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Abstract. In this paper, an autonomous predator-prey system with stage structure of distributed-delay type is

studied in this paper. By using an iterative method, the global stability of the interior equilibrium point of the

system is investigated. Our result extends the main result in [Global stability of a stage-structured predator-prey

system, Applied Mathematics and Computation, 223 (2013), 45-53].
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1. Introduction

During the last two decades, the study of dynamic behaviors of stage-structured ecosystem

become one of the most important research topic, many excellent results have been obtained,

see [1]-[25] and the references cited therein.
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In their series paper, Chen et al. [2, 3, 4] studied the dynamic behaviors of the following

stage-structured predator-prey system (stage structure for both predator and prey).

(1)

ẋ1(t) = r1(t)x2(t)−d11x1(t)− r1(t− τ1)e−d11τ1x2(t− τ1),

ẋ2(t) = r1(t− τ1)e−d11τ1x2(t− τ1)−d12x2(t)−b1(t)x2
2(t)− c1(t)x2(t)y2(t),

ẏ1(t) = r2(t)y2(t)−d22y1(t)− r2(t− τ2)e−d22τ2y2(t− τ2),

ẏ2(t) = r2(t− τ2)e−d22τ2y2(t− τ2)−d21y2(t)−b2(t)y2
2(t)+ c2(t)y2(t)x2(t),

where x1(t) and x2(t) denote the densities of the immature and mature prey species at time t,

respectively; y1(t) and y2(t) represent the immature and mature population densities of predator

species at time t, respectively; ri(t), bi(t), ci(t)(i = 1,2) are all continuous functions bounded

above and below by positive constants for all t ≥ 0. di j,τi, i, j = 1,2 are all positive constants.

By using the comparison theorem of differential equation, they investigated the partial survival

and extinction property of the system [2]; By introducing a new lemma and applying the stan-

dard comparison theorem, they investigated the persistent property of the system [3]; For the

autonomous case, by using an iterative method, they investigated the global stability of the in-

terior equilibrium point of the system [4]. Their result shows that conditions which ensure the

permanence of the system is enough to ensure the global stability of the system.

An important assumption behind the work of Chen et al. [2, 3, 4] is that all individuals take

the identic amount of time to become mature, which seems biologically unreasonable since

individuals in a population do not necessarily always mature at the same age [18]. With the aim

of overcome this defect, recently, Chen et al. [5, 6] proposed the following non-autonomous

predator-prey model with stage structure of distributed-delay type:

(2)

ẋ1(t) = r1(t)x2(t)−d11(t)x1(t)−
∫

∞

0
r1(t− s) f1(s)exp

{∫ s

0
−d11(m)dm

}
x2(t− s)ds,

ẋ2(t) =
∫

∞

0
r1(t− s) f1(s)exp

{∫ s

0
−d11(m)dm

}
x2(t− s)ds

−d12(t)x2(t)−b1(t)x2
2(t)− c1(t)x2(t)y2(t),

ẏ1(t) = r2(t)y2(t)−d22(t)y1(t)−
∫

∞

0
r2(t− s) f2(s)exp

{∫ s

0
−d22(m)dm

}
y2(t− s)ds,

ẏ2(t) =
∫

∞

0
r2(t− s) f2(s)exp

{∫ s

0
−d22(m)dm

}
y2(t− s)ds

−d21(t)y2(t)−b2(t)y2
2(t)+ c2(t)y2(t)x2(t),
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where x1(t) and x2(t) denote the densities of the immature and mature prey species at time t,

respectively; y1(t) and y2(t) represent the immature and mature population densities of preda-

tor species at time t, respectively; ri(t),di j bi(t), ci(t)(i, j = 1,2) are all continuous functions

bounded above and below by positive constants for all t ≥ 0. fi(s), i = 1,2 is the probability

density function of species i that the maturation time is between s and s+ ds with ds being

infinitesimal and
∫

∞

0 fi(s)ds = 1. In [5], they obtained sufficient conditions which concern with

the extinction of the system and partial survival of the predator (prey) species, respectively. In

[6], they obtained a set of sufficient conditions which ensure the permanence of the system.

