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Abstract. In this paper, we investigate a nonautonomous two prey-one predator systems with stage structure for

each species. Interspecific competition between mature dominant prey and mature sub-dominant prey species are

considered, and three discrete time delays are incorporated into the model due to maturation time for sub-dominant

prey, dominant prey and predator species, respectively. Positivity and boundedness of solutions are analytically

studied. By utilizing some comparison arguments, an iterative technique is proposed to discuss permanence of

solutions. Furthermore, existence of positive periodic solutions is investigated based on continuation theorem

of coincidence degree theory. By constructing some appropriate Lyapunov functionals, sufficient conditions for

global stability of the unique positive periodic solution are analyzed. Numerical simulations are carried out to

show consistency with theoretical analysis obtained in this paper.
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1. Introduction

Many species in the natural world have a life history that takes them through immature stage

and mature stage. Some vital biological rates (rates of survival and reproduction) of individuals

are always identical and dependent on stage structure [25]. In the past several decades, much

research efforts have been put into investigating interaction and coexistence mechanism of prey

predator system with stage structure [3, 5, 6, 7, 8, 9, 10, 12]. In order to discuss dynamic effect

of stage structure and maturation process on population dynamics, constant time delays are

introduced to reflect the maturation delay in the prey predator system [5, 11, 13, 14, 15, 17,

19, 22, 32, 34], which have been one of the most important fields of interest. By incorporating

a discrete time delay into single species model, a stage structured model is proposed in the

pioneering work [5], where the discrete time delay reflects a delayed birth of immature species

and a reduced survival of immature species to their maturity. The mathematical model proposed

in [5] takes the following form,

(1)

 ẋi(t) = αxm(t)− γxi(t)−αe−γτxm(t− τ),

ẋm(t) = αe−γτxm(t− τ)−βx2
m(t),

where xi(t) and xm(t) represents the population density of immature and mature species at time

t, respectively. α > 0 denotes the birth rate of immature species, γ > 0 stands for the death rate

of immature species. β > 0 is the death and overcrowding rate of mature species. τ > 0 denotes

time of immature species to maturity. The term αe−γτxm(t−τ) represents the immature species

who are born at time t−τ and survive at time t with immature species death rate γ , and therefore

represents transformation of immature stage to mature stage. It is found that all ecologically

relevant solutions tend to the positive equilibrium solution as time t → ∞, and various aspects

of the above proposed model including positivity and boundedness of solutions are discussed in

[5].

Competition is an interaction among competing species, in which the fitness of one species

is lowered by the presence of another species within ecosystem. Generally, competition is very

important in determining the biological characteristics of species, and there are two types of

competition, intraspecific competition and interspecific competition [10, 25]. In this paper, we
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will pay special attention to the interspecific competition between two mature prey species. In-

terspecific competition refers to the competition between two or more species for some limiting

resource. This limiting resource can be food or nutrients, space, mates, nesting sites, anything

for which demand is greater than supply. When one species is a better competitor, interspecific

competition negatively influences the other species by reducing population sizes and/or growth

rates, which in turn affects population dynamics of the competitor [7, 10]. It should be noted

that interspecific competition has the potential to alter species, communities and the evolution

of interacting species. On an individual organism level, interspecific competition can occur as

interference or exploitative competition. Two vivid interspecific competition examples in the

natural world are given as follows. If a tree species in a dense forest grows taller than surround-

ing tree species, it is able to absorb more of the incoming sunlight. However, less sunlight is

then available for the trees that are shaded by the taller tree. Cheetahs and lions can also be

in interspecific competition, since both species feed on the same prey, and can be negatively

impacted by the presence of the other because they will have less food [7, 30].

In the 1920s, the dynamic impacts of competition on population dynamics are systematically

discussed in [1, 2]. Under some necessary simplified assumptions that there are not migra-

tion and carrying capacities, competition coefficients for both species are constants, Lotka and

Volterra propose a mathematical model in [1, 2], which takes the following form,

(2)

 ẋ1(t) = x1(t)(b1−a11x1(t)−a12x2(t)),

ẋ2(t) = x2(t)(b2−a22x2(t)−a21x1(t)),

where xi(t) (i = 1,2) represents population density of the competing ith species at time t, re-

spectively. bi (i = 1,2) denotes the birth rate of the corresponding species; ai j (i, j = 1,2, i 6= j)

is the corresponding linear reduction of the ith species’ rate growth by interspecific competition,

the jth species. aii (i = 1,2) stands for the corresponding linear reduction of the ith species’

rate growth by intraspecific competition. It should be noted that model (2) combines the effects

of each species on the other and creates a theoretical prediction of interactions that can be used

to understand how different factors affect the outcomes of competitive interactions. However,

some factors, which may affect the outcome of competitive interactions and dynamics of one or

both species, are not considered in model (2).
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It is well known that biological or environmental parameters, such as seasonal effects of

weather, food supplies and mating habits, are naturally periodically subject to fluctuation in

time [7, 10]. Furthermore, effects of a periodically varying environment are important for evo-

lutionary theory as the selective forces on systems in a fluctuating environment differ from those

in a stable environment [12, 25]. Hence, it is constructive to assume periodicity of environment

and incorporate the periodicity of parameters into mathematical model, which can be found in

[14, 15, 16]. Zeng et al. [14] propose a nonautonomous competitive two-species model with

stage structure in one species, where conditions of permanence are obtained. Furthermore, ex-

istence and asymptotic stability of periodic solution are proved under some assumptions if the

proposed model turns out to be a periodic system. A two-species Lotka-Volterra type compe-

tition model with stage structure for both species is proposed and investigated in [15], where

the individuals of each species are classified as immature and mature. By constructing a suit-

able Lyapunov function, sufficient conditions are derived for global stability of nonnegative

equilibria of the proposed model in the case of constant coefficients. Furthermore, a set of eas-

ily verifiable sufficient conditions are obtained for the existence of positive periodic solution

when coefficient are assumed to be positively continuous periodic functions. In [16], a time de-

layed periodic system which describes the competition among mature species. The evolutionary

behavior of the proposed model is analyzed and some sufficient conditions for competitive co-

existence and exclusion are obtained.

By considering a seasonally fluctuating survival environment, some nonautonomous competi-

tive Lokta-Volterra systems [18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 36] are proposed in

recent years. A nonautonomous competitive Lotka-Volterra system is studied in [18], it reveals

that a computable necessary and sufficient condition for the system to be totally permanent when

the growth rates have averages and the interaction coefficients are nonnegative constants. Along

with line of this research, permanence for a class of competitive Lotka-Volterra systems are dis-

cussed in [31] which extends the work done in [18], and a computable necessary and sufficient

condition is found for the permanence of all subsystems of the system with its small perturbation

on the interaction matrix. In [20], a two-species competitive model with stage structure is dis-

cussed, and the dynamics of coupled system of semilinear parabolic equations with time delays
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are investigated, which show that the introduction of diffusion does not affect the permanence

and extinction of the species though the introduction of stage structure brings negative effect

on it. In [21], sufficient conditions are obtained for the existence of a unique, globally attrac-

tive, strictly positive (componentwise), almost periodic solution of a non-autonomous, almost

periodic competitive two species model with a stage structure in one species. According to two

types of well known periodic single species growth models with time delay, two corresponding

periodic competitive systems with multiple delays are proposed in [23], and the same criteria for

