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Abstract. In this paper, a universal model of ethanol fermentation with product inhibition and synchronous impulse
is investigated. Firstly, continuous input substrate is taken. By using the qualitative theory of ordinary differential
equations, we prove the complex dynamics of the equilibria. Moreover, synchronous impulse of input substrate is
also considered. Using small amplitude perturbation, we obtain the biomass-free periodic solution is locally stable
if some conditions are satisfied. In a certain limiting case, it is shown that a nontrivial periodic solution emerges

via a supercritical bifurcation. The above results are validated by numerical simulations.
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1. Introduction

With the rapid development of the national economy, the explosion in the number of motor
vehicles has caused serious air pollution. The development of fuel alcohol, not only can greatly
reduce the content of harmful substances in vehicle exhaust, but also can solve the energy crisis.
Furthermore, fuel alcohol may be obtained from the microorganism fermentation. during the
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microorganism fermentation, a major problem is the relatively low product yields and relatively
low productivity because the fermentation process is affected by many factors[1-9]. To enhance
the alcohol production, Wei[6] proposed a mathematical model of ethanol fermentation with

gas stripping as follows:

( dS 0 ‘LLS.X
— =D(S"—8§) - ———— —
o~ P8 =S sk ey T
dx uSx
— = -D 1.1
X & K X, (1.1)
USx
— == __(D P
\ dt 52(Ks+S> ( +BO)’

x is the biomass concentration ; S is the substrate concentration ; S° is the initial substrate
concentration; P is the ethanol concentration; D is the dilution rate; 6; and & are the cell
yield coefficient and the production yield coefficient, respectively; p is the maximum specific
growth rate; m is the maintenance coefficient; f3 is the stripping factor. K is the half-saturation
constant.

The Monod model is only used when the presence of toxic metabolic products plays no
inhibitory role. Therefore, we need to investigate the effect of substrate input on the production
of ethanol. where u is the maximal specific growth rate of biomass.

Based on [6,9], we consider the following mathematical model of the ethanol fermentation:

( dS 0 HS.X
& _D(*—8) - -
i PSS sk s sy ™
dx uSx
Z___ ™ _p ,
di K+ S+82/k (12)
dP uSx
ap _ —(D+Bo)P,
| dr &, (K,+S+S2/ky) (Do)

ky is the inhibition constant, reflecting the inhibition effect of high concentration substrate.
Other parameter are the same as system (1.1)
We notice that the variable P does not appear in the first two equations of (1.2). This allows

us to consider the following system:

ds 0 pky Sx D(S° —5)

— =D(5"-8) - —mx =: p(8)(— -t —x),

i PSS Sk ks sy TP g ) (1.3)
@ H3x Dx |

dt Kk +kS+82
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. kl,LLS
- Kgky +ky S+ 82
system (1.3) in the positive region S > 0,x > 0.

where p(S) -+ m. From the practical view of fermentation, we only consider

2. Qualitative analysis of system (1.3)

Firstly, we prove the boundedness of system (1.3).
Theorem 2.1. System (1.3) is ultimately bounded.

Proof. Define a function W(S,x) = §;S +x. We compute the derivative of W(S,x) along a

solution of (1.3).

W (S,x) < D& S°— D& S — Dx,

we have 8;S +x — 8,5 as t — oo. The proof is completed.

We consider equilibrium solutions to exist only if they lie in the positive quadrant. System
(1.3) has at most three equilibrium solutions. The equilibrium Ey = (S°,0) always lies on the
S—axis, representing the extinction of the microorganism.

Let A; and A;(A; < A,) denote the two possible solutions of the quadratic equation

k1S
sl = D. Whether zero, one, or both of these other equilibria exist and sit in the
les + kl S + S2
iy . iy o D(S°—S)
positive quadrant depends on the relative positions of the nutrient isocline x = IKS
Kk +ky S+S2 +m
and the microorganism isocline x = A and x = 4.
k1S
From system (1.3), we have e -i!/fkllS e = D, which is equivalent to
ki(D—
SZ+%S+k1Ks:0. (2.1)

2 /
Therefore, system (2.1) has positive roots if A = k*(D_pu)? 4k K > 0, thatis, yu > w.

D2
D(kl + 2\/k1Ks)

Obviously, when u > , system (1.3) has at most three equilibria

ki
Ey(8°,0),E), (A1,x1) and Ej, (A2, x2), where
A _ki(u—D)-DVA o D& (S0 — A1) (Kyki + ki A+ 24%)
1 2D i SimAs® + ki (Sym+ p) Ay +mky Ky,

ki(p—D)+DVA o D8 (S0 — A2) (Kyki + ki Ay + 227
2D 2 m51122—|—k1(51m—|—,u)7tg+mk1Ks31.

