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Abstract. This paper reports on the behaviors of stochastic predator-prey populations in toxic environment. We

show that the model established in this paper possesses non-negative solutions as this is essential in any population

dynamics model. We also carry out analysis on the asymptotic behaviour of the model. We show that the model is

ultimate bounded under suitable condition. At last, numerical simulations are carried out to support our results.
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1. Introduction

In recent years, the effects of toxicants emitted into the environment from industrial and

household resources on biological species have received much attention of researchers [1-6].

In [6], the following model is discussed by Tapasi Das et al.
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(1)


dx1(t)

dt
= r1x1(t)(1−

x1(t)
L

)−αx1(t)x2(t)− γ1x3
1(t),

dx2(t)
dt

=−r2x2(t)+βx1(t)x2(t)− γ2x2
2(t).

In this model, r1,r2,α,β ,γ1,γ2 are positive real numbers, x1(t) is the size of the prey popu-

lation at time t; x2(t) is the size of the predator population at time t subject to the non-negative

initial condition x1(0) > 0,x2(0) > 0. The interactions between populations and toxicant are

modeled by means of a system of two differential equations. In absence of predators, the prey

population grows with a relative rate r1, while in absence of prey, the predators die out expo-

nentially with a relative rate r2. L is the environmental carrying capacity of the prey population.

The prey reproduction is influenced by predators only while the predator reproduction is limited

by the amount of prey caught. The amount of the prey consumed by a predator per unit time is

given by αx1. A fraction
β

α
(0 < β < α < 1) of the energy consumed with this biomass goes

into predator reproduction while the rest of the energy is spent to sustain metabolism and hunt-

ing activity of predators. The prey is directly infected by some external toxic substance while

the predator feeding on this infected prey is indirectly affected by the toxic substance The terms

γ1x3
1 and γ2x2

2 show these effects.

They considered the bioeconomic harvesting of this model and examined the possibility of

existence of a bionomic equilibrium as well as optimal harvesting policy.

In fact, population dynamics is inevitably affected by environmental white noise which is an

important component in an ecosystem [7-10].

Taking into account the effect of randomly fluctuating environment, we incorporate white

noise in each equations of the system (12). We assume that fluctuations in the environment will

manifest themselves mainly as fluctuations in the growth rate of the population.

r1→ r1 +adB1(t), r2→ r2 +bdB2(t),

where B1(t) and B2(t) are mutually independent Brownian motions, positive numbers a and b

represent the intensities of the white noise. The stochastic system takes the following form:
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(2)

 dx1(t) = [r1x1(t)(1−
x1(t)

L
)−αx1(t)x2(t)− γ1x3

1(t)]dt +ax1(t)dB1(t),

dx2(t) = [−r2x2(t)+βx1(t)x2(t)− γ2x2
2(t)]dt−bx2(t)dB2(t).

The set-up of this paper is as follows. In Section 2, we prove the positivity of the solutions

which is a very important property for any model on population dynamics which uses stochas-

tic differential equations. We carry out analysis on the asymptotic behaviour of the model in

Section 3. In Section 4, we provide some condition to the ultimate boundedness of the model.

2. Non-negative solutions

We first prove the positivity of the solutions.In this paper,we let (Ω,F ,P) be a complete

probability space with a filteration {Ft}t>0 satisfying the usual conditions(i.e. it is increasing

and right continuous while F0 contains all P-null sets ). Let B(t) be the one-dimensional

Brownian motion defined on this probability space. Also let R2
++ = {x ∈ R2 : xi > 0 for all 1 6

i 6 2} and let x(t) = (x1(t),x2(t)).

Lemma2.1 Let a> 0,b> 0,c> 0. Then the function f (x)=−ax3+bx2+cx is upper bounded

in R+.

Theorem 2.2 Assume that r1,r2,α,β ,γ1,γ2,a,b are positive real numbers and 0 < β < α < 1,

then for any initial value x0 ∈ R2
++,there is a unique solution x(t) to Eqs.(3) on t > 0 and the

solution will remain in R2
++ with probability 1, namely x(t) ∈ R2

++ for all t > 0 almost surely.

Proof. For any given initial value x0 ∈ R2
++, the coefficients of the equation are locally Lips-

chitz continuous, there is a unique local solution x(t) to Eqs.(3) on t ∈ [0,τe), where τe is the

explosion time.If τe = ∞ a.s, this solution is global . Let k0 > 0 be sufficiently large so that

(x1(0),x2(0)) lies within the interval [1/k0,k0]. For each integer k > k0, define the stopping

time:

τk = inf{t ∈ [0,τe],xi(t) 6∈ (1/k,k) for some i,1 6 i 6 2}

/0 denotes the empty set ,and we set inf /0 = ∞.Clearly,τk is increasing as k → ∞. Set τ∞ =

limk→∞ τk, where τ∞ 6 τe a.s. If we can show that τ∞ = ∞, a.s. for all t > 0, then τe = ∞,and
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x(t) ∈ R2
++ a.s. for all t > 0. We need to show that τ∞ = ∞ a.s.to complete the proof. For if this

statement is false, then there is a pair of constants T > 0 and ε > 0 such that

P{τ∞ 6 T}> ε.