existence and globally asymptotic stability of positive periodic solutions are derived. In [24], a

discrete periodic competitive model with stage structure is established, and some sufficient and

realistic conditions are obtained for existence of a positive periodic solution of the proposed

system. In [26], a periodic non-autonomous competitive stage-structured system with infinite

delay is considered, where the adult members of n-species are in competition. For each of the

n-species the model incorporates a time delay which represents the time from birth to maturity

of that species. Infinite delay is introduced which denotes the influential effect of the entire

past history of the system on the current competition interactions. By using the comparison

principle that if the growth rates are sufficiently large then the solutions are uniformly perma-

nent. Then by using Horns fixed point Theorem, the existence of positive periodic solution of

the system with finite delay is discussed. Finally, it is proved that even the system with infinite

delay admits a positive periodic solution. In [27], a non-autonomous predator-prey system with

discrete time-delay is studied, where there is epidemic disease in the predator. By using some

techniques of the differential inequalities and delay differential inequalities, the permanence of

system is discussed under some appropriate conditions. When all the coefficients of the system

is periodic, the existence and global attractivity of the positive periodic solution are studied by

Mawhins continuation theorem and constructing a suitable Lyapunov functional. Furthermore,

when the coefficients of the system are not absolutely periodic but almost periodic, sufficien-

t conditions are also derived for the existence and asymptotic stability of the almost periodic

solution. In [28], general n-species non-autonomous Lotka Volterra competitive systems with

pure-delays and feedback controls are discussed. New sufficient conditions for which a part of
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the n-species remains permanent, are established by applying the method of multiple Lyapunov

functionals and introducing a new analysis technique.

It should be noted that there are many species in which only immature individuals are predat-

ed by their predators, and one typical example in the natural world is given as follows. Chinese

fir-bellied newt, which is unable to feed on the mature Rana chensinensis, can only feed on

the immature Rana chensinesis [25]. By considering stage structure and predation habit, Wang

et al. [29] study a nonautonomous predator prey model with stage structure and double time

delays due to maturation time for both prey and predator, where only immature prey is under

predation. The mathematical model proposed in [29] takes the following form,

(3)



ẋ1(t) = a1(t)x2(t)− r1(t)x1(t)−a1(t− τ1)e
−
∫ t

t−τ1
r1(s)+k1(s)y2(s)dsx2(t− τ1)

−k1(t)x1(t)y2(t),

ẋ2(t) = a1(t− τ1)e
−
∫ t

t−τ1
r1(s)+k1(s)y2(s)dsx2(t− τ1)−β1(t)x2

2(t),

ẏ1(t) = a2(t)x1(t)y2(t)− r2(t)y1(t)−a2(t− τ2)e
−
∫ t

t−τ2
r2(s)dsx1(t− τ2)y2(t− τ2),

ẏ2(t) = a2(t− τ2)e
−
∫ t

t−τ2
r2(s)dsx1(t− τ2)y2(t− τ2)−β2(t)y2

2(t),

where x1(t) and x2(t) denotes population density of the immature and mature prey species at

time t, respectively; y1(t) and y2(t) represents population density of the immature and mature

predator species at time t, respectively; The birth rate of immature prey/predator species is

proportional to the exiting mature prey/predator species with a proportionality a1(t) > 0 and

a2(t) > 0, respectively; death rate of immature prey/predator species is proportional to the ex-

isting immature prey/predator population with a proportionality r1(t)> 0 and r2(t)> 0, respec-

tively; the death rate of mature prey/predator species is proportional to the square of the existing

species with a proportionality β1(t)> 0 and β2(t)> 0, respectively. Only immature prey species

is under predation with a proportionality k1(t)> 0. a1(t), a2(t), r1(t), r2(t), β1(t), β2(t), k1(t)

are continuously positive periodic functions with period ω . τ1 > 0 and τ2 > 0 represents mat-

uration delay for prey and predator species, respectively. Furthermore, sufficient conditions for

global stability of unique positive periodic solution are given in [29].

By utilizing Brouwer fixed point theorem and constructing a suitable Lyapunov function-

al, the periodic solution and global stability for a nonautonomous competitive Lotka-Volterra

diffusion system is investigated in [32], it can be found that the system has a unique periodic
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solution which is globally stable under some appropriate conditions. In [33], a delay differential

equation model for the interaction between two species is investigated. The maturation delay

for each species is modelled as a distribution, to allow for the possibility that individuals may

take different amount of time to maturity. Positivity and boundedness of the solutions are stud-

ied, and global stability is analyzed for each equilibrium. A Lotka-Volterra competitive system

with infinite delay and feedback controls is proposed in [34]. By using the method of multiple

Lyapunov functionals, some sufficient conditions are obtained based on developing a new anal-

ysis technique, which guarantee that some of the n species are driven to extinction. By using

Mawhins continuation theorem of coincidence degree theory, an impulsive non-autonomous

Lotka Volterra predator prey system with harvesting terms is investigated in [35]. Some suffi-

cient conditions for the existence of multiple positive almost periodic solutions for the system

under consideration are discussed. Furthermore, existence of multiple positive almost periodic

solutions to other types of population systems can be studied by using the same method ob-

tained in this paper. A three dimensional nonautonomous competitive Lotka-Volterra system is

considered in [36], it is shown that if growth rates are positive, bounded and continuous func-

tions, and the averages of growth rates satisfy certain inequalities, then any positive solution has

the property that one of its components vanishes. In [37], an almost periodic multispecies Lot-

ka Volterra mutualism system with time delays and impulsive effects is investigated. By using

the theory of comparison theorem and constructing a suitable Lyapunov functional, sufficient

conditions which guarantee the existence and uniqueness and global asymptotical stability of

almost periodic solution of this system are obtained.

It may be pointed out that dynamic effect of predation is not investigated in [20, 23, 24],

and dynamic effect of interspecific competition among prey species is not investigated in [29].

Furthermore, the work done in [18, 31, 32, 33, 34, 36] are discussed based on competitive prey-

predator models, while dynamic effect of stage structure and maturation delay for prey/predator

species are not studied. To author’s best knowledge, combined dynamic effects of maturation

delay and interspecific competition on stage structured prey predator system have not been

simultaneously investigated under periodically varying environment.
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In the natural world, two competing prey-one predator ecosystem exists extensively. Species

within such ecosystem usually live in a fluctuating environment that is periodically affected by

seasonal effects. Some biological rates of species are identical in predation habit and interspe-

cific competition due to stage structure. A vivid case in point is herring-capelin-Antarctic minke

whale ecosystem in Antarctic area [7, 25], where survival environment is seasonally affected by

weather and food supplies. Especially, there are different maturation durations for three species,

and each species shows different biological characteristics corresponding to specific stage struc-

ture. For predator species, Antarctic minke whale, mature Antarctic minke whale only consume

immature herring and capelin species, and immature Antarctic minke whale can not attack prey

species; For two prey species, mature herring and capelin species compete for limited life re-

source, which contribute to growth of the immature species, respectively. Hence, it is necessary

to investigate the combined dynamic effect of maturation delay and interspecific competition

on population dynamics of two prey-one predator ecosystem in a periodic environment.