Next, we consider the possible phase portraits of system (1.3).

A=
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D(ky +2+v/kiK;)
ki

Theorem 2.2. If u <

holds, then system (1.3) has no interior equilibria. It is

easy to that equilibrium Ey(S°,0) is a stable node.

The proof can be obtained through the characteristic roots of the variational matrix about
Ey(SY,0). Hence, we omit it.

D(lq +2+/ les)
kq
libria: a hyperbolic saddle (S°,0) and an interior equilibrium (S*,x*), where S* = A; = Ay =

D& (S0 — §) (Kky 4 ky S* + 5°2) . .
VEKki, x* = . (8*,x*) is a saddle-node if Ag = 8 D(S° —
st m51S*2+k1(51m+,u)S*+mk1K551 ( ) f Ao ! (

S*)(kl —1—25*) —klu(élS* —|—x*) - 51mx*(k1 —1—25*) 75 0.

Theorem 2.3. If u = and S° > \/K;ki hold, then system (1.3) has two equi-

Proof. First, Eg(S°,0) is a hyperbolic saddle, which is easy to prove. Next, we will prove
(§*,x*) is a saddle-node. It is clear that the determinant of the matrix J(S*,x*) is zero, therefore
the equilibrium (S*,x*) is degenerate.

We first make the following transformation dt = (Kki + k1S + S?)dt and system (1.3) now

takes the form:

ds k

S _ (D(S° — §) — mx) (Ksky + ki S+ %) — gy,

i o 2.3
dx (2.3)

- =x(ki (= D)S — DKky —DS?),

To determine the dynamics of system (1.3) in the neighborhood of the equilibrium (S*,x*), we
again transform the equilibrium (S*,x*) of system (1.3) to the origin and expand the righthand

side of system as a Taylor series.

dX
T = AX —[m(kiK + kST §72) + 45y
+[DS® — 3DS* — mx* — Dk X — (kym 4§ +2mS*)XY —mX?Y —DX3,  (2.4)

4 — _Dx*X? —DX?Y =: ¢(S,x),

where Ag = (DS® — DS* —mx*) (ki +25") — ki1 (S* + §). Let

AoX — [m(ki K+ ki S* +5°2) + " 5]y

(2.5)
+[DS® —3DS* — mx* — Dk X — (kym 4§ +2mS*) XY —mX?Y — DX3 = 0.

We can find a function X = f(Y), X(0) = 0 since Ag # 0. Without loss of generality, suppose

fY)=c1Y +cV? + 3V 4. (2.6)
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Substituting (2.5) into (2.4), we have Ag(c1Y +c2¥Y? + 3V + ) — [m(k K + k1 S* + §*2) +
"g—f‘s*]y +[DS® — 3DS* — mx* — Dky)(c1Y + oY% +c3Y3 + )2 — (kym + ’% +2mS*)(c1Y +

Y2+ c3V3 4 )Y —m(cY + Y% +c3V3 4 )Y —D(c1Y +c¥? +c3Y2 +---) =0, by
m(kiKy + ki S* +87%) + 4L 5+

comparing the coefficient, ¢; = A . Hence we obtain
0
m(ki Ky + ki S* +5°2) + Al g+
Y)= 3 LY +---. From system (2.4), we get
0
_ m(k Ky + ki S* +82) + Kl
OUf(Y).¥) = ~Dx' . oy
0
m(ki K+ k S* 4 §*2) + Mg
—D( : ) Y +---)2Y.
Ag
m(kiKy + ki S* +87%) 4 G s*

Therefore, m = 2,g = —Dx*( )2, we have the equilibrium (S$*,x*)

is a saddle-node by [10].

Ag

The following lemma together with the Poincare criterion [11] will be useful to eliminate the

possibility of the periodic orbits of system (1.3).

Lemma 2.4. Let I be any periodic orbit of system (1.3). Then

0 _
A= faiv(s 9ar = ) p(S)%(%)dt.

Proof.
:fdiv (S,%)dt
7{ ki px(Ksky — S?) kiuS V)
51 Kk1+k15+§2) ) Kk(1)+k15+52
klu(K kl S ) (S S) S d
— Inx(¢))dt
j{ 61 Kk +k15+Sz) ) kyps +dl‘ le( )>

)] (Ksk] +k|S+S2)+m

0
7{ 54 D; )S))-I-%lnp(S)]dt

_?{p d DSO )S))dt‘

Theorem 2.5. When S° < A, and u > D(k‘+ ”lqm, system (1.3) has one microorganism-free

equilibrium Eo(S°,0), which is a stable node and no interior equilibrium.