However, comparing the results of [5, 6] and the results of [2, 3], one could see that the con-

ditions about the permanence and the partial survival of the system with distributed-delay are

complex than that of the discrete delay ones, the reason is that in system (1.1), the first and third

equation could be expressed in an integral form and consequently, the dynamic behaviors of x1

and y1 are determined by x2 and y2. While for the distributed-delay case, with the introducing

of probability density function fi(s), the first and third equation in system (2) could no longer

be expressed in integral form.

To the best of the authors knowledge, to this day, still no scholars investigate the stability

property of the system (2), which is one of the most important topic in the study of population

dynamics. As far as the non-autonomous ecosystem with stage-structure of distributed-delay is

concerned, only [19] investigated the stability property of a non-autonomous nonlinear stage-

structured competition system, however, their conditions are very complicated and not easy to

verify. This motivated us to consider a slightly more simple system, i.e., the autonomous case

of system (2).

(3)

ẋ1(t) = r1x2(t)−d11x1(t)− r1

∫
∞

0
f1(s)exp{−d11s}x2(t− s)ds,

ẋ2(t) = r1

∫
∞

0
f1(s)exp{−d11s}x2(t− s)ds

−d12x2(t)−b1x2
2(t)− c1x2(t)y2(t),

ẏ1(t) = r2y2(t)−d22y1(t)− r2

∫
∞

0
f2(s)exp{−d22s}y2(t− s)ds,

ẏ2(t) = r2

∫
∞

0
f2(s)exp{−d22s}y2(t− s)ds

−d21y2(t)−b2y2
2(t)+ c2y2(t)x2(t),
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where xi(t) and yi(t), i = 1,2 have the same meaning as that of system (2); ri, bi, ci(i = 1,2),

di j, i, j = 1,2 are all positive constants.

The initial conditions for system (3) take the form of

(4)
xi(θ) = φi(θ),yi(θ) = ψi(θ)> 0,

φi(0)> 0,ψi(0)> 0, i = 1,2,θ ∈ (−∞,0],

where φ(t)= (φ1(t),φ2(t),ψ1(t),ψ2(t))∈UCg, which is referred to as the fading memory space

[26, p. 46]. Set

Fi =
∫

∞

0
fi(s)exp{−diis}ds, i = 1,2.

From [5] we know that x2(t)→ 0 as t → +∞ if r1F1 ≤ d12 holds. Since we are focus on the

stability property of the positive equilibrium, for the rest of the paper, we assum that r1F1 > d12

holds.

The interior positive equilibrium E∗(x∗1,x
∗
2,y
∗
1,y
∗
2) of system (3) satisfies the following equa-

tions

(5)



r1x2−d11x1− r1F1x2 = 0,

r1F1x2−d12x2−b1x2
2− c1x2y2 = 0,

r2y2−d22y1− r2F2y2 = 0,

r2F2y2−d21y2−b2y2
2 + c2x2y2 = 0,

and so, if

(6) b2
(
r1F1−d12

)
− c1

(
r2F2−d21

)
> 0

and

(7) c2
(
r1F1−d12

)
+b1

(
r2F2−d21

)
> 0

hold, then system (3) admits an unique positive equilibrium E∗(x∗1,x
∗
2,y
∗
1,y
∗
2), where

(8) x∗1 =
r1(1−F1)

d11
x∗2, x∗2 =

b2
(
r1F1−d12

)
− c1

(
r2F2−d21

)
b2b1 + c2c1

,

(9) y∗1 =
r2(1−F2)

d22
y∗2, y∗2 =

c2
(
r1F1−d12

)
+b1

(
r2F2−d21

)
b2b1 + c2c1

.

Following is the main result of this paper:
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Theorem 1.1. In addition to (6) and (7), further assume that

(A1)

(10) c1c2 < b1b2,

(A2)

(11)
(

1− c1c2

b1b2

)(
r1F1−d12

)
>

c1

b2

(
r2F2−d21

)
hold. Then the unique interior equilibrium E∗(x∗1,x

∗
2,y
∗
1,y
∗
2) of system (3) is globally attractive,

that is,

lim
t→+∞

xi(t) = x∗i , lim
t→+∞

yi(t) = y∗i , i = 1,2.