The rest sections of this paper are organized as follows. By considering interspecific compe-

tition of prey species, this paper extends the work [29]. A nonautonomous stage structured two

prey-one predator model is established in the second section. Interspecific competition between

mature dominant prey and mature sub-dominant prey species are considered, and three discrete

time delays are utilized to reflect the maturation time for sub-dominant prey, dominant prey

and predator species, respectively. The positivity and boundedness of solutions are analytically

studied in the third section. By utilizing some comparison arguments, an iterative technique

is proposed to discuss permanence of solutions in the fourth section. Existence of positive pe-

riodic solutions is considered based on continuation theorem of coincidence degree theory in

the fifth section. By constructing some appropriate Lyapunov functionals, sufficient conditions

for global stability of the unique positive periodic solution are analyzed in the sixth section.

Numerical simulations are provided to support the theoretical findings. Finally, this paper ends

with a conclusion.
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2. Model formulation

In this section, model (3) is extended by incorporating interspecific competition between

mature dominant prey and mature sub-dominant prey species, a nonautonomous stage structured

two prey-one predator system with competition and maturation delay will be constructed based

on the following hypotheses.

(H1): xi1(t) (i = 1,2) represents population density of the ith immature prey species at

time t, respectively. xi2(t) (i = 1,2) represents population density of the ith mature

prey species at time t, respectively. The birth rate of the ith immature prey species

is proportional to the ith exiting mature prey species with a proportionality aii(t) > 0

(i = 1,2), respectively; Death rate of the ith immature prey species is proportional to the

existing immature prey species with a proportionality ri(t)> 0 (i = 1,2).

(H2): Generally speaking, two prey species compete each other for the limited life re-

source within closed environment, but this competition only happens among mature

individual and does not involve the immature individual. Hence, ai j(t) (i, j = 1,2 and

i 6= j) denotes the corresponding linear reduction of the ith mature prey species’ rate

growth by the jth mature prey species due to interspecific competition. Death rate of

the ith mature prey species is proportional to the square of the ith mature prey species

with a proportionality βi(t)> 0 (i = 1,2), respectively. It is assumed that a12(t)> a21(t)

in this paper. Hence, x11(t) and x12(t) represents population density of immature sub-

dominant prey and mature sub-dominant prey species, respectively. x21(t) and x22(t)

represents population density of immature dominant prey and mature dominant prey

species, respectively.

(H3): Discrete time delay τi > 0 (i = 1,2) represents maturation delay for the ith existing

immature prey population, respectively. The mathematical term
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ai1(t− τi)e
−
∫ t

t−τi
ri(s)+ai3(s)y2(s)dsxi2(t− τi),

represents population density of the ith immature prey species that were born at time

t−τi (i = 1,2), which still survive at time t and are transferred from the immature stage

to the mature stage at time t, respectively.

(H4): y1(t) and y2(t) represents population density of immature and mature predator

species at time t, respectively. It is assumed that immature predator population do

not feed on prey and do not have the ability to reproduce. Only immature prey species

(xi1(t), i= 1,2) are predated by their predator species y2(t) with proportionality a13(t)>

0 and a23 > 0, respectively. The birth rate of immature predator species y1(t) is propor-

tional to predation effect with proportionality 0 < a31(t) < a13(t) and 0 < a32(t) <

a23(t), which implies that biomass of two immature prey species can not be completely

converted to growth of predator species. Such assumptions practically coincides with

the biomass conversion law in the real world. Discrete time delay τ3 > 0 represents

maturation delay for the immature predator population. The mathematical term

[a31(t− τ3)x11(t− τ3)+a32(t− τ3)x21(t− τ3)]e
−
∫ t

t−τ3
r3(s)dsy2(t− τ3),

represents population density of the immature predator species that were born at time

t− τ3, which still survive at time t and are transferred from the immature stage to the

mature stage at time t. Death rate of the immature predator species is proportional to

the existing immature predator species with a proportionality r3(t) > 0. Death rate of

the mature predator species is proportional to the square of the existing mature predator

species with a proportionality β3(t)> 0.

(H5): In this paper, aii(t)> 0 (i= 1,2), ai j(t) (i, j = 1,2,3 and i 6= j), ri(t)> 0 (i= 1,2,3),

βi(t) > 0 (i = 1,2,3) are assumed to be continuously positive periodic functions with

period ω > 0.

Base on (H1)-(H5), a nonautonomous stage structured two prey-one predator system with

competition and maturation delay is constructed as follows,
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(4)



ẋ11(t) = a11(t)x12(t)− r1(t)x11(t)−a11(t− τ1)e
−
∫ t

t−τ1
r1(s)+a13(s)y2(s)ds

x12(t− τ1)−a13(t)x11(t)y2(t),

ẋ12(t) = a11(t− τ1)e
−
∫ t

t−τ1
r1(s)+a13(s)y2(s)dsx12(t− τ1)−a12(t)x12(t)x22(t)

−β1(t)x2
12(t),

ẋ21(t) = a22(t)x22(t)− r2(t)x21(t)−a22(t− τ2)e
−
∫ t

t−τ2
r2(s)+a23(s)y2(s)dsx22(t− τ2)

−a23(t)x21(t)y2(t),

ẋ22(t) = a22(t− τ2)e
−
∫ t

t−τ2
r2(s)+a23(s)y2(s)dsx22(t− τ2)−a21(t)x12(t)x22(t)

−β2(t)x2
22(t),

ẏ1(t) = [a31(t)x11(t)+a32(t)x21(t)]y2(t)− r3(t)y1(t)−a31(t− τ3)x11(t− τ3)

e−
∫ t

t−τ3
r3(s)dsy2(t− τ3)−a32(t− τ3)x21(t− τ3)e

−
∫ t

t−τ3
r3(s)dsy2(t− τ3),

ẏ2(t) = [a31(t− τ3)x11(t− τ3)+a32(t− τ3)x21(t− τ3)]e
−
∫ t

t−τ3
r3(s)dsy2(t− τ3)

−β3(t)y2
2(t).

In the rest sections of this paper, model (4) is investigated with the following initial conditions

(5)


x1i(θ) = φ1i(θ)> 0,−τ1 ≤ θ ≤ 0, i = 1,2;

x2i(θ) = φ2i(θ)> 0,−τ2 ≤ θ ≤ 0, i = 1,2;

yi(θ) = ψi(θ)> 0,−τ3 ≤ θ ≤ 0, i = 1,2.

For continuity of the initial conditions, it is required that

(6)


x11(0) =

∫ 0
−τ1

a11(θ)φ12(θ)e
∫

θ

0 [r1(s)+a13(s)ψ2(s)]dsdθ ,

x21(0) =
∫ 0
−τ2

a22(θ)φ22(θ)e
∫

θ

0 [r2(s)+a23(s)ψ2(s)]dsdθ ,

y1(0) =
∫ 0
−τ3

[a31(θ)φ11(θ)+a32(θ)φ21(θ)]e
∫

θ

0 r3(s)dsψ2(θ)dθ .

3. Positivity and boundedness of solutions

In this section, positivity and boundedness of solutions of model (4) with initial conditions

(5) and (6) are analytically discussed.

Firstly, some mathematical notations are adopted for convenience of the following statement,

f L = min
t∈[0,ω]

| f (t)|, f M = max
t∈[0,ω]

| f (t)|,
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where f (t) is a ω-periodic continuous function.

Theorem 3.1 Solutions of model (4) with initial conditions (5) and (6) are positive for all t > 0.