The proof is clear and we omit it.
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D(ky + 2k K;)

Theorem 2.6. When A < S° < Ay and u > .
1

, system (1.3) has two equilibria
Ey(S°,0) and E;, (A1,x1). In this case

(a) The equilibrium Ey(S,0) is a saddle.

(b) The interior equilibrium (Ay,x1) is globally asymptotically stable. The phase portrait is

given in Fig.1(a).

Proof. We can obtain the characteristic equation of the linearization of system (1.3) near the

equilibrium (S°,0) as follows:

0
Dy —m— kipS !
det 0 (ngl + kSO —l—SO) —0.
0 kips 3 —D—vy
Kky + kSO0 + SO

kl,llSO

Kk ks s? D > 0. Hence the equilibrium E;(S°,0) is a
sK1 1

Obviously, we have y; = —1, p» =
saddle.

Next we will show the equilibrium Ej, (A1,x;) is globally asymptotically stable. The proof
of the local stability is similar to (I), we can also obtain the characteristic equation of the lin-

earization at £, (A1,x) is

) key pxy (Ksky — A4
)y (et 1A ) 1 x (K 12) -0
5](Ksk1—|-k17t1—|—/11 ) (Kskl—f—k]l]-l-l] )2

(2.7)
From system (2.1), 41 A, = Kk, we have A; < v/Kk;. Therefore, we obtain that the equilibrium

P+ (D+ ky pxy (ki Ks — Ar?)
81 (Ksky + kA1 + A7)

Ej, (A1,x1) is locally stable. From system (1.3) and the conditions, we note that if the periodic
solution exist it must encircle the critical point £ . From (2.7), we can obtain the equilibrium
E,, lies on a downslope of the microorganism isocline. According to Lemma 2.4, the periodic
solution is stable if it exists around E, , which is impossible. According to Poincare-Bendixson
Theorem, limit @ of all the orbits must be an equilibrium. This implies that £, is globally

asymptotically stable. The proof is completed.
Theorem 2.7. When A < A < S° and u > D(kl+ VleS), system (1.3) has three equilibria

Eo(8°,0) Ey, (A1,x1) and E;,(A2,x2). In this case
(a) The equilibrium Ey(S°,0) is a stable node.
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(b) The interior equilibrium (Ay,x) is stable focus or node. The equilibrium (A2,x;) is a saddle.

(c) System (1.3) has no closed orbits. The phase portrait is given in Fig.1(b).

The proof of (a) and (b) is easy to obtain. The proof of (c) is similar to Theorem 2.6, we omit
it.
3. The model of impulsive input

With an impulsive input, the equation (1.3) becomes

( dS DS wkiSx
= —_DS— —mx
dt 81 (Ksky + k1S + S?) L £ nT
dx UkiSx D ’
— — X
dt  Kki +kiS+S? ’ (3.1)
AS = DS°,
t =nT,
Ax =0,

\

where T is the impulsive period, n = {1,2,---}. Other parameters are the same meanings as
system (1.2).

By the basic theories of impulsive differential equations [12,13], the solution of system (3.1)
is unique and piecewise continuous in (nT,(n+1)T],n € N for any initial values in R7 .

Considering the following subsystem

4 — _ps, t #nT, (52)
S(tt)=S(t)+DS°, t=nT.
~ DS%exp(—D(t —nT
We can find a unique positive periodic solution S(7) = exXp(=D(t —nT)) 0 € (nT,(n+

1 —exp(—DT)
1)T]. Similar to Zhao el at. [14], it can be shown that S(¢) is globally asymptotically stable by

using stroboscopic map.

As a consequence, system (3.1) always has a biomass-free periodic solution (S(z),0).

Theorem 3.1. The biomass-free periodic solution (S(t),0) is locally stable if R < 1, where

_ b /T pkiS()
DT Jo Kk +kS(t) +S2(r)
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Proof. The local stability of the periodic solution may be determined by considering the behav-

ior of small amplitude perturbations of the solution. Define

S(t) =y(t)+S(t), x(tr)=2z(1).

The linearization of the first and second equations of (3.1) can be written as:

‘ N pkyS(t) _
¥(1) _ b =3 (Koki+ki S +20) yt) . (3.3)
H0) J—L OB 2(t)

Kk +k15(t)+52 t)

(
Let ¢(¢) be the fundamental solution matrix, then ¢(z) satisfies

. o pkiS(r) _
do(t) _ b 81 (Ksky+kyS(1)+5(1)) " o (1) (3.4)
dt 0 1k S(1) _ ’

Kyky+kyS(t)+82(1)
and ¢ (0) =1 is the identity matrix. The linearization of the third and fourth equations of system

(3.1) becomes

y(nT™) 1o y(nT)
z(nT™) 0 1 z(nT)

Thus, the monodromy matrix of (3.4) is

M= o(T).

