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Abstract. In this paper, sufficient conditions are obtained for the existence of positive periodic solution of the

following discrete obligate Lotka-Volterra model

x1(k+1) = x1(k)exp
{
−a1(k)−b1(k)x1(k)+ c1(k)x2(k)

}
,

x2(k+1) = x2(k)exp
{

a2(k)−b2(k)x2(k)
}
,

where {ai(k)},{bi(k)}, i = 1,2 and {c1(k)} are all positive ω-periodic sequences, ω is a fixed positive integer.
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1. Introduction

In [1], Sun and Wei proposed the following intraspecific commensal model:

dx
dt

= r1x
(k1− x+ay

k1

)
,

dy
dt

= r2y
(k2− y

k2

)
,

(1.1)
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where ri,ki, i = 1,2 and a are all positive constants. In this model, the second species is fa-

vorable to the first one while the first species has no influence on the second one. The authors

investigated the local stability of all equilibrium points. They showed that there is only one

local stable equilibrium point in the system.

Stimulated by the works of Sun and Wei, Zhu, Li and Xu [2] proposed the following obligate

Lotka-Volterra model:
dx
dt

= x
(

a1 +b1x+ c1y
)
,

dy
dt

= y
(

a2 + c2y
)
,

(1.2)

where x≥ 0,y≥ 0,a1 < 0,a2 > 0,b1 < 0,c2 < 0,c1 > 0 are all positive constants. The authors

gave a detail qualitative analysis on the model, they also presented the thresholds of persistency

and extinction for above system in a polluted environment.

As was pointed out by Fan and Wang [4], the discrete time models governed by differ-

ence equations are more appropriate than the continuous ones when the populations have non-

overlapping generations. Recently, Xie, Miao and Xue[3] proposed the following discrete com-

mensal symbiosis model

x1(k+1) = x1(k)exp
{

a1(k)−b1(k)x1(k)+ c1(k)x2(k)
}
,

x2(k+1) = x2(k)exp
{

a2(k)−b2(k)x2(k)
}
,

(1.3)

where {bi(k)}, i = 1,2,{c1(k)} are all positive ω-periodic sequences, ω is a fixed positive inte-

ger, {ai(k)} are ω-periodic sequences, which satisfies ai =
1
ω

ω−1
∑

k=0
ai(k) > 0, i = 1,2. By using

the coincidence degree theory, they showed that the system (1.3) admits at least one positive

ω-periodic solutions.

The success of Xie, Miao and Xue [3] motivated us to propose a discrete analogue of system

(1.2), i.e., the following discrete obligate Lotka-Volterra model

x1(k+1) = x1(k)exp
{
−a1(k)−b1(k)x1(k)+ c1(k)x2(k)

}
,

x2(k+1) = x2(k)exp
{

a2(k)−b2(k)x2(k)
}
,

(1.4)

where {ai(k)},{bi(k)}, i = 1,2 and {c1(k)} are all positive ω-periodic sequences, ω is a fixed

positive integer. Here we also focus our attention to the study of the positive periodic solution
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of the system (1.4). For more works on mutualism system, one could refer to [1]-[16] and the

references cited therein.

2. Main results

In order to obtain the existence of positive periodic solutions of (1.4), for the reader’s con-

venience, we shall summarize in the following a few concepts and results from [5] that will be

basic for this paper.

Let X ,Z be normed vector spaces, L : DomL ⊂ X → Z be a linear mapping, N : X → Z be

a continuous mapping. The mapping L will be called a Fredholm mapping of index zero if

dimKerL = CodimImL < +∞ and ImL is closed in Z. If L is a Fredholm mapping of index

zero there exist continuous projectors P : X → X and Q : Z→ Z such that ImP = KerL, ImL =

KerQ = Im(I−Q). It follows that L|DomL∩KerP : (I−P)X → ImL is invertible. We denote

the inverse of that map by KP. If Ω be an open bounded subset of X , the mapping N will be

called L-compact on Ω̄ if QN(Ω̄) is bounded and KP(I−Q)N : Ω̄→ X is compact. Since ImQ

is isomorphic to KerL, there exists an isomorphisms J : ImQ→ KerL.

In the proof of our existence theorem below, we will use the continuation theorem of Gaines

and Mawhin ([5, p40]).

Lemma 2.1 (Continuation Theorem) Let L be a Fredholm mapping of index zero and let N be

L-compact on Ω̄. Suppose

(a). For each λ ∈ (0,1), every solution x of Lx = λNx is such that x 6∈ ∂Ω;

(b). QNx 6= 0 for each x ∈ ∂Ω∩KerL and

deg{JQN,Ω∩KerL,0} 6= 0.

Then the equation Lx = Nx has at least one solution lying in DomL∩ Ω̄.

Let Z,Z+,R and R+ denote the sets of all integers, nonnegative integers, real unumbers, and

nonnegative real numbers, respectively. For convenience, in the following discussion, we will

use the notation below throughout this paper:

Iω = {0,1, ...,ω−1}, g =
1
ω

ω−1

∑
k=0

g(k), gu = max
k∈Iω

g(k), gl = min
k∈Iω

g(k),
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where {g(k)} is an ω-periodic sequence of real numbers defined for k ∈ Z.

