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Abstract. In this paper, a commensal symbiosis model with feedback controls is investigated. By constructing a

suitable Lyapunov function, we show that the positive equilibrium of the system is globally stable, which means

that feedback control variables only change the position of the positive equilibrium and retain its global stability

property.
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1. Introduction

Mutualism model could be clarified as: commensalism, facultative and obligate. The Lotka-

Volterra mutualism model has been studied extensively. Permanence and global attractivity are

important concepts to describe the dynamic behaviors of the system. In the past few years,

many excellent results concerned with the permanence, existence of positive periodic solution,

and global stability of the mutualism system were obtained, see [1-10] and the references cited
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therein. For example, Chen et al. [4] focused on the permanence of the discrete mutualism

model with time delays. Chen [5] analyzed the permanence for the discrete mutualism with

time delays. In [7-8], the authors proposed and studied a delayed two-species model of facul-

tative mutualism, they investigated the existence and globally asymptotic stability of positive

periodic of the system. Chen et al. [9] studied an obligate Lotka-Volterra mutualism model, by

constructing a suitable Lyapunov function, sufficient conditions could ensure the global asymp-

totical of the nonnegative equilibria was obtained. While there are few works on commensalism

model.

In [1], the authors proposed and studied the following two species commensalism mutualism

model:

dx
dt

= r1x
(k1 − x+αy

k1

)
,

dy
dt

= r2y
(k2 − y

k2

)
,

(1.1)

where x and y are the densities of population 1 and population 2 at time t, respectively. ri, i= 1,2

are the intrinsic growth rate of two populations. ki, i = 1,2 are the environmental carrying ca-

pacity of the population 1 and population 2, respectively. α reflects the efficiency of every single

in population 2 can contribute to population 1. Here, we can see x is harmless to specie y and

x will survival without y. System (1.1) admits four equilibria E1(0,0),E2(k1,0),E3(0,k2) and

E4(k1 +αk2,k2). Concerned with the local stability property of the system (1.1), by analyzing

the characteristic root of the characteristic equation, Sun and Wei [1] obtained the following

result.

Theorem A. E1(0,0),E2(k1,0),E3(0,k2) are all unstable, E4(k1 +αk2,k2) is locally stable.

It is natural for us to study the global property of the system. On the other hand, Gopalsamy

and Weng [11] first time proposed and studied a single specie model with feedback control,

since then, many scholars attach great attention to ecological model with feedback controls,

see [12-18] and the references cited therein. However, to the best of the author’ knowledge,

to this day, still no scholars propose and study the commensal symbiosis model with feedback

controls. This motivates us to propose and study the following system:
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ẋ = x
(
b1 −a11x+a12y−α1u1

)
,

ẏ = y
(
b2 −a22y−α2u2

)
,

u̇1 =−η1u1 +a1x,

u̇2 =−η2u2 +a2y.

(1.2)

The rest of the paper is organized as follows. We will state and prove the global stability

property in the next section. In Section 3, numerical simulations are presented to illustrate our

results. We end this work by a brief discussion.

2. Global stability

First we consider the commensalism Lotka-Volterra mutualism model as follow:

dx
dt

= x
(
b1 −a11x+a12y

)
,

dy
dt

= y
(
b2 −a22y

)
.

(2.1)

System (2.1) admits a positive equilibria P0(x0,y0), where

x0 =
b1a22 +b2a12

a11a22
, y0 =

b2

a22
.

Theorem 2.1. The positive equilibrium P0(x0,y0) of system (2.1) is globally stable.

Proof. Now we construct a Lyapunov function

V1 = η1

(
x− x0 − x0 ln

x
x0

)
+η2

(
y− y0 − y0 ln

y
y0

)
, (2.2)
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where η1,η2 are positive constants be determined later.

Calculating the derivative along the solution of system (2.1), we have

dV1

dt
= η1(x− x0)[−a11(x− x0)+a12(y− y0)]

+η2(y− y0)[−a22(y− y0)]

= −a11η1(x− x0)
2 +a12η1(x− x0)(y− y0)

−a22η2(y− y0)
2

= −(x− x0,y− y0)

 a11η1 −a12η1
2

−a12η1
2 a22η2


 x− x0

y− y0

 .

(2.3)

Now we show that one could choose suitable constants ηi, i = 1, 2 such that the matrix

 a11η1 −a12η1
2

−a12η1
2 a22η2



is positive definite. Indeed, one could choose η1 =
a11a22

a2
12

, η2 = 1, then

∣∣∣∣∣∣∣∣
a11η1 −a12η1

2

−a12η1
2 a22η2

∣∣∣∣∣∣∣∣= a11a22η1η2 −
a2

12η2
1

4

=
a2

11a2
22

a2
12

−
a2

11a2
22

4a2
12

=
3a2

11a2
22

4a2
12

> 0.

(2.4)

So dV1
dt < 0 strictly for all x > 0,y > 0 except the positive equilibrium P0(x0,y0), where dV1

dt =

0. Thus, V1(t) satisfies Lyapunov’s asymptotic stability theorem, and the positive equilibrium

P0(x0,y0) of system (2.1) is globally stable. This ends the proof of Theorem 2.1.



STABILITY OF A COMMENSAL SYMBIOSIS MODEL 5

Now let’s consider the dynamic behaviors of the system (1.2). Obviously, P(x∗,y∗,u∗1,u
∗
2)

satisfies the equations



b1 −a11x∗+a12y∗−α1u∗1 = 0,

b2 −a22y∗−α2u∗2 = 0,

−η1u∗1 +a1x∗ = 0,

−η2u∗2 +a2y∗ = 0.