From (3.4), we have ¢(T) = ¢ (0)exp ] Adt 2 ¢ (0)exp(A), where ¢(0) is the identity ma-

trix. Let A, A, be eigenvalues of matrix M then

A =exp(—DT < 1,

_ T Pk S(t) _
A2 =exp fo ((Ksk1+k1§(t)+§2(z) Ddt).
Therefore, all eigenvalues of M, namely, A; (i = 1,2) have absolute values less than one if

and only if R < 1. That is,

R L)
DT Jo Kyki +kiS(t) +S82(1)

According to the Floquet theorem [13], we have (S(z),0) is locally asymptotically stable.

The proof is completed.
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Remark 3.1. The biomass-free periodic solution (S(¢),0) is unstable if

/ “le ) = t>1.
" DT Kyky + ki S(t) +82(t)

4. The bifurcation of a nontrivial periodic solution

In the following, we shall study the loss of stability phenomenon mentioned in Remark 3.1
and prove that it is due to the onset of nontrivial periodic solutions obtained via a supercritical

bifurcation in the limiting case, that is,

1 /T 1wk S(t)
DT Jo Ky +kiS(t) + S2(0)
In order to get this purpose, we shall employ a fixed point argument. We denote by ®(z,Up)

the solution of the (unperturbed) system consisting of the first two equations of (3.1) for the

initial data Uy = (u,u3); also, ® = (@, ®P,). We define the mapping 11,1 : R — R? by
I (x1,%2) =x1+DS°, L(x1,%) =x

and the mapping Fi,F> : R> — R* by

pkyixix;
_ F = — Dx3.
mxy, Fa(x1,x2) Kk ko fa2 P2

pkyixix;

F — Dxj—
(x1,x2) X 51 (Kok1 + ks + 12

Furthermore, let us define ¥ : [0,0) x R> — R? by
Y(T,Uy) =1(P(T,Vy)); ¥(T,Up) = (Y1(T,Up),¥Y2(T,Uy)).

It is easy to see that W is actually the stroboscopic mapping associated to the system (3.1), which
puts in correspondence the initial data at 0, with the subsequent state of the system ¥(T+,Uj)
at Ty, where T is the stroboscopic time snapshot.

We reduce the problem of finding a periodic solution of (3.1) to a fixed problem. Here, U ia
a periodic solution of period T for (3.1) if and only if its initial value U (0) = Uj is a fixed point
for W(T,-). Consequently, to establish the existence of nontrivial periodic solutions of (3.1),
one needs to prove the existence of the nontrivial fixed points of V.

We are interested in the bifurcation of nontrivial periodic solutions near (S(z),0). Assume

that Xy = (xo,0) is a starting point for the trivial periodic solution (S(¢),0), where xo = S(07).
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To find a nontrivial periodic solution of period 7 with initial value X, we need to solve the fixed

point problem X = ¥(7,X), or denoting T =T +7,X = Xo+ X,
Xo+X =¥(T+7,X0+X).
Let us define
N(T,X)=Xo+X — (T +7,X +X) = (N1 (T,X),N2(T,X)). (4.1)

At the fixed point N(7,X) = 0. Let us denote

ap by
DxN(0,(0,0) = | /
co dy
It follows that
ahy =1—exp(—DT) >0, (4.2)
1k S(s) oD

I — exp(— ! m 2 (s xp(Ds)ds
by, = exp( DT)/0 (m+ 51(Ksk1+k1§(s)+§2(s))) (9)62( ,Xo) exp(Ds)ds, (4.3)

co =0, (4.4)
I — ] —ex g “klg(s) _ s
d() =l-e p(/() (Kskl +k1§(s) —|—§2(S) d ) (45)

(See Appendix A; for details). A necessary condition for the bifurcation of nontrivial periodic

solutions near (S(7),0) is then

det[DxN(0, (0,0))] = 0.

