives

(
ds
dτ

)−1 =
(5s4 +4A1s3 +3A2s2 +2A3s+A4)

se−sτ(M1s4 +M2s3 +M3s2 +M4s+M5)

+
e−sτ(4M1s3 +3M2s2 +2M3s+M4)

se−sτ(M1s4 +M2s3 +M3s2 +M4s+M5)
− τ

s

=
5s4 +4A1s3 +3A2s2 +2A3s+A4

−s(s5 +A1s4 +A2s3 +A3s2 +A4s+A5)

+
4M1s3 +3M2s2 +2M3s+M4

s(M1s4 +M2s3 +M3s2 +M4s+M5)
− τ

s
.

By Calculation, we have

sign{d(Res)
dτ

|
τ=τ

j
n
}= sign{Re(

ds
dτ

)−1|
τ=τ

j
n
}

= sign
5ω8 +(4A2

1−8A2)ω
6 +(3A2

2 +6A4−6A1A3)ω
4

ω2(ω4−A2ω2 +A4)2 +(A1ω4−A3ω2 +A5)2

+
(2A2

3−4A2A4 +4A1A5)ω
2 +A2

4−2A3A5

ω2(ω4−A2ω2 +A4)2 +(A1ω4−A3ω2 +A5)2

+
−4M2

1ω6 +(6M1M3−3M2
2)ω

4 +(4M2M4−2M2
3 −4M1M5)ω

2

ω2(M2ω2−M4)2 +(M1ω4−M3ω2 +M5)2

+
2M3M5−M2

4
ω2(M2ω2−M4)2 +(M1ω4−M3ω2 +M5)2 .
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From Eq.(7), we get

ω
2(ω4−A2ω

2 +A4)
2 +(A1ω

4−A3ω
2 +A5)

2 = ω
2(M2ω

2−M4)
2 +(M1ω

4−M3ω
2 +M5)

2.

It therefore follows that

sign{d(Res)
dτ

|
τ=τ

j
n
}= sign{ G′(xn)

ω2(M2ω2−M4)2 +(M1ω4−M3ω2 +M5)2}.

Since xn > 0, we conclude that
dα

( j)
n

dτ
|
τ=τ

( j)
n

and
dG
dx
|x=xn have the same sign.

Theorem 3.3. Suppose the characteristic equation is the form

f0(s)+ f1(s)e−sτ = 0, (11)

where f0 and f1 are continuously differentiable with respect to s. One of the roots to Eq.(11) is

s(τ) = α(τ)+ iω(τ), where s(τ) is continuously differentiable with respects to τ, and satisfy

α(τ0) = 0 and ω(τ0) = ω0 for a positive real number τ0. Denote

φ(ω) = | f0(iω)|2−| f1(iω)|2. (12)

Then we have

sign{dRe(s)
dτ

|τ=τ0}= sign{( 1
2ω

dφ

dω
)|ω=ω0}.

In Theorem 3.3, let

f0(s) = s5 +A1s4 +A2s3 +A3s2 +A4s+A5,

f1(s) = M1s4 +M2s3 +M3s2 +M4s+M5,

then φ(ω) = G(ω2) where φ is defined by Eq.(12) and G is defined by Eq.(8). Thus, Theorem

3.3 implies Theorem 3.2. Applying Theorem 3.2 and the Hopf bifurcation theorem, we obtain

the existence of a Hopf bifurcation in the following theorem.

Theorem 3.4. (1) The equilibrium Q2 is locally asymptotically stable for any τ ≥ 0 if Eq.(9)

has no positive real roots.

(2) If Eq.(9) has some positive real roots, then Q2 is locally asymptotically stable for τ ∈

[0,τ0
n0
), where

τ
0
n0
= min{τ j

n |1 < n < ñ, j = 0,1,2, · · ·}, (13)
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where τ
( j)
n is defined by Eq.(10).

(3) Furthermore, if xn0 is a simple root of Eq.(9), there is a Hopf bifurcation for the system

(2) as τ is increased past τ
(0)
n0 .

Proof. (1) is obvious by the above discussion.

By the definition of τ
(0)
n0 we know that Eq.(9) has no positive real roots for τ ∈ [0,τ0

n0
). Name-

ly, there is no crossing for eigenvalues. So the roots of the characteristic Eq.(5) have strictly

negative real parts for τ ∈ [0,τ0
n0
). This completes the proof of (2).