Remark 1.1. Comparing the corresponding Theorem 3.4 in [1] for system (1) with Theorem

1.1 for (2), we find out that the term

Fi =
∫

∞

0
fi(s)exp{−diis

}
ds, i = 1,2.

in our result are corresponding to the e−diiτi, i = 1,2 in [4]. That is, we extend the result of finite

discrete delay case to the distributed delay case.

2. Some lemmas

Lemma 2.1. [20] Consider the following equation:

u̇(t) = a
∫

∞

0
f (s)exp{−ds}u(t− s)ds−bu(t)− cu2(t),

where a > 0,b≥ 0,c > 0;d > 0, and

A = a
∫

∞

0
f (s)exp{−ds}ds.

(1) If A > b, then lim
t→+∞

u(t) = (A−b)c−1.

(2) If A≤ b, then lim
t→+∞

u(t) = 0.

Lemma 2.2. [6] Consider the following equation:

(12) u̇(t) = a
∫

∞

0
f (s)exp{−ds}u(t− s)ds+bu(t)− cu2(t),
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where a,c > 0,b≥ 0;u(t) = φ(t)> 0 for −∞≤ t ≤ 0, and

A = a
∫

∞

0
f (s)exp{−ds}ds.

we have lim
t→+∞

u(t) = (A+b)c−1.

Similarly to the proof of Theorem 2.1 in [1], one could easily obtain the following Lemma.

Lemma 2.3. Solutions of system (3) with initial conditions (4) are positive for all t ≥ 0.

Lemma 2.4. [27] If a > 0,b > 0 and
dx
dt
≥ b−ax, when t ≥ 0 and x(0)> 0, we have

liminf
t→+∞

x(t)≥ b
a
.

If a > 0,b > 0 and
dx
dt
≤ b−ax, when t ≥ 0 and x(0)> 0, we have

limsup
t→+∞

x(t)≤ b
a
.

Lemma 2.5 Consider the following equation:

(13) u̇(t) = av(t)−bu(t)−a
∫

∞

0
f (s)exp{−ds}v(t− s)ds,

where a > 0,b≥ 0,c > 0;d > 0, and

(14) F =
∫

∞

0
f (s)exp{−ds}ds.

Assume that lim
t→+∞

v(t) = v∗, where v∗ is some constant, then

lim
t→+∞

u(t) =
a(1−F)

b
.

Proof. Setting M > sup{v(t), t ∈R}, it follows from lim
t→+∞

v(t) = v∗ and (14) that for any enough

small ε > 0 (ε < 1
2

a(1−F)v∗

a(1+F+MF)), there exists a positive number T such that for all t ≥ T ,

(15) v∗− ε < v(t)< v∗+ ε,
∫ T

0
f (s)exp{−ds}ds > (1− ε)F.

Now, for t ≥ 2T, from (13), we have

(16)

u̇(t) = av(t)−bu(t)−a
∫

∞

0
f (s)exp{−ds}v(t− s)ds

≤ av(t)−bu(t)−a
∫ T

0
f (s)exp{−ds}v(t− s)ds

≤ a(v∗+ ε)−bu(t)−a(v∗− ε)(1− ε)F.
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Applying Lemma 2.4 to (16) leads to

(17) limsup
t→+∞

u(t)≤ a(v∗+ ε)−a(v∗− ε)(1− ε)F
b

.

Setting ε → 0 in (17), we obtain

(18) limsup
t→+∞

u(t)≤ a(1−F)v∗

b
.

Also, for t ≥ 2T, from (13), we have

(19)

u̇(t) = av(t)−bu(t)−a
∫ T

0
f (s)exp{−ds}v(t− s)ds

−a
∫

∞

T
f (s)exp{−ds}v(t− s)ds

≥ a(v∗− ε)−bu(t)−a(v∗+ ε)F−aMεF.