Hence there is an integer k1 > k0 such that

(3) P{τk 6 T}> ε for all k > k1.

Define a C2-function V : R2
++→ R+ by

V (x) = x1(t)+1− logx1(t)+ x2(t)+1− logx2(t).

The non-negative of this function is obviously[7].Using Itô’s formula, we get

dV (x(t))

= [1− 1
x1(t)

]dx1(t)+ [1− 1
x2(t)

]dx2(t)+
1
2

1
x2

1(t)
dx1(t)dx1(t)

+
1
2

1
x2

2(t)
dx2(t)dx2(t)

= {[r1x1(t)(1−
x1(t)

L
)−αx1(t)x2(t)− γ1x3

1(t)]− [r1(1−
x1(t)

L
)−αx2(t)

−γ1x2
1(t)]+ [−r2x2(t)+βx1(t)x2(t)− γ2x2

2(t)]− [−r2 +βx1(t)− γ2x2(t)]

+
1
2

a2 +
1
2

b2}dt +a(x1(t)−1)dB1(t)−b(x2(t)−1)dB2(t)

6 [(r1 +
r1

L
)x1(t)+ γ1x2

1(t)− γ1x3
1(t)+ r2 + γ2x2(t)− γ2x2

2 +
1
2

a2 +
1
2

b2]dt

+a(x1(t)−1)dB1(t)−b(x2(t)−1)dB2(t).

.

Note that by Lemma 2.1, (r1 +
r1

L
)x1(t) + γ1x2

1(t)− γ1x3
1(t) is bounded where x1(t) > 0 and

r2 + γ2x2(t)− γ2x2
2(t) is bounded obviously. There is M > 0 such that

(r1 +
r1

L
)x1(t)+ γ1x2

1(t)− γ1x3
1(t)+ r2 + γ2x2(t)− γ2x2

2 +
1
2

a2 +
1
2

b2 6 M.

Therefore,

dV (x(t)6 Mdt +a(x1(t)−1)dB1(t)−b(x2(t)−1)dB2(t).

It yields if t1 ≤ T , then
τk∧t1∫

0
dV (t)6

τk∧t1∫
0

Mdt

+
τk∧t1∫

0
a(x1(t)−1)dB1(t)+

τk∧t1∫
0
−b(x2(t)−1)dB2(t).
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This implies that

(4) EV (x(τk∧T ))6V (x0)+ME(τk∧T )6V (x0)+MT.

Set Ωk = {τk 6 T} for k 6 k1 and by (2.1) P(Ωk)> ε , Note that for every ω ∈Ωk, there is some

i such that xi(τk,ω) equals either k or
1
k

, and hence V (x(τk,ω)) is no less either

k+1− logk

or
1
k
+1− log

1
k
.

Consequently,

V (τk,ω))≥ (k+1− logk)∧ (1
k
+1− log

1
k
).

It then follows from (2.1) and (2.2) that

V (x0)+KT > E[1Ωk(ω)V (x(τk,ω))]> ε([(k+1− logk]∧ [1
k
+1− log

1
k
)]),

where 1Ωk is the indicator of Ωk. Letting k→ ∞ lead to the contradiction:

(5) ∞ >V (x0)+KT = ∞,

so we must therefore have τ∞ = ∞ a.s.

3. Asymptotic behaviour and stability

Definition 3.1. Suppose that 0 6 t0 < T < ∞. Let x0 be an F0-measurable Rd-valued random

variable such that E|x0|2 < ∞.Let f : Rd× [t0,T ]→ Rd and g : Rd× [t0,T ]→ Rd be both Borel

measurable with f (0, t)= 0 and g(0, t)= 0 for all t 6 t0. Consider Itô-type stochastic differential

equation

(6) dx(t) = f (x(t), t)dt +g(x(t), t)dB(t)

on t0 < t < T , with initial value x(t0) = x0. Write x(t; t0,x0) for the value of the solution to

this equation at time t. The trivial solution of Eq.(3.1) is said to be almost surely exponentially

stable if

lim
t→∞

sup
1
t

log |x(t; t0,x0)|< 0 a.s.
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for all x0 ∈ Rd .