Proof. Firstly, we show that x12(t) > 0 for all t > 0. Otherwise, if it is false, since x12(t) > 0

for all t ∈ [−τ1,0], then it can be derived that there exists a t1 > 0 such that x12(t1) = 0.

Define t2 = inf{t > 0|x12(t) = 0}. According to the definition of t2, it can be obtained that

(7) ẋ12(t2)< 0.

It follows from the second equation of model (4) that

ẋ12(t2) =

 a11(t2− τ1)e
∫ t2

t2−τ1
−r1(s)−a13(s)y2(s)ds

φ12(t2− τ1), 0≤ t2 ≤ τ1,

a11(t2− τ1)e
∫ t2

t2−τ1
−r1(s)−a13(s)y2(s)dsx12(t2− τ1), t2 > τ1,

and it is easy to show that ẋ22(t2) > 0 for all t > 0, which is a contradiction to (7). Hence,

x12(t)> 0 for all t > 0.

By using the first equation of model (4) with initial conditions (5) and (6), it can be obtained

that

ẋ11(t)>−(rM
1 +aM

13yM
2 )x11(t)−aM

11e−
∫ t

t−τ1
(rM

1 +aM
13yM

2 )dsx12(t− τ1).

Considering the auxiliary equation,

(8) u̇(t) =−(rM
1 +aM

13yM
2 )u(t)−aM

11e−
∫ t

t−τ1
(rM

1 +aM
13yM

2 )dsx12(t− τ1),

with the initial condition u(0) = aM
11

∫ τ1
0 e(r

M
1 +aM

13yM
2 )(s−τ1)x12(s− τ1)ds.

Based on Eq. (8), it is easy to show that

(9) x11(t)> u(t), u̇(t)< 0,

hold for all t > 0, which derives that u(t) is strictly decreasing for all t > 0.

By solving Eq. (8), it derives that

u(t) = e−(r
M
1 +aM

13yM
2 )t [u(0)−aM

11

∫ t

0
e(r

M
1 +aM

13yM
2 )(s−τ1)x12(s− τ1)ds].

It follows from further computation that

u(τ1) = e−(r
M
1 +aM

13yM
2 )τ1[u(0)−aM

11

∫
τ1

0
e(r

M
1 +aM

13yM
2 )(s−τ1)x12(s− τ1)ds],
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and it is easy to show that u(τ1) = 0. Since u(τ1) = 0 and u(t) is strictly decreasing for t ∈ [0,τ1],

it can be derived that u(t)> 0 for t ∈ [0,τ1]. By repeating this argument, it derives that u(t)> 0

for all t > 0. By virtue of (9), it is easy to show that x11(t)> 0 for all t > 0.

Secondly, by utilizing the similar proof, it can be shown that x21(t)> 0 and x22(t)> 0 for all

t > 0.

Finally, we show that y2(t) > 0 for all t > 0. Otherwise, if it is false, since y2(t) > 0 for all

t ∈ [−τ1,0], then it can be derived that there exists a t3 > 0 such that y2(t3) = 0.

Define t4 = inf{t > 0|y2(t) = 0}. According to the definition of t4, it can be obtained that

(10) ẏ2(t4)< 0.

It follows from positivity of xi1 > 0 (i = 1,2) and the sixth equation of model (4) that

ẏ2(t4) =



[a31(t4− τ3)φ11(t4− τ3)+a32(t4− τ3)φ21(t4− τ3)]e
−
∫ t4

t4−τ3
r3(s)ds

ψ2(t4− τ3),

0≤ t4 ≤ τ3,

[a31(t4− τ3)x11(t4− τ3)+a32(t4− τ3)x21(t4− τ3)]e
−
∫ t4

t4−τ3
r3(s)dsy2(t4− τ3),

t4 > τ3,

and it is easy to show that ẏ2(t4) > 0 for all t > 0, which is a contradiction to (10). Hence,

y2(t)> 0 for all t > 0.

By using the fifth equation of model (4) with initial conditions (5) and (6), it can be obtained

that

ẏ1(t)>−rM
3 y1(t)− (aM

31xM
11 +aM

32xM
21)e

−
∫ t

t−τ3
rM

3 dsy2(t− τ3).

Considering the auxiliary equation,

(11) v̇(t) =−rM
3 v(t)− (aM

31xM
11 +aM

32xM
21)e

−
∫ t

t−τ3
rM

3 dsy2(t− τ3),

with the initial condition v(0) = (aM
31xM

11 +aM
32xM

21)
∫ τ3

0 erM
3 (s−τ3)y2(s− τ3)ds.

Based on Eq. (11), it is easy to show that

(12) y1(t)> v(t), v̇(t)< 0,

hold for all t > 0, which derives that v(t) is strictly decreasing for all t > 0.
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By solving Eq. (11), it derives that

v(t) = e−rM
3 t [v(0)− (aM

31xM
11 +aM

32xM
21)]

∫
τ3

0
erM

3 (s−τ3)y2(s− τ3)ds].

It follows from further computation that

v(τ3) = e−rM
3 τ3[v(0)− (aM

31xM
11 +aM

32xM
21)]

∫
τ3

0
erM

3 (s−τ3)y2(s− τ3)ds],

and it is easy to show that v(τ3) = 0. Since v(τ3) = 0 and v(t) is strictly decreasing for t ∈ [0,τ3],

it can be derived that v(t)> 0 for t ∈ [0,τ3]. By repeating this argument, it derives that v(t)> 0

for all t > 0.

By virtue of (12), it is easy to show that y1(t)> 0 for all t > 0.

Theorem 3.2 Solutions of model (4) with initial conditions (5) and (6) are bounded.

Proof. Let aL
3 = min{aL

13,a
L
23}, rL = min{rL

1 ,r
L
2 ,r

L
3}, and define

w(t) = aM
31(x11(t)+ x12(t))+aM

32(x21(t)+ x22(t))+aL
3(y1(t)+ y2(t)),

where (x11(t),x12(t),x21(t),x22(t),y1(t),y2(t)) is an arbitrary positive solution of model (4)

with the initial conditions (5) and (6).

By calculating the derivative of w(t) along the solution of model (4), it gives that

ẇ(t) = aM
31[a11(t)x12(t)− r1(t)x11(t)−a13(t)x11(t)y2(t)−a12(t)x12(t)x22(t)−β1(t)x2

12(t)]

+aM
32[a22(t)x22(t)− r2(t)x21(t)−a23(t)x21(t)y2(t)−a21(t)x12(t)x22(t)−β2(t)x2

22(t)]

+aL
3 [(a31(t)x11(t)+a32(t)x21(t))y2(t)− r3(t)y1(t)−β3(t)y2

2(t)]

≤ −rLw(t)+aM
31(a

M
11 + rL)x12(t)−β

L
1 aM

31x2
12(t)

+aM
32(a

M
22 + rL)x22(t)−β

L
2 aM

32x2
22(t)+ rLaL

3y2(t)−β
L
3 aL

3y2
2(t),

≤ −rLw(t)+
aM

31β L
2 β L

3 (a
M
11 + rL)2 +aM

32β L
1 β L

3 (a
M
22 + rL)2 +aL

3β L
1 β L

2 (r
L)2

4β L
1 β L

2 β L
3

.