Since DxN(0,(0,0)) is an upper triangular matrix and 1 —exp(—DT) > 0, it consequently

follows that dj) = 0 is necessary for the bifurcation. It is easy to see that d{, = 0 is equivalent

r k1S

to — / K L (s) ———ds = 1. It now remains to show that this necessary condition is
DT Jo Kky +ki1S(s) + S2(s)

also sufficient. This assertion represents the statement of the following theorem, which is our

main result.

pkiS(s)
_ Kk +k1S(s)+SZ(s)
sense that there is € > 0 such that for all 0 < € < € there is a stable positive nontrivial periodic

1 T
Theorem 4.1. A supercritical bifurcation occurs at DT / ds=1,inthe
0

solution of (3.1) with period T + €.



THEORETICAL ANALYSIS OF ETHANOL FERMENTATION 11

Proof. According to the above notations, we obtain that
dim(Ker[DxN(0,(0,0))]) =1,
and a basis (—b)y/aj), 1) in Ker[DxN(0, (0,0))]. Then the equation N(7,X) = 0 is equivalent to
Ni(T,aYy+zEg) = 0,Na(T, Yy +zEp) = 0,

where Ey = (1,0), Yo = (—b}/dl,1). X = a¥y+zEq represents the direct sum decomposition of
X using the projections onto Ker[DxN(0, (0,0))] (the central manifold) and Im[DxN(0, (0,0))]
(the stable manifold).

Let us define

f1(T,0,2) = Ni (T, Yo + zEp), fo(T,Q,2) = Na(T, a¥p +zEp).

Firstly, we see that

dfi _dN; oy
a_Z(O,O,O) - 8_x1(0’ (070)) =dy % 0.

Therefore, by the implicit function theorem, one may solve the equation fi(, ¢, z) = 0 near

(0,0,0) with respect to z as a function of 7 and @, and find z = z(7, o) such that z(0,0) = 0 and

fi(t,0,z2(T,0)) = Ny (T, ¥y + z(T, ) Ep) = 0. (4.6)
Moreover,

2z . dN;(0,0),_,dN;(0,0) b6 B

806(0’0> = ox1 x> +a6 =0

Then N(7,X) = 0 if and only if
- b -
A7, a) :Nz(r,(—a—?aJrz(r,a),oc)) =0. (4.7)
0
The equation (4.7) is called the “determining equation” and the number of its solutions equals

the number of periodic solutions of (3.1).

Let us denote

f(a OC) - f2(;Ea OC,Z).
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First, it is to see that £(0,0) = N(0,(0,0) = 0. We determine the Taylor expansion of f around

(0,0). For this, we compute the first order partial derivatives g—f(O, 0) and 3—5(0, 0) and observe

T

that
af af
——(0,0) = =—(0,0) =0.
(See Appendix A; for the proof of this fact). Furthermore, it is observed in Appendix A3 that
9% f 9% f 9% f
A=—-—=(0,0)=0, B= —~(0,0), C==—=(0,0
300 =0.8= 25 0.0). €= 5500,

and hence
~ . o? ~
f(7,0) = Bat+C—-+ol(7, o) (T2 +a?).
By denoting T = [ (where [ = [(a)), we obtain that (4.7) is equivalent to
12
Bl+C— +o(a,la)(1 +1%)=0.

Next, we consider two cases:

Case I Suppose %(0,0) < 0and %(0,0) > 0, by denoting T = lot (where [ = (o)), we
obtain that (4.7) is equivalent to

12
Bl+C +o(la, a)(1 +1?)=0.
Since B > 0 and C < 0, this equation is solvable with respect to [ as a function of ¢&. Moreover,
here [ ~ —2B/C > 0.
Case II Suppose %(0,0) < 0and %(0,0) < 0, by denoting T = la (where [ = [(a)), we
obtain that (4.7) is equivalent to

12
Bl +C~ +o(la, a)(1 +1%)=0.

Since B < 0 and C < 0, this equation is solvable with respect to / as a function of . Moreover,
here [ =~ —2B/C < 0.

Case IIT Suppose %(0,0) > 0 and %(0,0) < 0, by denoting T =l (where [ = [(a)).
Similarly we have [ ~ —2B/C > 0.

Case IV Suppose %(0,0) > 0 and %(0,0) > 0, by denoting T = o (where [ = [()).
Similarly we have [ ~ —2B/C < 0.
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This implies that there is a supercritical bifurcation to a nontrivial periodic solution near a

period T which satisfies the sufficient condition for the bifurcation

/ pkyS(s) o
DT Jo Kyki + kiS(s) +S2(s)

It is noteworthy that since this periodic solution appears via a supercritical bifurcation, the
nontrivial periodic solution is stable. That is, there is € > 0 such that for all 0 < o < € there
a stable positive nontrivial periodic solution of (3.1) with period 7 + 7(a) which starts in

Xo+ aYy+z(T(a), o) Ey. Here, Xo, Yy, Eo, 7, T are as defined above.