Theorem 3.2. Under the condition: r1 <
a2b2

2(a2 +b2)
; x1(t) and x2(t) are almost surely expo-

nentially stable in the sense that x1(t) and x2(t) will tend to their equilibrium value 0 exponen-

tially with probability 1.

Proof. Let V (x) = log(x1(t)+ x2(t)) for x1,x2 ∈ (0,∞). Using Itô-formula, we get

dV (x(t))

=
1

x1(t)+ x2(t)
{[r1x1(t)(1−

x1(t)
L

)−αx1(t)x2(t)− γ1x3
1(t)]dt

+ax1(t)dB1(t)}

+
1

x1(t)+ x2(t)
{−r2x1(t)+βx1(t)x2(t)− γ2x2

2(t)]dt−bx2(t)dB2(t)}

−1
2

1
(x1(t)+ x2(t))2 a2x2

1(t)dt− 1
2

1
(x1(t)+ x2(t))2 b2x2

2(t)dt

6
1

2[x1(t)+ x2(t)]2
[2r1x1(t)(x1(t)+ x2(t))−a2x2

1(t)−b2x2
2(t)]dt

+
ax1(t)

x1(t)+ x2(t)
dB1(t)−

bx2(t)
x1(t)+ x2(t)

dB2(t)

6
1

2[x1(t)+ x2(t)]2
[2r1(x1(t)+ x2(t))2−a2x2

1(t)−b2x2
2(t)]dt

+
ax1(t)

x1(t)+ x2(t)
dB1(t)−

bx2(t)
x1(t)+ x2(t)

dB2(t).

We can write the term 2r1(x1(t)+ x2(t))2−a2x2
1(t)−b2x2

2(t) in the following way

(
x1(t) x2(t)

) 2r1−a2 2r1

2r1 2r1−b2

 x1(t)

x2(t)

 .

Now consider the matrix:  2r1−a2 2r1

2r1 2r1−b2

 .

when the condition r1 <
a2b2

2(a2 +b2)
is satisfied,and note that

a2 +b2

4
≥ a2b2

2(a2 +b2)
,the above

matrix is negative-define with largest(negative) eigenvalue

(7) λmax =
4r1−a2−b2 +

√
16r2

1 +(a2−b2)2

2
< 0.
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Then

(8)

(
x1(t) x2(t)

) r1−a2 r1

r1 r1−b2

 x1(t)

x2(t)


6 λmax(x2

1(t)+ x2
2(t)) =−|λmax|(x2

1(t)+ x2
2(t)).

Therefore, we have

(9)
dV (x(t))6

−|λmax|
x2

1(t)+ x2
2(t)

2(x1(t)+ x2(t))2 dt +
ax1(t)

x1(t)+ x2(t)
dB1(t)−

bx2(t)
x1(t)+ x2(t)

dB2(t).

As −(x2
1(t)+ x2

2(t))6−0.5(x1(t)+ x2(t))2, substituting this in inequality (3.4) we get

dV (x(t)6−1
4
|λmax|dt +

ax1(t)
x1(t)+ x2(t)

dB1(t)−
bx2(t)

x1(t)+ x2(t)
dB2(t).

Integrating the above inequality and using the fact that

lim
t→∞

sup
1
t
|Bi(t)|= 0 (Mao [8]),

we get

lim
t→∞

sup
1
t

log |x(t; t0,x0)|6−
1
4
|λmax|< 0 a.s.

which complete the proof.

4. Ultimate boundedness

Definition 4.1. Equation (1.2) is said to be stochastically ultimately bounded if for any ε ∈

(0,1),there is a positive constant H = H(ε) such that for any initial value x0 ∈ R2
++, the solution

x(t) of Eq.(1.2) has the property that

limsup
t→∞

P{|x(t)|6 H}> 1− ε

Theorem 4.2. Under assumption:r2 >
1+b2

2
and γ1 >

4Lβ 3

27γ3
2

, Eq.(1.2) is stochastically ulti-

mately bounded.

Proof. Consider

V (x) = x2
1 + x2

2 for x ∈ R2
++.
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By the Itô’s formula, we have

(10)

dV (x(t))

= 2x1(t)dx1(t)+2x2(t)dx2(t)+dx1(t)dx1(t)+dx2(t)dx2(t)

= 2x1(t){[r1x1(t)(1−
x1(t)

L
)−αx1(t)x2(t)− γ1x3

1(t)]dt +ax1(t)dB1(t)}

+2x2(t){[−r2x2(t)+βx1(t)x2(t)− γ2x2
2(t)]dt−bx2(t)dB2(t)}

+(a2x2
1 +b2x2

2)dt

= [F(x1(t),x2(t))−V (x1(t),x2(t))]dt +2ax2
1(t)dB1(t)−2bx2

2(t)dB2(t),

where

F(x1(t),x2(t)) = (2r1 +1+a2)x2
1(t)−2

r1

L
x3

1(t)−2γ1x4
1(t)