By using the standard comparison principle [12], it follows from the above inequality that

(13) w(t)≤
aM

31β L
2 β L

3 (a
M
11 + rL)2 +aM

32β L
1 β L

3 (a
M
22 + rL)2 +aL

3β L
1 β L

2 (r
L)2

4β L
1 β L

2 β L
3 rL :=W.

Hence, solutions of model (4) with initial conditions (5) and (6) are bounded. �
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4. Permanence of solutions

By utilizing some comparison arguments, an iterative technique is proposed in this section,

which is utilized to discuss permanence of solutions of model (4) with initial conditions (5)

and (6). Firstly, some lemmas and definitions are introduced in order to facilitate the following

proof.

Lemma 4.1. [8] Consider the following differential equation

ẋ(t) = ax(t− τ)−bx(t)− cx2(t),

where a,b,c,τ > 0 and x(t)> 0 for −τ ≤ t ≤ 0, we have

(i): if a > b, then limt→+∞ x(t) = a−b
c ,

(ii): if a < b, then limt→+∞ x(t) = 0.

Lemma 4.2. [8] Consider the following differential equation ẋ(t) = dx(t−σ)− ex2(t), where

d,e,σ > 0 and x(t)> 0 for −σ ≤ t ≤ 0, we have limt→+∞ x(t) = d
e .

Definition 4.1. [9] Consider the following differential equation

(14) Ẋ(t) = f (t,Xt(θ)),

where t ≥ 0,θ ∈ [−τ,0],X ∈Rn. Model (14) is said to be permanent if for any solution X(t,φ),

there exists a constant m > 0 and T = T (φ) such that X(t)> m for all t > T .

Theorem 4.1. If the following inequalities hold

aL
11β

L
2 e−(r

M
1 +aM

13W̄ )τ1 > aM
12aM

22e−rL
2 τ2,aL

22β
L
1 e−(r

M
2 +aM

23W̄ )τ2 > aM
21aM

11e−rL
1 τ1,

then solutions of model (4) is permanent with initial conditions (5) and (6), where W̄ = W
aL

3
and

W is defined in (13).

Proof. According to the second equation of model (4) and Theorem 3.1, it gives that

(15) ẋ12(t)≤ aM
11e−rL

1 τ1x12(t− τ1)−β
L
1 x2

12(t).
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By virtue of Lemma 4.2 and (15), there exists a positive time T1 such that for sufficiently small

ε > 0 and t ≥ T1, it yields

(16) x12(t)≤
aM

11e−rL
1 τ1

β L
1

+ ε := M(1)
2 .

It follows from the first equation and a direct computation, it can be obtained that

x11(t) =
∫ t

t−τ1

a11(s)e
∫ s

t r1(m)+a13(m)y2(m)dmx12(s)ds.

= e−
∫ t

0 r1(m)+a13(m)y2(m)dm
∫ t

t−τ1

a11(s)e
∫ s

0 r1(m)+a13(m)y2(m)dmx12(s)ds.

(17)

For any t ≥ T1, it follows from Theorem 3.1, (16) and (17) that

(18) x11(t)≤
aM

11M(1)
2

rL
1

:= M(1)
1 .

Based on the fourth equation of model (4) and Theorem 3.1, it can be obtained that

(19) ẋ22(t)≤ aM
22e−rL

2 τ2x22(t− τ2)−β
L
2 x2

22(t),

holds for t ≥ T1. By virtue of Lemma 4.2 and (19), there exists T2 > T1 such that for sufficiently

small ε > 0 and t ≥ T2, it yields

(20) x22(t)≤
aM

22e−rL
2 τ2

β L
2

+ ε := M(1)
4 .

By direct computing, it follows from the third equation of model (4) that,

x21(t) =
∫ t

t−τ2

a22(s)e
∫ s

t r2(m)+a23(m)y2(m)dmx22(s)ds.

= e−
∫ t

0 r2(m)+a23(m)y2(m)dm
∫ t

t−τ2

a22(s)e
∫ s

0 r2(m)+a23(m)y2(m)dmx22(s)ds.

(21)

For any t ≥ T2, it follows from (20) and (21) that

(22) x21(t)≤
aM

22M(1)
4

rL
2

:= M(1)
3 .

Based on (18) and (22), it follows from the sixth equation of model (4) that

(23) ẏ2(t)≤ (aM
31M(1)

1 +aM
32M(1)

3 )e−rL
3 τ3y2(t− τ3)−β

L
3 y2

2(t),
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holds for t ≥ T2. By virtue of Lemma 4.2 and (23), there exists T3 > T2 such that for sufficiently

small ε > 0 and t ≥ T3, it yields

(24) y2(t)≤
(aM

31M(1)
1 +aM

32M(1)
3 )e−rL

3 τ3

β L
3

+ ε := M(1)
6 .

By direct computing, it follows from the fifth equation of model (4) that,

y1(t) =
∫ t

t−τ3

[a31(s)x11(s)+a32x21(s)]e
∫ s

t r3(m)dmy2(s)ds.

= e−
∫ t

0 r3(m)dm
∫ t

t−τ3

[a31(s)x11(s)+a32x21(s)]e
∫ s

0 r3(m)dmy2(s)ds.

(25)

For any t ≥ T3, it follows from (24) and (25) that

(26) y1(t)≤
(aM

31M(1)
1 +aM

32M(1)
3 )(1− e−rM

3 τ3)M(1)
6

rL
3

:= M(1)
5 .

According to the second equation of model (4), (20) and (24), it gives that

(27) ẋ12(t)≥ aL
11e−(r

M
1 +aM

13M(1)
6 )τ1x12(t− τ1)−aM

12M(1)
4 x12(t)−β

M
1 x2

12(t),

holds for t ≥ T3. If aL
11β L

2 e−(r
M
1 +aM

13W̄ )τ1 > aM
12aM

22e−rL
2 τ2 holds, then it is easy to show that

aL
11e−(r

M
1 +aM

13M(1)
6 )τ1 > aM

12M(1)
4 . Based on Lemma 4.1, there exists T4 > T3 such that for suf-

ficiently small ε > 0 and

(28) x12(t)≥
aL

11e−(r
M
1 +aM

13M(1)
6 )τ1−aM

12M(1)
4

β M
1

− ε := m(1)
2 ,

holds for t ≥ T4. For any t ≥ T4, it follows from (17) and (28) that

(29) x11(t)≥
aL

11m(1)
2 (1− e−rL

1 τ1)

rM
1 +aM

13M(1)
6

:= m(1)
1 .

Based on the fourth equation of model (4), (16) and (24), it can be obtained that

(30) ẋ22(t)≥ aL
22e−(r

M
2 +aM

23M(1)
6 )τ2x22(t− τ2)−aM

21M(1)
2 x22(t)−β

M
2 x2

22(t),



18 CHAO LIU, QINGLING ZHANG, XIAOMIN WANG

holds for t ≥ T4. If aL
22β L

1 e−(r
M
2 +aM

23W̄ )τ2 > aM
21aM

11e−rL
1 τ1 holds, then it is easy to show that

aL
22e−(r

M
2 +aM

23M(1)
6 )τ2 > aM

21M(1)
2 . By using Lemma 4.1, there exists T5 > T4 such that for suffi-

ciently small ε > 0 and it yields that

(31) x22(t)≥
aL

22e−(r
M
2 +aM

23M(1)
6 )τ2−aM

21M(1)
2

β M
2

− ε := m(1)
4 ,

holds for t ≥ T5. For any t ≥ T5, it follows from (21) and (31) that

(32) x21(t)≥
aL

22m(1)
4 (1− e−rL

2 τ2)

rM
2 +aM

23M(1)
6

:= m(1)
3 .