5. Discussion

Ethanol is one of the most widest used and heaviest demanded chemical, which may possibly
become the substitute for gasoline. To expand markets for larger scale applications of various
types of industry, it is necessary to minimize the cost of the ethanol product and study an
effective methods of enhancing the output of the ethanol. Therefore, the mathematical model is
a prerequisite for investigating the dynamical behavior.

To understand the oscillatory behavior of an experimental fermentor using the method of
the theoretical analysis, we incorporate continuous input substrate and impulsive input sub-
strate, respectively. Firstly, by using the qualitative theory of ordinary differential equations,

D+ ki +2v/Kk
we prove the biomass-free equilibrium point is a stable node if u < Tt Lo u=

ky
D+ ki +2vVKsk
i : 2L system (1.3) has two equilibria: Eq(S°,0) is a hyperbolic saddle and (S*,x*)
1

is saddle-node when Ay = 8 D(S° — %) (ky + 25*) — ky (85" + x*) — &ymx* (kg +25*) # 0.

From Theorem 2.6 we obtain that the interior equilibrium is globally asymptotically stable if
D +ky +2v/Ksky
> 3
(1.3) has no closed orbit and three equilibria: a boundary equilibrium E(S°,0) is a stable node;
D +ky +2v/Ksky
ki
and A; < Ay < SYsee FIGURE 1(b)). Secondly, we consider the impulsive input substrate.

and A; < S < A, (see FIGURE 1(a)). Theorem 2.7 shows that system

two interior equilibria £, and E,, is a node and saddle, respectively if u >

From Theorem 3.1, we obtain that the biomass-free periodic solution (S(¢),0) is locally asymp-
totically stable (In FIGURE 2) if R < 1 and unstable if R > 1. Therefore, R = 1 is a critical

value. Using the bifurcation theorem, we show that once a threshold condition is reached, a
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0 (b) s S

FIGURE 1. (a) The phase portraits of system (1.3) when p > D(k'% Vk‘K‘), M <

$9 < 5. (b) The phase portraits of system (1.3) when p > D(k'+ Vk'K‘),/'Ll <

7Lz <SO.

stable nontrivial periodic solution emerges via a supercritical bifurcation, which is confirmed in

FIGURE 3.
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FIGURE 2. Dynamical behavior of system (1.3) with impulsive input with the
parameters " =8,D =02,u =1,8; =0.1,m =0.1,K; = 0.2,k; = 0.5, =
1.5,5(0) = 1,x(0) = 0.2. (a) Time-series of the substrate concentration of system
(1.3). (b) Time-series of the microorganism concentration of system (1.3). (c)

Phase portrait of system (1.3).
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APPENDIX A. A

A.1. The first order partial derivatives of ®,®,. By formally deriving the equation

%(Cb(t,Xo)) = F(®(1,X0)),

which characterized the dynamics of the unperturbed flow associated to the first two equations

in (3.1), one obtains that

%[DXCI)(I,XO)] = DXF(CD(thO))DXCI)(t7XO)' (51)

This relation will be integrated in what follows in order to compute the components of Dx ®(¢,Xj)

explicitly. Firstly, it is clear that

®(1,Xy) = (P1(t,X),0).

Then we deduce that (5.1) takes the particular form

P 9P p _ Mk S(1) . 0 9P

d | o5, on _ 81 (Kski + k1 S(r) + S2(1)) dxi  In

ii| 00 0@y |(X0)= 1k S(7) 0®; 9w, |(HX0) (52)
dxi ox Kok +HiS(t) +82(1) dx - ox

the initial condition for (5.2) at# = 0 being
Dx®(0,Xp) = I. (5.3)

Here, I, is the identity matrix in M (R). It follows that

0y (1. %) _ (/t ykig(t) _ _D)ds)aqnz(o,xo)
dx| 0 Kgky +k1S(s) + S2(s)

This implies, using the initial condition (5.3), that

8<I>2(t,X0)
—_— = > 0. .
o 0, fort>0 (5.4)
To compute IP1(1, %) , IP1(1, %) and IDa(1, %) . From (5.2) one obtain that
x| o0xa dxz,
i(&q)l (I,X())) o _Da(b] (t,X())
dt 8x1 n 8x1 ’
i(aq)la(tv)(O)) _ _Daq)la(thO) . (Wl—l— .uklf(t) - )aq)zaOaXO)’
dt X2 X2 Kk, +le(t) +S (l‘ X2
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d (aq)z(t,Xo) B wkS(1) ) 2%2(1.X0)
dt*  dx Kski +k1S(t) + S2(2) oxy

According to the initial condition, we obtain that

oD (1,X,
o o0
9P (2,Xo) l ki S(s) I
_— —Dt .~ o ,X D d ’
o exp( )/0 (m 5 (Ksk1+k1S(s)+Sz(S))) T (s,Xo) exp(Ds)ds
OBAI) _ oy [ BRSG)_p )
9x2 0 Kski +kiS(s) +S2(s)

From (4.1), we obtain that
DxN(0,(0,0)) =1, — Dxy(T,Xyp),

which implies
ay by

0 d

DxN(0,(0,0)) =

A.2. The first order partial derivatives of f.