From the definition of ε ,

(20) a(v∗− ε)−a(v∗+ ε)F−aMεF >
1
2

a(1−F)v∗ > 0.

And so, applying Lemma 2.4 to (19) leads to

(21) liminf
t→+∞

u(t)≥ a(v∗− ε)−a(v∗+ ε)F−aMεF
b

.

Setting ε → 0 in (21), we obtain

(22) liminf
t→+∞

u(t)≥ a(1−F)v∗

b
.

(18) combing with (22) implies that

(23) lim
t→+∞

u(t) =
a(1−F)v∗

b
.

This completes the proof of Lemma 2.5.

3. Proof of the main result

Proof of Theorem 1.1. Conditions (A1) and (A2) in Theorem 1.1 is equivalent to

(24)
(
r1F1−d12

)
>

c1

b2

(
r2F2−d21

)
+

c1c2

b1b2

(
r1F1−d12

)
,

which is equivalent to

(25) r1F1 > d12 +
c1

b2

(
r2F2−d21 +

c2

b1

(
r1F1−d12

))
.
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Condition (A1) and (7) in Theorem 1.1 is equivalent to

(26)
(

1− c1c2

b1b2

)(
r2F2−d21

)
+

c2

b1

(
1− c1c2

b1b2

)(
r1F1−d12

)
> 0,

and so,

(27) r2F2−d21 +
c2

b1

[
r1F1−d12−

c1

b2

(
r2F2−d21 +

c2

b1

(
r1F1−d12

))]
> 0.

From (25) and (27), one could choose ε > 0 small enough such that

(28) m(1)
1

def
=

r1F1−d12− c1
b2

(
r2F2−d21 + c2

( r1F1−d12
b1

+ ε
))

b1
− ε > 0.

and

(29) r2F2−d21 +
c2

b1

[
r1F1−d12−

c1

b2

(
r2F2−d21 + c2

(r1F1−d12

b1
+ ε
))]

> b2ε.

From the definition of m(1)
1 and (29), it follows that

(30) m(1)
2

def
=

r2F2 + c2m(1)
1 −d21

b2
− ε > 0.

Let (x1(t),x2(t),y1(t),y2(t))T be any positive solution of system (3) for t ≥ 0. From the second

equation of system (3) and Lemma 2.3, we have

(31) ẋ2(t)< r1

∫
∞

0
f1(s)exp{−d11s}x2(t− s)ds−d12x2(t)−b1x2

2(t).

By applying Lemma 2.1 (1) and standard comparison theorem, it follows that

(32) limsup
t→+∞

x2(t)≤
r1F1−d12

b1
.

For ε > 0 be defined by (28) and (29), it follows from (32) that there exists a T
′

1 > 0 such that

(33) x2(t)<
r1F1−d12

b1
+ ε

def
= M(1)

1 for all t > T
′

1.

For t > T
′

1, from the forth equation of system (3) and (33), we have

(34)
ẏ2(t) < r2

∫
∞

0
f2(s)exp{−d22s}y2(t− s)ds−d21y2(t)−b2y2

2(t)+ c2M(1)
1 y2(t)

= r2

∫
∞

0
f2(s)exp{−d22s}y2(t− s)ds−

(
d21− c2M(1)

1
)
y2(t)−b2y2

2(t).

By applying Lemma 2.1 (1) or Lemma 2.2 to (34), we can obtain

(35) limsup
t→+∞

y2(t)≤
r2F2 + c2M(1)

1 −d21

b2
.
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For above ε > 0, it follows from (35) that there exists a T1 > T
′

1 such that

(36) y2(t)<
r2F2 + c2M(1)

1 −d21

b2
+ ε

def
= M(1)

2 for all t > T1.

Thus, for t > T1, from the second equation of system (3) and (36), we have

(37)
ẋ2(t) ≥ r1

∫
∞

0
f1(s)exp{−d11s}x2(t− s)ds−d12x2(t)−b1x2

2(t)− c1M(1)
2 x2(t)

= r1

∫
∞

0
f1(s)exp{−d11s}x2(t− s)ds−

(
d12 + c1M(1)

2
)
x2(t)−b1x2

2(t).