Lemma 2.2 [4] Let g : Z→R be ω-periodic, i. e., g(k+ω)= g(k). Then for any fixed k1,k2 ∈ Iω ,

and any k ∈ Z, one has

g(k)≤ g(k1)+
ω−1

∑
s=0
|g(s+1)−g(s)|,

g(k)≥ g(k2)−
ω−1

∑
s=0
|g(s+1)−g(s)|.

We now reach the position to establish our main result.

Theorem 2.1 Assume that c̄1ā2 > ā1b̄2 exp{(Ā2 + ā2)ω} holds. Then system (1.4) admits at

least one positive ω-periodic solution.

Proof. Let

xi(k) = exp{ui(k)}, i = 1,2,

so that system (1.4) becomes

u1(k+1)−u1(k) = −a1(k)−b1(k)exp{u1(k)}+ c1(k)exp{u2(k)},

u2(k+1)−u2(k) = a2(k)−b2(k)exp{u2(k)}.
(2.1)

Define

l2 =
{

y =
{

y(k)
}
,y(k) = (y1(k),y2(k))T ∈ R2

}
.

For a = (a1,a2)
T ∈ R2, define |a| = max{|a1|, |a2|}. Let lω ⊂ l2 denote the subspace of all ω

sequences equipped with the usual normal form ‖y‖= max
k∈Iω

|y(k)|. It is not difficult to show that

lω is a finite-dimensional Banach space. Let

lω
0 = {y = {y(k)} ∈ lω :

ω−1

∑
k=0

y(k) = 0}, lω
c = {y = {y(k)} ∈ lω : y(k) = h ∈ R2,k ∈ Z},

then lω
0 and lω

c are both closed linear subspace of lω , and

lω = lω
0 ⊕ lω

c , dimlω
c = 2.

Now let us define X = Y = lω , (Ly)(k) = y(k+1)− y(k), and

N(u1,u2)
T = (N1,N2)

T := N(u,k),
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where { N1 = −a1(k)−b1(k)exp{u1(k)}+ c1(k)exp{u2(k)},

N2 = a2(k)−b2(k)exp{u2(k)}.

Px =
1
ω

ω−1

∑
s=0

x(s),x ∈ X , Qy =
1
ω

ω−1

∑
s=0

y(s),y ∈ Y.

Then similarly to the analysis of [3], one could see that L is a Fredholm mapping of index zero.

N is L-compact on any open bounded set Ω⊂ X .

Now we are at the point to search for an appropriate open, bounded subset Ω in X for the

application of the continuation theorem. Corresponding to the operator equation Lx = λNx,λ ∈

(0,1), we have

u1(k+1)−u1(k) = λ [−a1(k)−b1(k)exp{u1(k)}+ c1(k)exp{u2(k)}],

u2(k+1)−u2(k) = λ [a2(k)−b2(k)exp{u2(k)}].
(2.2)

Suppose that y = (y1(k),y2(k))T ∈ X is an arbitrary solution of system (2.2) for a certain λ ∈

(0,1). Summing on both sides of (2.2) from 0 to ω−1 with respect to k, we reach

ω−1
∑

k=0
[−a1(k)−b1(k)exp{u1(k)}+ c1(k)exp{u2(k)}] = 0,

ω−1
∑

k=0
[a2(k)−b2(k)exp{u2(k)}] = 0.

That is,
ω−1

∑
k=0

b1(k)exp{u1(k)}+ ā1ω =
ω−1

∑
k=0

c1(k)exp{u2(k)}, (2.3)

ω−1

∑
k=0

b2(k)exp{u2(k)}= ā2ω. (2.4)

From (2.3) and (2.4), we have

ω−1
∑

k=0
|u1(k+1)−u1(k)|

= λ
ω−1
∑

k=0
|−a1(k)−b1(k)exp{u1(k)}+ c1(k)exp{u2(k)}|

≤
ω−1
∑

k=0
|a1(k)|−

ω−1
∑

k=0
a1(k)

+
ω−1
∑

k=0

(
a1(k)+b1(k)exp{u1(k)}+ c1(k)exp{u2(k)}

)
=

ω−1
∑

k=0
|a1(k)|− ā1ω +2

ω−1
∑

k=0
c1(k)exp{u2(k)}
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= (Ā1− ā1)ω +2
ω−1
∑

k=0
c1(k)exp{u2(k)},

ω−1
∑

k=0
|u2(k+1)−u2(k)|

= λ
ω−1
∑

k=0
|a2(k)−b2(k)exp{u2(k)}|

≤ (Ā2 + ā2)ω,

(2.5)

where Ā1 = 1
ω

ω−1
∑

k=0
|a1(k)|, Ā2 = 1

ω

ω−1
∑

k=0
|a2(k)|. Since {u(k)} = {(u1(k),u2(k))T} ∈ X , there

exist ηi,δi, i = 1,2 such that

ui(ηi) = min
k∈Iω

ui(k), ui(δi) = max
k∈Iω

ui(k).