Jaf
aa(a o) =
1_(a_2(T+ 7),Xo + a¥y +z(T, o) Eg) (—

(OC \PQ(T—l—’L' X()-FOCY()-{—Z(T OC)E()))
by dz(t,a), 0D,

a0+ P ) F (1,X0+ aYy+z(7,00)Ep)),

but
0P
ax2 (T +7, X0+ aYy+2(%,)Eg) =0
1
and
0P
dy=1-Z"2(T,X,) = 0.
dxy
When dj), = 0, then we obtain
af
—(0,0) =0.
/0,0)
On the other hand,
df (7, a)

o) _ ~
o= = o=(0 = Wa(T + T, Xo + 0¥ +2(T, @) o))

P ~ ~
(T +7,Xo + a¥o +2(7, @) Ey).

L)
= —W(T—l—f Xo+ oYy —|—Z(T OC)E()) 9%
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0D, 0P,
Since —(T +7,X0 + a¥p + z2(T,@)Ep)) = 0 and —= T 2T +7,X0 + aYy +2(7, a)Ep)) = 0.

8x1 8
of
Therefore, we have —= 5= ==(0,0) =0.
92 2 2
: I o°f 9°f _9°f
A.3. Second partial derivatives of f. Denote A = —= = (0,0), B =555 (0,0), C= P =-5(0,0).

/

-~ b ~ ~
Take N(T) = T + 7,11 (%, &) = x0 — — +2(T, &) and M(7, &) = o. Next we calculate these
a
0
quantities in terms of the parameters of the equation.

Calculation of A
We have
2 (% 2
PIEE) O how(nmm)(E @)
9 (acbl(n,m,nz) N 8<I>1(n,m,nz)§)z
A o 0%
9’L 0Py(n, N1, M) 8<I>1(n,m,nz>+8¢1(n,n1,nz)§)
axlzaxz o7 o7 x| 7T
d°L 9P, dz ,0Pi(N,N1,M2) +3<D1(71 m,nz)ﬁ)
8x18xa dx| 0T ot ox1 ot
dh d°P1(n,Mm,n2) +292q>1(77 N1, M2) 32)
axl 072 8x181 oT
812(8 Dy (7, m,nz)(az) L 9%i(n,m,m) 82z)
8x1 8x T 8x1 072
9°l 07‘1)1(71 m,nz)(é’sz(n ,N1,M2) +8<I>z(n,n1,nz)§)
aszaxZ a’L' 81 8x1 8%
9°hL 9P (n, 771,712)%(9@2(71,771,772) N 9<I>z(n,m,nz)§>

8x23x2 8% 8% 8? &X] 8%
9* 12(3‘132(717171,772) n 3%(71,771,712)%)2
8x o7 oxy o7
0712 9*®,(n,n1,M2) +232(7777117772)%)
" Oxo 072 0x10T 07T
912(92492(77 711,772)(32) N 3%(7‘1,771,772)%)
8x2 (9)61 T 8x1 T’

3212 0d, JIP, 82<I>2 ~
Si = = —F=—"=0f = (0,0), th
ince 8x§ 75 5= T7on, or (T,a0) = (0,0), then

oL 82<I>2(T,xo)
8x2 8%2 ’

A=—

8ZCI>2(t,X0)

on the other hand, we have
072

= 0, therefore, we obtain A = 0.
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Calculation of C
We have
0%f 02
a—a];(f,a)Zy(nz—lzofb(n,m,nz))
and
*f ~ 0*L 0P (n,Mm, M), by  9zT, ),  9Pi(1n,M,Mm)
92 "% =752 o CaqtTaw )T e )
9 8<I>1(n,n1,nz)(_b_’o+8z(?,06))_8<I>1(n,m,nz))
0x10x> ox1 al oT x>