Since xn0 is a simple root of Eq.(9), we know G′(xn0) 6= 0. Then
dα

(0)
n0

dτ
|τ=τn0

6= 0 from The-

orem 3.2. If
dα

(0)
n0

dτ
|
τ=τ

(0)
n0

< 0, then the characteristic Eq.(5) has roots with positive real parts

when τ is slightly less then τ
(0)
n0 . It’s in contradiction with (2) in Theorem 3.4 that we have

proved. So we have
dα

(0)
n0

dτ
|
τ=τ

(0)
n0

> 0. When τ = τn0 except for the pair of purely imaginary

roots, the remaining roots of Eq.(5) have strictly negative real parts due to Theorem 3.1. This

implies the existence of a Hopf bifurcation for the system (2). �

4. Stabilities of the bifurcating periodic solutions

In this section, we analyze the stabilities of the bifurcating periodic solutions by using the

method in [19]. We assume

(H1) Eq.(5) has a pair of purely imaginary roots ±iω0 when τ = τ0, namely, τ0 ∈ {τ j
n |1≤ n≤

ñ, j = 0,1,2, · · ·};

(H2) ω0 is a simple root of Eq.(9), in other words, G′(ω2
0 ) 6= 0;

(H3) the remaining roots of Eq.(5) have strictly negative real parts.

We use µ = τ−τ0 as a new bifurcation parameter. Then µ = 0 is the Hopf bifurcation value.

Let

X(t) = (T (t)−T2,E(t)−E2, I(t)− I2,V (t)−V2,B(t)−B2)
T

and Xt(θ) = X(t +θ), where θ ∈ [−τ,0], so that system (2) can be written as:

X ′(t) = LµXt + f (Xt(·),µ), (14)

where Lµφ = F1φ(0)+F2φ(−τ),
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F1 =



−d−βV2 0 0 −βT2 0

βV2 −a− k 0 βT2 0

0 k −b 0 0

0 0 p −u−qB2 −qV2

0 0 0 0 −c


, F2 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 gB2 gV2


,

and

f (φ ,µ) =



−βφ1(0)φ4(0)

βφ1(0)φ4(0)

0

−qφ4(0)φ5(0)

gφ4(−τ)φ5(−τ)


.

Applying the Riese representation theorem, there exists a 5×5 matrix-valued function such that

Lµφ =
∫ 0

−τ

dη(θ ,µ)φ(θ).

Here we can choose

dη(θ ,µ) = F1δ (θ)dθ +F2δ (θ + τ)dθ .

Next we define for φ ∈C([−τ,0],R5)

A(µ)φ(θ) =


dφ(θ)

dθ
, i f θ ∈ [−τ,0),∫ 0

−τ

dη(ξ ,µ)φ(ξ )≡ Lµφ , i f θ = 0,

and

R(µ)φ(θ) =


0, i f θ ∈ [−τ,0),

f (φ ,µ), i f θ = 0.

Then Eq.(14) becomes

X ′(θ) = A(µ)Xt(θ)+R(µ)Xt(θ).
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For ϕ ∈C([0,τ], R5), A∗(0) which is the adjoint operator of A(0), is defined by

A∗(0)ϕ(s) =


−dϕ(s)

ds
, i f s ∈ (0,τ),∫ 0

−τ

dη
T (ξ ,0)ϕ(−ξ ), i f s = 0.

We shall simply write A for A(0), A∗ for A∗(0), η(θ) for η(θ ,0), and R for R(0). Defined an

inner product for ϕ ∈C([0,τ],R5) and φ ∈C([0,τ],R5) as

〈ϕ,φ〉= ϕ̄
T (0)φ(0)−

∫ 0

θ=−τ

∫
θ

ξ=0
ϕ̄

T (ξ −θ)dη(θ)φ(ξ )dξ .

We define h(θ) and h?(s) to be the eigenvectors of A and A∗ corresponding to the eigenvalue

iω0 and −iω0, respectively. Namely ,

Ah(θ) = iω0h(θ), A∗h∗(s) =−iω0h∗(s).