With the same analysis as that of (2.8)-(2.11) in [3], one could see that

ln
ā2

b̄2
− (Ā2 + ā2)ω ≤ u2(k)≤ ln

ā2

b̄2
+(Ā2 + ā2)ω, (2.6)

and so,

|u2(k)| ≤max
{
| ln ā2

b̄2
+(Ā2 + ā2)ω|, | ln

ā2

b̄2
− (Ā2 + ā2)ω|

}
def
= H2. (2.7)

It follows from (2.3) and (2.6) that

ω−1
∑

k=0
b1(k)exp{u1(η1)} ≤ −ā1ω +

ω−1
∑

k=0
c1(k)exp{(Ā2 + ā2)ω + ln ā2

b̄2
}. (2.8)

Noting that from the conditions of Theorem one could easily see that

c̄1ā2

b̄2
exp{(Ā2 + ā2)ω}>

c̄1ā2

b̄2
> ā1,

and so, it follows from (2.8) that

u1(η1)≤ ln
∆1

b1
, (2.9)

where

∆1 =−ā1 +
c̄1ā2

b̄2
exp{(Ā2 + ā2)ω}.

It follows from Lemma 2.2, (2.5) and (2.9) that

u1(k) ≤ u1(η1)+
ω−1
∑

k=0
|u1(k+1)−u1(k)|

≤ (Ā1− ā1)ω + ln ∆1
b1
+2

c̄1ā2ω

b̄2
exp{(Ā2 + ā2)ω}

def
= M1.

(2.10)
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It follows from (2.3), (2.6) and the condition of the theorem that

ω−1
∑

k=0
b1(k)exp{u1(δ1)} ≥ −ā1ω +

ω−1
∑

k=0
c1(k)exp{ln ā2

b̄2
− (Ā2 + ā2)ω}> 0,

and

u1(δ1)≥ ln
∆2

b1
, (2.11)

where

∆2 =−ā1 +
c̄1ā2

b̄2
exp{−(Ā2 + ā2)ω}.

It follows from Lemma 2.2, (2.5) and (2.11) that

u1(k) ≥ u1(δ1)−
ω−1
∑

k=0
|u1(k+1)−u1(k)|

≥ ln ∆2
b1
− (Ā1 + ā1)ω−2

c̄1ā2ω

b̄2
exp{−(Ā2 + ā2)ω}

def
= M2.

(2.12)

Combine with (2.10) and (2.12) leads to

|u1(k)| ≤max
{
|M1|, |M2|

}
def
= H1. (2.13)

Clearly, H1 and H2 are independent on the choice of λ . From the condition of the Theorem, one

could easily see that c̄1ā2 > ā1b̄2, and so, the system of algebraic equations

−ā1− b̄1x1 + c̄1x2 = 0, ā2− b̄2x2 = 0 (2.14)

admits a unique positive solution (x∗1,x
∗
2) ∈ R+

2 , where

x∗1 =
−ā1 + c̄1x∗2

b̄1
, x∗2 =

ā2

b̄2
.

Let H =H1+H2+H3, where H3 > 0 is taken sufficiently enough large such that ||(ln{x∗1}, ln{x∗2})T ||=

| ln{x∗1}|+ | ln{x∗2}|< H3.

Let H = H1 +H2 +H3, and define

Ω =
{

u(t) = (u1(k),u2(k))T ∈ X : ‖u‖< H
}
.

It is clear that Ω verifies requirement (a) in Lemma 2.1. When u ∈ ∂Ω∩KerL = ∂Ω∩R2, u is

constant vector in R2 with ||u||= B. Then

QNu =

 −ā1− b̄1 exp{u1}+ c̄1 exp{u2}

ā2− b̄2 exp{u2}

 6= 0.
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Moreover, direct calculation shows that

deg{JQN,Ω∩KerL,0}= sgn
(

b̄1b̄2 exp{x∗1}exp{x∗2}
)
= 1 6= 0.

where deg(.) is the Brouwer degree and the J is the identity mapping since ImQ = KerL.

By now we have proved that Ω verifies all the requirements in Lemma 2.1. Hence (2.1) has at

least one solution (u∗1(k),u
∗
2(k))

T , in DomL∩Ω̄. And so, system (1.4) admits a positive periodic

solution (x∗1(k),x
∗
2(k))

T , where x∗i (k) = exp{u∗i (k)}, i = 1,2, This completes the proof of the

claim.

Remark 2.1 The condition of the Theorem 2.1 could be rewritten as

c̄1 >
ā1b̄2

ā2
exp{(Ā2 + ā2)ω}.

Noting that c1(k) reflects the contribution rate of the second species to the first species, hence

our theorem implies that if the contribution rate is enough large, then, despite the negative

growth rate of the first species, two species could be coexistent in a periodic fluctuation form.
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