Based on (29) and (32), it follows from the sixth equation of model (4) that

(33) ẏ2(t)≥ (aL
31m(1)

1 +aL
32m(1)

3 )e−rM
3 τ3y2(t− τ3)−β

M
3 y2

2(t),

holds for t ≥ T5. By using Lemma 4.2, there exists T6 > T5 such that for sufficiently small ε > 0

and it yields that

(34) y2(t)≥
(aL

31m(1)
1 +aL

32m(1)
3 )e−rM

3 τ3

β M
3

− ε := m(1)
6 ,

holds for t ≥ T6. For any t ≥ T6, it follows from (25) and (34) that

(35) y1(t)≥
(aL

31m(1)
1 +aL

32m(1)
3 )(1− e−rM

3 τ3)m(1)
6

rM
3

:= m(1)
5 .

According to the second equation of model (4) and (34), it gives that for any t ≥ T6

(36) ẋ12(t)≤ aM
11e−(r

L
1+aL

13m(1)
6 )τ1x12(t− τ1)−β

L
1 x2

12(t).

By virtue of Lemma 4.2 and (36), there exists T7 > T6 such that for sufficiently small ε > 0

and t ≥ T7, it yields

(37) x12(t)≤
aM

11e−(r
L
1+aL

13m(1)
6 )τ1

β L
1

+ ε := M(2)
2 .

For any t ≥ T7, it follows from (17) and (37) that

(38) x11(t)≤
aM

11M(2)
2 (1− e−(r

M
1 +aM

13M(1)
6 )τ1)

rL
1 +aL

13m(1)
6

:= M(2)
1 .

Based on the fourth equation of model (4) and (34), it can be obtained that

(39) ẋ22(t)≤ aM
22e−(r

L
2+aL

23m(1)
6 )τ2x22(t− τ2)−β

L
2 x2

22(t),
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holds for t ≥ T7. By virtue of Lemma 4.2 and (39), there exists T8 > T7 such that for sufficiently

small ε > 0 and t ≥ T8, it yields

(40) x22(t)≤
aM

22e−(r
L
2+aL

23m(1)
6 )τ2

β L
2

+ ε := M(2)
4 .

For any t ≥ T8, it follows from (21) and (40) that

(41) x21(t)≤
aM

22M(2)
4 (1− e−(r

M
2 +aM

23M(1)
6 )τ2)

rL
2 +aL

23m(1)
6

:= M(2)
3 .

Based on (38) and (41), it follows from the sixth equation of model (4) that

(42) ẏ2(t)≤ (aM
31M(2)

1 +aM
32M(2)

3 )e−rL
3 τ3y2(t− τ3)−β

L
3 y2

2(t).

holds for t ≥ T8. By virtue of Lemma 4.2 and (42), there exists T9 > T8 such that for sufficiently

small ε > 0 and t ≥ T9, it yields

(43) y2(t)≤
(aM

31M(2)
1 +aM

32M(2)
3 )e−rL

3 τ3

β L
3

+ ε := M(2)
6 ,

For any t ≥ T9, it follows from (25) and (43) that

(44) y1(t)≤
(aM

31M(2)
1 +aM

32M(2)
3 )(1− e−rM

3 τ3)M(2)
6

rL
3

:= M(2)
5 .

According to the second equation of model (4), (40) and (43), it gives that

(45) ẋ12(t)≥ aL
11e−(r

M
1 +aM

13M(2)
6 )τ1x12(t− τ1)−aM

12M(2)
4 x12(t)−β

M
1 x2

12(t),

holds for t ≥ T9. If aL
11β L

2 e−(r
M
1 +aM

13W̄ )τ1 > aM
12aM

22e−rL
2 τ2 holds, then it is easy to show that

aL
11e−(r

M
1 +aM

13M(2)
6 )τ1 > aM

12M(2)
4 . Based on Lemma 4.1, there exists T10 > T9 such that for suf-

ficiently small ε > 0 and

(46) x12(t)≥
aL

11e−(r
M
1 +aM

13M(2)
6 )τ1−aM

12M(2)
4

β M
1

− ε := m(2)
2 ,

holds for t ≥ T10. For any t ≥ T10, it follows from (17), (34) and (46) that

(47) x11(t)≥
aL

11m(1)
2 (1− e−(r

L
1+aL

13m(1)
6 )τ1)

rM
1 +aM

13M(2)
6

:= m(2)
1 .

Based on the fourth equation of model (4), (37) and (43), it can be obtained that

(48) ẋ22(t)≥ aL
22e−(r

M
2 +aM

23M(2)
6 )τ2x22(t− τ2)−aM

21M(2)
2 x22(t)−β

M
2 x2

22(t),
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holds for t ≥ T10. If aL
22β L

1 e−(r
M
2 +aM

23W̄ )τ2 > aM
21aM

11e−rL
1 τ1 hold, then it is easy to show that

aL
22e−(r

M
2 +aM

23M(2)
6 )τ2 > aM

21M(2)
2 . By using Lemma 4.1, there exists T11 > T10 such that for suffi-

ciently small ε > 0 and it yields that

(49) x22(t)≥
aL

22e−(r
M
2 +aM

23M(2)
6 )τ2−aM

21M(2)
2

β M
2

− ε := m(2)
4 ,

holds for t ≥ T11. For any t ≥ T11, it follows from (21), (34) and (49) that

(50) x21(t)≥
aL

22m(1)
4 (1− e−(r

L
2+aL

23m(1)
6 )τ2)

rM
2 +aM

23M(2)
6

:= m(2)
3 .

Based on (47) and (50), it follows from the sixth equation of model (4) that

(51) ẏ2(t)≥ (aL
31m(2)

1 +aL
32m(2)

3 )e−rM
3 τ3y2(t− τ3)−β

M
3 y2

2(t),

holds for t ≥ T11. By using Lemma 4.2, there exists T12 > T11 such that for sufficiently small

ε > 0 and it yields that

(52) y2(t)≥
(aL

31m(2)
1 +aL

32m(2)
3 )e−rM

3 τ3

β M
3

− ε := m(2)
6 ,

holds for t ≥ T12. For any t ≥ T12, it follows from (25) and (52) that

(53) y1(t)≥
(aL

31m(2)
1 +aL

32m(2)
3 )(1− e−rM

3 τ3)m(2)
6

rM
3

:= m(2)
5 .
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By using simple computation, twelve sequences will be obtained by repeating the discussion in

this manner, which are given as follows:

(54)



M(n+1)
1 =

aM
11(1−e−(r

M
1 +aM

13M(n)
6 )τ1)M(n+1)

2

rL
1+aL

13m(n)
6

,

M(n+1)
2 =

aM
11e−(r

L
1+aL

13m(n)
6 )τ1

β L
1

+ ε,

M(n+1)
3 =

aM
22(1−e−(r

M
2 +aM

23M(n)
6 )τ2)M(n+1)

4

rL
2+aL

23m(n)
6

,

M(n+1)
4 =

aM
22e−(r

L
2+aL

23m(n)
6 )τ2

β L
2

+ ε,

M(n+1)
5 =

(aM
31M(n+1)