We choose h(θ) and h∗(s) which satisfy < h∗,h >= 1 as

h(θ) = (1,h2,h3,h4,h5)
T eiω0θ and h∗(s) = D(1,h∗2,h

∗
3,h
∗
4,h
∗
5)

T eiω0s,

where

h2 =−
d + iω0

a+ k+ iω0
, h3 =−

k(d + iω0)

(b+ iω0)(a+ k+ iω0)
,

h4 =−
d +βV2 + iω0

βT2
, h5 =

ph3

qV2
− (u+qB2 + iω0)

qV2
h4,

h∗2 = 1+
d− iω0

βV2
, h∗3 =

(a+ k− iω0)(d +βV2− iω0)

kβV2
,

h∗4 =
(b− iω0)(a+ k− iω0)(d +βV2− iω0)

pkβV2
, h∗5 =

qV2h∗4
−c+gV2 + iω0

,

and

D = [1+h∗2h̄2 +h∗3h̄3 +h∗4h̄4 +h∗5h̄5 + τ0eiω0τ0h∗5(h̄4gB2 + h̄5gV2)]
−1.
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Next using the method in [19], we obtain the following coefficients:

g20 = 2D̄(−βh4 +βh4h̄∗2−qh4h5h̄∗4 +gh4h5h̄∗5e−2iω0τ0),

g11 = 2D̄[β (h̄∗2−1)Re(h4)+(h̄∗5g− h̄∗4q)Re(h4h̄5)],

g02 = 2D̄(−β h̄4 +β h̄4h̄∗2−qh̄4h̄5h̄∗4 +gh̄4h̄5h̄∗5e2iω0τ0),

g21 = 2D̄{β (h̄∗2−1)[W (4)
11 (0)+

1
2

W (4)
20 (0)+

1
2

h̄4W (1)
20 (0)+h4W (1)

11 (0)]

− h̄∗4q[h4W (5)
11 (0)+

1
2

h̄4W (5)
20 (0)+

1
2

h̄5W (4)
20 (0)+h5W (4)

11 (0)]

+gh̄5
∗
[(h4W (5)

11 (−τ0)+h5W (4)
11 (−τ0))e−iω0τ0 +(h̄4W (5)

20 (−τ0)+ h̄5W (4)
20 (−τ0))

eiω0τ0

2
]},

where

W20(θ) =
ig20

ω0
eiω0θ h(0)+

iḡ02

3ω0
e−iω0θ h̄(0)+E20e2iω0θ ,

W11(θ) =−
ig11

ω0
eiω0θ h(0)+

iḡ11

ω0
e−iω0θ h̄(0)+E11,

E20 = 2(2iω0−F1−F2e−2iω0τ)−1



−2βh4

2βh4

0

−2qh4h5e−2iω0τ

2gh4h5e−2iω0τ


and

E11 = 2(−F1−F2)
−1



−βRe(h4)

βRe(h4)

0

−qRe(h4h̄5)

gRe(h4h̄5)


.

Thus far, we figure out g20, g11, g02, and g21. So we can compute the following quantities:

c1(0) =
i

2ω0
(g11g20−2|g11|2−

|g02|2

3
)+

g21

2
,

µ2 =−
Re(c1(0))
Re(λ ′(τ0))

,

β2 = 2Re(c1(0)).
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The signs of µ2 and β2 determine the direction of the Hopf bifurcation and the stabilities of

bifurcating periodic solutions respectively. From Theorem 3.2, we know

sign{Reλ
′(τ0)}= sign{G′(ω0)}.

Let µ∗2 =−Re(c1(0))
G′(ω2

0 )
. Then we have the following theorem.

Theorem 4.1. Assume that H(1), H(2) and H(3) hold.

(1) If µ∗2 > 0 (µ∗2 < 0), then the bifurcating periodic solutions exist for τ > τ0 (τ < τ0) in a

τ0−neighborhood.

(2) If β2 < 0 (β2 > 0), the bifurcating periodic solution are orbitally asymptotically stable as

t→+∞ (t→−∞).

It’s easy to show that when τ0 = τ
(0)
n0 where τ

(0)
n0 is defined by Eq.(13), the conclusions in

(3) of Theorem 3.4 imply that the existence and stabilities of the bifurcating periodic solutions

are only determined by Re(c1(0)). Specifically, if Re(c1(0)) < 0, there exist stable periodic

solutions for τ0 > τ
(0)
n0 in a τ

(0)
n0 −neighborhood.