Q
P2 (n,m. M), by | 9T, )
X dx) ( a6+ do )
_ 9% (9431(71a171,772)(_b_6+31@0‘)))3‘1’2(71,7717712)
0x10x> oxy aj do 0xy
_ 8212 aq)l(nmlﬂh) aq’2(n7771,772)
dx10x x> Jx;
_%(a q’l(ﬁa’”llﬂh) (_b_6+ 8z(7f,a) )2)
dxi dx? a do
595 9*(n,m1, M) _b_’o+8z(ia))
dx;  dx19x> aj, a
_%<aq)l (n7n17n2) <8Z(%,a) )2 &zq)l(n?r’larh))
oxy x| da? 0x3
_ 9% 8<I>1(n,n1,nz)(_b_6+8Z(?,06))+8<I>1(n,m,n2))
0x10x> o0x1 / aj, Ja x>
o®r(n,mi,m2), by | 9z(T, @)
o CatTaa )
b (3431(71,771,772)(_17_6 32(%,06)»9@2(71,7‘11,772)
0x10x o0x1 aj a x>
_ 0’L 9Pi(n, M, M) 9P2(N, M1, M2)
0x10x> dxy 0xy
_9212<9q)2(77»711,n2)<_b_6+32(?705))+9q>2(777771,772))2
Qx% ox1 a;, a x>
_%(92%(“;771,772) (_b_6 L %(T0)
0x> ox? a do
_2% 82‘b2(7777717772) (_17_6+ 82(%,(1))
0x> dx10x> aj o
_%(aq’Z(nanhm) 822(%,05) + 82(1)2("77717772))
oxy oxi do? 0x3 .

)%)

On the one hand, for determining C, we must calculate the following terms:

21
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9%®, (T, Xo) 9*®>(T,Xo)

dx10xy 0x3
We have
d (82‘11)2(1‘,)(0) B ki S(r) b 92d,(1,Xo) ki (Kok; —S2(t)) 0@y (t,Xo) 0D, (1, Xo)
dt’ dx10x Koki 4+ k1S(1) + S2(r) dx10x2 (Ksky + ki S(1) +82(1))2 9x oxy
Since
2P, (0,Xp) _0
8x18x2 e

‘We obtain that
2 t N xR
9°®;(t,Xp) Cex / /.1k1~S(s) _ _ D)ds) x/t UK, (stl SSS)) 8<I>1(s,X0)ds'
dx10x; 0 Kiki +k1S(s) +S2(s) 0 (Kjki +kiS(s)+S%(s))2 91

Also, by a similar argument,

1(192432(%)(0) _ pkiS(1) 3 )32¢2(I,Xo) uE (Ksky —$(1)) 9%, (1.X) P2 (1, X0)
dt ax% Kk +k1§(t)+§2(t) 8x% (Ksky+ki S(1)+82(1))2  9x2 ox;
and since
(92@2(0,)(0)
—5— =0
dx5

One may deduce that

2 N t Q2
0 @2(1‘2,)(0) _ex (/l ‘Ll,kLS(S) _ —D)dS) / ,ukl(Kslil S ,(VS)) 8(1)1 (S,Xo)ds
922 0 Koky + k1S(s) + 52(s) 0 (Kki+kiS(s)+82(s)2  ox

Therefore, we have

c _ob P™:TXo)  9Pa(T,X)

ag) 0x10x ~8x% -
b r ule(s) r ,ukl(Kskl—S (S)) &q)l(S,X())
—o% / PU)  Dyds) x / oL d
4y Kt ise) 120 D K ke 1R 6 dn
T N T _ 2
—exp(/ ( [.LkLS(s) — —D ds/ ‘ukl(Kslil S,(VS)) 8¢1&(S’X0>ds.
0 Ksk1+k1S(s)+SZ(s) 0 (Ksk1+le(s)+S2(s))2 X2
Similarly, we also obtain that
B —_ (aZCI)z(T,X()) . i ' 0D (T,Xo) + 8@2(T,X0)>
- 0x19x a, T 07T0xy
o T ki S(s) sy [ Mk (Kki = 82(s)  9@i(s.X) 1 &
=~ ((exp (/12 §(I(S;c1+k1§(s)+§2(s) TD)d)x/Z §((1<)sk1+k1§(s)+§z(s))z om P
ki S(T _ k1 S(s _ D\ds
Koy +k18(T) +3(T) D)eXp(/o o TS+ 520) z)d ) )
B T 1k S(s) ey [ k(K =$X(s)  9Pi(s.Xo) , S(T)
*(e"p(/o (K£k1+k1§(s)+§2(s) Did)x/a (KKy +Kk1S(s) + 82(s)2 o “
- HRS(T) el / HaS(s) ).
Kkq +k15(T) —I—SZ(T) 0 Kk —i—k]S(S) +SZ(S)