1 +aM
32M(n+1)

3 )(1−e−rM
3 τ3)M(n+1)

6
rL

3
,

M(n+1)
6 =

(aM
31M(n+1)

1 +aM
32M(n+1)

3 )e−rL
3 τ3

β L
3

+ ε,

m(n+1)
1 =

aL
11(1−e−(r

L
1+aL

13m(n)
6 )τ1)m(n+1)

2

rM
1 +aM

13M(n+1)
6

,

m(n+1)
2 =

aL
11e−(r

M
1 +aM

13M(n+1)
6 )τ1−aM

12M(n+1)
4

β M
1

− ε,

m(n+1)
3 =

aL
22(1−e−(r

L
2+aL

23m(n)
6 )τ2)m(n+1)

4

rM
2 +aM

23M(n+1)
6

,

m(n+1)
4 =

aL
22e−(r

M
2 +aM

23M(n+1)
6 )τ2−aM

21M(n+1)
2

β M
2

− ε,

m(n+1)
5 =

(aL
31m(n+1)

1 +aL
32m(n+1)

3 )(1−e−rM
3 τ3)m(n+1)

6
rM

3
,

m(n+1)
6 =

(aL
31m(n+1)

1 +aL
32m(n+1)

3 )e−rM
3 τ3

β M
3

− ε.

It is easy to show that M(n)
i > 0 and the sequences {M(n)

i } (i = 1,2, · · · ,6) are decreasing as n

increases, which derives limn→∞ M(n)
i = M∗i exists. Furthermore, it is easy to show that m(n)

i <

M(n)
i and the sequences {m(n)

i } (i = 1,2, · · · ,6) are increasing as n increases, which derives
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limn→∞ m(n)
i = m∗i exists. Consequently, it follows from (54) that

(55)



M∗1 =
aM

11(1−e−(r
M
1 +aM

13M∗6 )τ1)M∗2
rL

1+aL
13m∗6

,M∗2 =
aM

11e−(r
L
1+aL

13m∗6)τ1

β L
1

,

M∗3 =
aM

22(1−e−(r
M
2 +aM

23M∗6 )τ2)M∗4
rL

2+aL
23m∗6

,M∗4 =
aM

22e−(r
L
2+aL

23m(∗)
6 )τ2

β L
2

,

M∗5 =
(aM

31M∗1+aM
32M∗3 )(1−e−rM

3 τ3)M∗6
rL

3
,M∗6 =

(aM
31M∗1+aM

32M∗3 )e
−rL

3 τ3

β L
3

,

m∗1 =
aL

11(1−e−(r
L
1+aL

13m∗6)τ1)m∗2
rM

1 +aM
13M∗6

,m∗2 =
aL

11e−(r
M
1 +aM

13M∗6 )τ1−aM
12M∗4

β M
1

,

m∗3 =
aL

22(1−e−(r
L
2+aL

23m∗6)τ2)m∗4
rM

2 +aM
23M∗6

,m∗4 =
aL

22e−(r
M
2 +aM

23M∗6 )τ2−aM
21M∗2

β M
2

,

m∗5 =
(aL

31m∗1+aL
32m∗3)(1−e−rL

3 τ3)m∗6
rM

3
,m∗6 =

(aL
31m∗1+aL

32m∗3)e
−rM

3 τ3

β M
3

.

Based on Definition 4.1 and (55), it can be concluded that solutions of model (4) are persistent

provided that the following inequalities hold

aL
11β

L
2 e−(r

M
1 +aM

13W̄ )τ1 > aM
12aM

22e−rL
2 τ2,aL

22β
L
1 e−(r

M
2 +aM

23W̄ )τ2 > aM
21aM

11e−rL
1 τ1.

5. Existence of positive periodic solution

In this section, existence of positive periodic solutions is investigated based on continuation

theorem of coincidence degree theory. Firstly, some definitions and lemmas are introduced in

the following part.

Definition 5.1 [4] Let L : DomL⊂ X → Y be a linear mapping, and N : X → Y be a continuous

mapping, where X and Y are real Banach spaces. If dimKerL = codimImL < +∞ and ImL is

closed in Y , then L is called a Fredholm mapping of index zero.

If L is Fredholm mapping of index zero and there exist continuous projectors P : X → X

and Q : Y → Y such that ImP = KerL, ImL = KerQ = Im(I−Q), then restriction Lp of L to

DomL∩KerP : (I−P)X → ImL is invertible.

Definition 5.2 [4] Denote the inverse of Lp by Kp. Supposing Ω is an open bounded subset of

X , if QN(Ω̄) is bounded and Kp(I−Q)N : Ω→ X is compact, then the mapping N is called L-

compact on Ω̄. Since ImQ is isomorphic to KerL, there exists an isomorphism J : ImQ→KerL.
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Lemma 5.1 [4] Let Ω⊂ X be an open bounded set, L be a Fredholm mapping of index zero and

N be L-compact on Ω̄. If the following three conditions hold

(i): Lx 6= λNx for any λ ∈ (0,1) and x ∈ ∂Ω∩DomL,

(ii): QNx 6= 0 for any x ∈ ∂Ω∩KerL,

(iii): deg{JQN,Ω∩KerL,0} 6= 0,

then Lx = Nx has at least one solution in Ω̄∩DomL.

The existence of positive periodic solution of model (4) with initial conditions (5) and (6)

will be discussed in the following part. Consider the subsystem of model (4),

(56)



ẋ12(t) = a11(t− τ1)e
−
∫ t

t−τ1
r1(s)+a13(s)y2(s)dsx12(t− τ1)−a12(t)x12(t)x22(t)

−β1(t)x2
12(t),

ẋ22(t) = a22(t− τ2)e
−
∫ t

t−τ2
r2(s)+a23(s)y2(s)dsx22(t− τ2)−a21(t)x12(t)x22(t)

−β2(t)x2
22(t),

ẏ2(t) = [a31(t− τ3)x11(t− τ3)+a32(t− τ3)x21(t− τ3)]e
−
∫ t

t−τ3
r3(s)dsy2(t− τ3)

−β3(t)y2
2(t).

Let u1(t) = ln[x12(t)],u2(t) = ln[x22(t)],u3(t) = ln[y2(t)]. By substituting u1(t), u2(t) and u3(t)

into (56), it can be obtained that

(57)

u̇1(t) = a11(t− τ1)e
−
∫ t

t−τ1
r1(s)+a13(s)eu3(s)dseu1(t−τ1)−u1(t)−a12(t)eu2(t)

−β1(t)eu1(t),

u̇2(t) = a22(t− τ2)e
−
∫ t

t−τ2
r2(s)+a23(s)eu3(s)dseu2(t−τ2)−u2(t)−a21(t)eu1(t)

−β2(t)eu2(t),

u̇3(t) = a31(t− τ3)e
−
∫ t

t−τ3
r3(s)dseu3(t−τ3)−u3(t)

∫ t−τ3
t−τ1−τ3

a11(s)e
∫ s

t−τ3
r1(m)+a13(m)eu3(m)dmeu1(s)ds

+a32(t− τ3)e
−
∫ t

t−τ3
r3(s)dseu3(t−τ3)−u3(t)

∫ t−τ3
t−τ2−τ3

a22(s)e
∫ s

t−τ3
r2(m)+a23(m)eu3(m)dmeu2(s)ds

−β3(t)eu3(t).