From above equations, one could easily see that system (1.2) admits a unique positive equilib-

rium P(x∗,y∗,u∗1,u
∗
2), where

x∗ =
(b1a22 +b2a12)η1η2 +b1a2α2η1

(a11η1 +a1α1)(a22η2 +a2α2)
, y∗ =

b2η2

a22η2 +a2α2
,

u∗1 =
a1x∗

η1
, u∗2 =

a2y∗

η2
,

Concerned with the stability property of the positive equilibrium P(x∗,y∗,u∗1,u
∗
2), we have

Theorem 2.2. The positive equilibrium P(x∗,y∗,u∗1,u
∗
2) of system (1.2) is globally stable.

Proof. Now let’s construct a Lyapunov function

V2 = δ1

(
x− x∗− x∗ ln

x
x∗

)
+δ2

(
y− y∗− y∗ ln

y
y∗

)
+δ3(u1 −u∗1)

2 +δ4(u2 −u∗2)
2, (2.5)

where δ1 =
a11a22

a2
12

, δ2 = 1, δ3 =
δ1α1

2a1
, δ4 =

δ2α2

2a2
.
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Calculating the derivative along the solution of system (1.2), we have

dV2

dt
= δ1(x− x∗)[−a11(x− x∗)+a12(y− y∗)−α1(u1 −u∗1)]

+δ2(y− y∗)[−a22(y− y∗)−α2(u2 −u∗2)]

+2δ3(u1 −u∗1)[−η1(u1 −u∗1)+a1(x− x∗)]

+2δ4(u2 −u∗2)[−η2(u2 −u∗2)+a2(y− y∗)]

= −a11δ1(x− x∗)2 −a22δ2(y− y∗)2 −2δ3η1(u1 −u∗1)
2

−2δ4η2(u2 −u∗2)
2 +a12δ1(x− x∗)(y− y∗)

+(2δ3a1 −δ1α1)(x− x∗)(u1 −u∗1)

+(2δ4a2 −δ2α2)(y− y∗)(u2 −u∗2)

= −(x− x∗,y− y∗)

 a11δ1 −a12δ1
2

−a12δ1
2 a22δ2


 x− x∗

y− y∗


−2δ3η1(u1 −u∗1)

2 −2δ4η2(u2 −u∗2)
2.

(2.6)

Through a simple algebraic computations, we know that the matrix a11δ1 −a12δ1
2

−a12δ1
2 a22δ2


is positive definite. Thus

dV2

dt
< 0 strictly for all x > 0,y > 0,ui > 0, i = 1,2 except the positive

equilibrium P(x∗,y∗,u∗1,u
∗
2), where

dV2

dt
= 0. Thus, V2(t) satisfies Lyapunov’s asymptotic sta-

bility theorem, and the positive equilibrium P(x∗,y∗,u∗1,u
∗
2) of system (1.2) is globally stable.

This ends the proof of Theorem 2.2.

Remark 1 After comparison, we found that x∗ < x0, y∗ < y0, so Theorem 2.2 shows that the

feedback controls only change the position of the positive equilibrium and reduce the density

of the population.
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3. Examples

The following two examples show the feasibility of the main results.

Example 3.1 Consider the following equations

ẋ = x(1− x+2y),

ẏ = y(1−2y).
(3.1)

Here, corresponding to system (2.1), we take b1 = b2 = a11 = 1, a12 = a22 = 2. It follows from

Theorem 2.1 that the positive equilibrium P0(2,0.5) is globally stable.

Numeric simulation (Fig 1) also indicates that P0 is globally stable.
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FIGURE 1. Dynamics behaviors of the solution (x(t),y(t)) of sys-

tem (3.1) with the initial conditions (x(0),y(0))=(1.7,0.4), (0.6,0.8)

and (0.3,1.2), respectively.

Example 3.2 Now let’s further incorporate the feedback control variables to the system (3.1)

and consider the following system.

ẋ = x(1− x+2y−0.5u1),

ẏ = y(1−2y−0.25u2),

u̇1 =−2u1 + x,

u̇2 =−u2 +2y.

(3.2)
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Here, corresponding to system (1.2), we take b1 = b2 = a11 = 1, a12 = a22 = 2, α1 = 0.5,α2 =

0.25, η1 = a2 = 2, η2 = a1 = 1. From Theorem 2.2 the positive equilibrium P(1.44,0.4,0.72,0.8)

is globally stable.

Numeric simulation (Fig 2) also indicates that P is globally stable.
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FIGURE 2. Dynamics behaviors of the solution (x,y,u1,u2) of

system (3.2) with the initial conditions (x(0),y(0),u1(0),u2(0)) =

0.4,0.68,0.30,0.67), (0.82,0.36,0.74,0.91)and (0.26,0.83,0.23,0.49),

respectively.

4. Discussion

By constructing some suitable Lyapunov functions, we show that the positive equilibrium

of Lotka-Volterra commensalism system is global stability, Theorem 2.1 complement and sup-

plement the main results of [1]. Furthermore, we incorporate feedback control variables to the

system (2.1). Our study shows that feedback controls only change the position of the interior

equilibrium, reduce the density of the population and retain the global stability of the unique

interior equilibrium. This indicates that, in the realistic environment, the epiphytes can keep

a balance with their host plants and the feedback controls have no influence on the persistent

property of the system. In other word, the epiphytes and their host plants would finally coexist

in a stable state.
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Remark 2 There are still many interesting and challenging problems that need to research for

system (2.1). For example, a more suitable system should consider some of the past state of

the species, and this leads to the system with delays, for such kind of system, whether feedback

control variables still have no influence on the stability property of the system or not is still

unknown, we leave this for future investigation.
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