5. Numerical simulations

In order to check our results, we choose a set of parameters a= 6.2142day−1, β = 1.0903mm3

day−1, c = 2.4910day−1, d = 1.6964day−1, g = 5.8502mm3day−1, k = 6.7965day−1, λ =

3.9913mm3day−1, u= 5.3556day−1, q= 3.4407mm3day−1, b= 1.8042day−1, p= 2.3867mm3

day−1, We can compute R0 = 0.5152 < 1, and R1 = 0.1695 < 1, system (2) has an infection-

free equilibrium Q0 = (2.3528,0,0,0,0). Hence, by Theorem 2.1, Q0 is globally asymptotically

stable and that the viruses are cleared. Fig.1 demonstrates the above analysis.

In addition to, we choose a set of parameters a = 6.5718day−1, β = 6.8873mm3day−1, c =

1.3564day−1, d = 2.4593day−1, g= 5.9402mm3day−1, k= 6.7589day−1, λ = 7.9037mm3day−1,

u = 1.2516day−1, q = 6.9692mm3day−1, b = 6.1702day−1, p = 5.6224mm3day−1. We can

compute R0 = 1.4674 > 1, and R1 = 0.1592 < 1, and system (2) has an immune-free infection

equilibrium Q1 = (2.1902,0.1888,0.2069,0.1669,0), which satisfy the condition of Theorem

2.2. Fig.2 demonstrates the result of Theorem 2.2, that Q1 is globally asymptotically stable.
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Fig. 1. Stability of the uninfected equilibrium Q0.

0.5 1 1.5 2 2.5
0.05

0.1
0.15

0.2

0.2

0.4

0.6

0.8

1

1.2

 T I

 B

Fig. 2. Stability of the infected equilibrium without immune response equilibrium Q1

In order to check our results about the existence of Hopf bifurcation, we choose a set of

parameters a = 4.9392day−1, β = 2.4842mm3day−1, c = 1.6504day−1, d = 0.0940day−1, g =

6.3196mm3day−1, k= 2.6057day−1, λ = 4.0620mm3day−1, u= 1.6065day−1, q= 5.3927mm3

day−1, b = 2.5210day−1, p = 4.4369mm3day−1, then we get R1 = 5.7400 > 1, Q2 = (5.4688,

0.4702,0.4860,0.2612,1.2334), the minimum positive simple real root of (3.4) is x1 = 1.8557.

It satisfies the conditions (3) of theorem 3.4. We can calculate that τ
(0)
1 = 0.6079, Applying

theorem 3.4, Q2 is stable when τ < τ
(0)
1 , when τ > τ

(0)
1 , then there exist a Hopf bifurcation, the

simulation results were shown in Fig.3 and Fig.4. we can compute c1(0) =−0.0108−0.0062i,

by Theorem 4.1, there is an orbitally asymptotically stable periodic solution when τ > τ
(0)
1 .

Fig.5 illustrates this fact.

6. Concluding remarks



STABILITY PROPERTIES AND HOPF BIFURCATION FOR A HEPATITIS B INFECTION MODEL 19

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3

 t

 B

4
5

6
7

0.2
0.4

0.6
0.8

1

0.8

1

1.2

1.4

1.6

1.8

2

 I T

 B

Fig. 3. Stability of Q2 for τ = 0.42 < τ
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Fig. 4. A stable bifurcating periodic solution when τ = 0.68 > τ
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Fig. 5. an orbitally asymptotically stable periodic solution of system (2) when τ = 1.6 > τ
(0)
1

In this parper, we give a virus infection model with delayed humoral immunity. To be more

realistic, it is very necessary to introduce the exposed state into the mathematical model. We

obtained the basic production ratio R0 and the immune response reproductive number R1. By

using Lyapunov-LaSalle’s invariance principle, we prove the following result: if R0 < 1 the
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infection-free equilibrium Q0 is globally asymptotically stable, else unstable; if R1 < 1 < R0,

the infected equilibrium without immunity Q1 is globally asymptotically stable, else unstable.

When R1 > 1, we prove the infected equilibrium with humoral immunity Q2 is locally asymp-

totically stable if τ = 0. If characteristic equation about Q2 has simple positive root, there is a

Hopf bifurcation for our system. We also discuss the stability of periodic solutions by the cen-

ter manifold and canonical form method, simulation results are consistent with our theoretical

analysis.
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