By applying Lemma 2.1 (1) and standard comparison theorem, it follows from (37) that

(38) liminf
t→+∞

x2(t)≥
r1F1−d12− c1M(1)

2
b1

,

and so, from (28) there exists a T
′

2 > T1 such that

(39) x2(t)>
r1F1−d12− c1M(1)

2
b1

− ε=m(1)
1 > 0 for all t > T

′
2.

Above inequality together with the forth equation of system (3) leads to

(40) ẏ2(t) > r2

∫
∞

0
f2(s)exp{−d22s}y2(t− s)ds−

(
d21− c2m(1)

1
)
y2(t)−b2y2

2(t).

From this differential inequality, by applying Lemma 2.1 (1) or Lemma 2.2, we have

liminf
t→+∞

y2(t)≥
r2F2 + c2m(1)

1 −d21

b2
,

and so, from (30) there exists a T2 > T
′

2 such that

(41) y2(t)>
r2F2 + c2m(1)

1 −d21

b2
− ε=m(1)

2 > 0 for all t > T2.

From the second equation of system (3) and (41), for t > T2, we have

(42) ẋ2(t) < r1

∫
∞

0
f1(s)exp{−d11s}x2(t− s)ds−d12x2(t)−b1x2

2(t)− c1m(1)
2 x2(t).

By applying Lemma 2.1 (1) and standard comparison theorem, it follows that

(43) limsup
t→+∞

x2(t)≤
r1F1−d12− c1m(1)

2
b1

.

For ε > 0 be defined by (28) and (29), it follows from (43) that there exists a T
′

3 > T2 such that

(44) x2(t)<
r1F1−d12− c1m(1)

2
b1

+
ε

2
def
= M(2)

1 for all t > T
′

3.
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For t > T
′

3, from the forth equation of system (3) and (44), we have

(45) ẏ2(t) < r2

∫
∞

0
f2(s)exp{−d22s}y2(t− s)ds−

(
d21− c2M(2)

1
)
y2(t)−b2y2

2(t).

By applying Lemma 2.1 (1) or Lemma 2.2 to (45), we can obtain

(46) limsup
t→+∞

y2(t)≤
r2F2 + c2M(2)

1 −d21

b2
.

For above ε > 0, it follows from (46) that there exists a T3 > T
′

3 such that

(47) y2(t)<
r2F2 + c2M(2)

1 −d21

b2
+

ε

2
def
= M(2)

2 for all t > T3.

Thus, for t > T3, from the second equation of system (3) and (47), we have

(48) ẋ2(t) ≥ r1

∫
∞

0
f1(s)exp{−d11s}x2(t− s)ds−

(
d12 + c1M(2)

2
)
x2(t)−b1x2

2(t).

By applying Lemma 2.1 (1) and standard comparison theorem, it follows from (48) that

(49) liminf
t→+∞

x2(t)≥
r1F1−d12− c1M(2)

2
b1

,

and so, from (49) there exists a T
′

4 > T3 such that

(50) x2(t)>
r1F1−d12− c1M(2)

2
b1

− ε

2
def
= m(2)

1 > 0 for all t > T
′

4.

Above inequality together with the second equation of system (3) leads to

(51) ẏ2(t) > r2

∫
∞

0
f2(s)exp{−d22s}y2(t− s)ds−

(
d21− c2m(2)

1
)
y2(t)−b2y2

2(t).

From this differential inequality, by applying Lemma 2.1 (1) or Lemma 2.2, we have

liminf
t→+∞

y2(t)≥
r2F2 + c2m(2)

1 −d21

b2
,

and so, there exists a T4 > T
′

4 such that

(52) y2(t)≥
r2F2 + c2m(2)

1 −d21

b2
− ε

2
def
= m(2)

2 > 0 for all t > T4.
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Obviously,

(53)

M(2)
1 =

r1F1−d12− c1m(1)
2

b1
+

ε

2
<

r1F1−d12

b1
+ ε = M(1)

1 ;

M(2)
2 =

r2F2 + c2M(2)
1 −d21

b2
+

ε

2
<

r2F2 + c2M(1)
1 −d21

b2
+ ε = M(1)

2 ;

m(2)
1 =

r1F1−d12− c1M(2)
2

b1
− ε

2
>

r1F1−d12− c1M(1)
2

b1
− ε = m(1)

1 ;

m(2)
2 =

r2F2 + c2m(2)
1 −d21

b2
− ε

2
>

r2F2 + c2m(1)
1 −d21

b2
− ε = m(1)

2 .