+(1+b2−2r2)x2
2(t)+2βx1(t)x2

2(t)−2γ2x3
2(t)

≤ (2r1 +1+a2)x2
1(t)

+(1+b2−2r2)x2
2(t)+2βx1(t)x2

2(t)−2γ2x3
2(t)

F(x1(t),x2(t)) is bounded when x1(t) ≥ 0,x2(t) ≥ 0. In fact, to any positive number u > 0, let

f (x2) = (1+ b2− 2r2)x2
2 + 2βux2

2− 2γ2x3
2, for r2 >

1+b2

2
, we get f (x2) 6 2βux2

2− 2γ2x3
2 =

g(x2) . Let g
′
(x2) = 0 we get x2 = 0 and x2 =

2β

3γ2
u > 0 , so, fmax(x2) ≤ g(

2β

3γ2
u) =

8β 3

27γ2
2

u3

which implies

(1+b2−2r2)x2
2(t)+2βx1(t)x2

2(t)−2γ2x3
2(t)6

8β 3

27γ2
2

x3
1(t).

Substitute this in F(x1(t),x2(t)), we get

F(x1(t),x2(t))6
8β 3

27γ2
2

x3
1(t)+(2r1 +1+a2)x2

1(t)−2
γ1

L
x3

1(t).

When γ1 >
4Lβ 3

27γ3
2

, F(x1(t),x2(t)) is bounded on R2
++ obviously. There is H1 > 0 such that

F(x1(t),x2(t))6 H1.

It yields

dV (x(t))6 [H1−V (x(t))]dt ++2ax2
1(t)dB1(t)−2bx2

2(t)dB2(t).
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Now, by the Itô’s formula again, we have

(11)
d[etV (x(t))] = etV (x(t))+ etdV (x(t))

≤ H1dt +2aetx2
1(t)dB1(t)−2betx2

2(t)dB2(t).

Let k0 be sufficiently large for x1(t) and x2(t) lying within the interval [
1
k0
,k0], define the stop-

ping time

τk = inf{t ∈ [0,τe],xi(t) 6∈ (1/k,k) for some i,1 6 i 6 2}.

Clearly τk→ ∞ almost surely as k→ ∞. It then follows from (4.2) that

E[et∧τkV (x(t ∧ τk))]6V (x0)+H1E
t∧τk∫
0

esds.

Let k→ ∞ yields

etE[V (x(t)]6V (x0)+H1(et−1).

It implies

E[V (x(t)]6 e−tV (x0)+H1.

Thus

E|x(t)|2 6 e−tV (x0)+H1.

This implies

limsup
t→∞

E|x(t)|2 6 H1.

For any ε > 0, let H =

√
H1

ε
, by Chebyshev’s inequality,

P{|x(t)|4 > H4}6 E
√
|x(t)|4√
H4

=
E|x(t)|2

H2 .

Hence,

limsup
t→∞

P{|x(t)|> H} = limsup
t→∞

P{|x(t)|4 > H4}

6 limsup
t→∞

E|x(t)|2

H2

6
H1

H2 = ε.

5. Numerical simulation
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At last, we numerically simulate the solution of Eq. (1.2) to substantiate the analytical find-

ings. Consider the discretization equation:

(12)

 xn+1 = xn +(r1xn(1− xn/L)−αxnyn− γ1x3
n)∆t +axn

√
∆tξn +

a2

2 xn(∆tξ 2
n −∆t);

yn+1 = yn +(−r2yn +βxnyn− γ2y2
n)∆t−byn

√
∆tηn− b2

2 yn(∆tη2
n −∆t)),

where ξn and ηn ,n = 1,2, ...,n, are the Gaussian random variables N(0,1).

Using the numerical simulation method given out above and the help of Matlab software,

choosing suitable parameters, we get simulations of the stochastic system (1.2).

We choose parameters that condition r1 <
a2b2

2(a2 +b2)
is staisfied,the simulation showed in

Figure 1 confirms the situdation that the two species are nearly extincted what we get in Theo-

rem 3.2.And we let r2 >
1+b2

2
and γ1 >

4Lβ 3

27γ3
2

,Figure 2 shows that the populations of prey and

predator are bounded .
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FIGURE 1. Solutions of systems (1.2) with the initial conditions

x1(0) = 0.6 ,x2(0) = 0.8,r1 = 0.001,L = 3,α = 0.05,γ1 = 0.03,r2 =

0.1,β = 0.01,γ2 = 0.02,a = 0.1,b = 0.1 respectively.
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