Repeating the above procedure, we get four sequences M(n)
i ,m(n)

i , i = 1,2,n = 1,2, · · · , such that

for n≥ 2

(54)

M(n)
1 =

r1F1−d12− c1m(n−1)
2

b1
+

ε

n
;

M(n)
2 =

r2F2 + c2M(n)
1 −d21

b2
+

ε

n
;

m(n)
1 =

r1F1−d12− c1M(n)
2

b1
− ε

n
;

m(n)
2 =

r2F2 + c2m(n)
1 −d21

b2
− ε

n
.

Obviously,

m(n)
1 < x2(t)< M(n)

1 , m(n)
2 < y2(t)< M(n)

2 , for t ≥ T2n.

We claim that sequences M(n)
i , i = 1,2 are strictly decreasing, and sequences m(n)

i , i = 1,2 are

strictly increasing. To proof this claim, we will carry out by induction. Firstly, from (53) we

have

M(2)
i < M(1)

i , m(2)
i > m(1)

i , i = 1,2.

Let us assume now that our claim is true for n, that is,

(55) M(n)
i < M(n−1)

i , m(n)
i > m(n−1)

i , i = 1,2.
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By using the second inequality in (55), one could easily see that

(56)
M(n+1)

1 =
r1F1−d12− c1m(n)

2
b1

+
ε

n+1

<
r1F1−d12− c1m(n−1)

2
b1

+
ε

n
= M(n)

1 .

Similarly, by a straightforward computation, one could easily see that

(57) M(n+1)
2 < M(n)

2 ,m(n+1)
1 > m(n)

1 ,m(n+1)
2 > m(n)

2 .

and we have

(58)
0 < m(1)

1 < m(2)
1 < · · ·< m(n)

1 < x2(t)< M(n)
1 < · · ·< M(2)

1 < M(1)
1 ,

0 < m(1)
2 < m(2)

2 < · · ·< m(n)
2 < y2(t)< M(n)

2 < · · ·< M(2)
2 < M(1)

2 .

Therefore, the limits of M(n)
i ,m(n)

i , i = 1,2;n = 1,2, · · · exist. Denote that

(59)
lim

t→+∞
M(n)

1 = x2, lim
t→+∞

M(n)
2 = y2,

lim
t→+∞

m(n)
1 = x2, lim

t→+∞
m(n)

2 = y2,

Letting n→+∞ in (54), we obtain

(60)

r1F1−d12− c1y2−b1x2 = 0;

r2F2−d21 + c2x2−b2y2 = 0;

r1F1−d12− c1y2−b1x2 = 0;

r2F2−d21 + c2x2−b2y2 = 0.

Solving equation (60), one could obtain

(61) x2 = x2 = x∗2 =
b2
(
r1F1−d12

)
− c1

(
r2F2−d21

)
b2b1 + c2c1

,

(62) y2 = y2 = y∗2 =
c2
(
r1F1−d12

)
+b1

(
r2F2−d21

)
b2b1 + c2c1

,

that is

(63) lim
t→+∞

x2(t) = x∗2 lim
t→+∞

y2(t) = y∗2.
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By using (63), applying Lemma 2.5 to the first and third equations of system (3), it immediately

follows that

(64) lim
t→+∞

x1(t) =
r1(1−F1)x∗2

d11
lim

t→+∞
y1(t) =

r2(1−F2)y∗2
d22

.

(63) and (64) shows that the unique interior equilibrium E∗(x∗1,x
∗
2,y
∗
1,y
∗
2) of system (3) is glob-

ally attractive. This completes the proof of Theorem 1.1.
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