It should be noted that if model (57) has an ω-periodic solution (u∗1(t),u
∗
2(t),u

∗
3(t))

T , then

(x∗12(t),x
∗
22(t),y

∗
2(t))

T = (eu∗1(t),eu∗2(t),eu∗3(t))T is a positive ω-periodic solution of model (56).

In order to utilize Lemma 5.1 in a straightforward manner, we define

X = Y = {(u1(t),u2(t),u3(t))T ∈C(R,R3) : ui(t +ω) = ui(t), i = 1,2,3},
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and ‖ (u1(t),u2(t),u3(t))T ‖= maxt∈[0,ω] |u1(t)|+maxt∈[0,ω] |u2(t)|+maxt∈[0,ω] |u3(t)|, where

| · | denotes the Euclidean norm, it is easy to show that both X and Y are Banach spaces with the

norm ‖ · ‖, then define DomL∩X → X ,L(u1(t),u2(t),u3(t))T = (du1(t)
dt , du2(t)

dt , du3(t)
dt )T , where

DomL = {(u1(t),u2(t),u3(t))T ∈C(R,R3)} , N


u1

u2

u3

=


f1(t)

f2(t)

f3(t)

 and

(58)

f1(t) = a11(t− τ1)e
−
∫ t

t−τ1
r1(s)+a13(s)eu3(s)dseu1(t−τ1)−u1(t)−a12(t)eu2(t)−β1(t)eu1(t),

f2(t) = a22(t− τ2)e
−
∫ t

t−τ2
r2(s)+a23(s)eu3(s)dseu2(t−τ2)−u2(t)−a21(t)eu1(t)−β2(t)eu2(t),

f3(t) = a31(t− τ3)e
−
∫ t

t−τ3
r3(s)dseu3(t−τ3)−u3(t)

∫ t−τ3
t−τ1−τ3

a11(s)e
∫ s

t−τ3
r1(m)+a13(m)eu3(m)dmeu1(s)ds

+a32(t− τ3)e
−
∫ t

t−τ3
r3(s)dseu3(t−τ3)−u3(t)

∫ t−τ3
t−τ2−τ3

a22(s)e
∫ s

t−τ3
r2(m)+a23(m)eu3(m)dmeu2(s)ds

−β3(t)eu3(t).

Furthermore, we define

P


u1

u2

u3

= Q


u1

u2

u3

=


1
ω

∫
ω

0 u1(t)dt
1
ω

∫
ω

0 u2(t)dt
1
ω

∫
ω

0 u3(t)dt

 ,


u1

u2

u3

 ∈ X = Y.

According to the above definitions, it is not difficult to verify that

KerL = {x|x ∈ X ,x = h,h ∈ R3}, ImL = {y ∈ Y |
∫

ω

0
y(t)dt = 0}

are closed in Y, dimKerL= codimImL= 3, and both P and Q are continuous projectors such that

ImP = KerL and KerQ = ImL = Im(I−Q). Based on the above analysis, it can be obtained that

L is a Fredholm mapping of index zero. Furthermore, the inverse Kp : ImL→ DomL∩KerP of

Lp exists and takes the following form Kp(y) =
∫ t

0 y(s)ds− 1
ω

∫
ω

0
∫ t

0 y(s)dsdt. Hence, QN : X→Y

and Kp(I−Q)N : X → X can be defined as follows, respectively,

QNx =


1
ω

∫
ω

0 f1(t)dt,
1
ω

∫
ω

0 f2(t)dt,
1
ω

∫
ω

0 f3(t)dt

 ,

Kp(I−Q)Nx =
∫ t

0
Nx(s)ds− 1

ω

∫
ω

0

∫ t

0
Nx(s)dsdt− (

t
ω
− 1

2
)
∫

ω

0
Nx(s)ds.
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It is easy to show that QN and Kp(I−Q)N are continuous. In order to facilitate the proof based

on Lemma 5.1, we also need to find an appropriate open and bounded subset Ω, which can be

found by the following two steps:

Step 1: According to the operator equation Lx = λNx for λ ∈ (0,1), the upper and lower

bound of u1(t), u2(t) and u3(t) will be estimated as follows:

(59)


du1(t)

dt = λ f1(t),
du2(t)

dt = λ f2(t),
du3(t)

dt = λ f3(t).

where f1(t), f2(t) and f3(t) have been defined in (58). Supposing that (u1(t),u2(t),u3(t))T ∈ X

is a solution of model (59) for some λ ∈ (0,1). Based on definition (u1(t),u2(t),u3(t))T ∈ X ,

there exist ξi,ηi ∈ [0,ω] such that ui(ξi) = mint∈[0,ω] ui(t),ui(ηi) = maxt∈[0,ω] ui(t), i = 1,2,3.

Multiplying the first equation of model (59) by eu1(t) and integrating it over [0,ω], it gives that∫
ω

0
a11(t− τ1)eu1(t−τ1)e−

∫ t
t−τ1

r1(s)+a13(s)eu3(s)dsdt

=
∫

ω

0
a12(t)eu1(t)+u2(t)+β1(t)e2u1(t)dt.(60)

It follows from (60) that

(61) β
L
1

∫
ω

0
e2u1(t)dt ≤

∫
ω

0
aM

11e−rL
1 τ1eu1(t)dt.

On the other hand, by using the inequality

(62) (
∫

ω

0
eu1(t)dt)2 ≤ ω

∫
ω

0
e2u1(t)dt.

Based on (61) and (62), it can be obtained that β L
1 (

∫
ω

0 eu1(t)dt)2 ≤ aM
11ωe−rL

1 τ1
∫

ω

0 eu1(t)dt, which

derives that

(63)
∫

ω

0
eu1(t)dt ≤

aM
11ωe−rL

1 τ1

β L
1

,u1(ξ1)≤ ln
aM

11e−rL
1 τ1

β L
1

.

By multiplying the second equation of model (59) by eu2(t) and integrating it over [0,ω], it gives

that ∫
ω

0
a22(t− τ1)eu2(t−τ2)e−

∫ t
t−τ2

r2(s)+a23(s)eu3(s)dsdt

=
∫

ω

0
a21(t)eu1(t)+u2(t)+β1(t)e2u2(t)dt.(64)
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It follows from (64) that

(65) β
L
2

∫
ω

0
e2u2(t)dt ≤

∫
ω

0
aM

22e−rL
2 τ2eu2(t)dt.

On the other hand, by using the inequality

(66) (
∫

ω

0
eu2(t)dt)2 ≤ ω

∫
ω

0
e2u2(t)dt.

Based on (65) and (66), it can be obtained that β L
2 (

∫
ω

0 eu2(t)dt)2 ≤ aM
22ωe−rL

2 τ2
∫

ω

0 eu2(t)dt, which

derives that

(67)
∫

ω

0
eu2(t)dt ≤

aM
22ωe−rL

2 τ2

β L
2

,u2(ξ2)≤ ln
aM

22e−rL
2 τ2

β L
2

.

It follows from the first equation of model (59), (63) and (67) that∫
ω

0
|u′1(t)|dt <

∫
ω

0
a11(t− τ1)eu1(t−τ1)−u1(t)e−

∫ t
t−τ1

r1(s)+a13(s)eu3(s)dsdt

+
∫

ω

0
a12(t)eu2(t)+β1(t)eu1(t)dt

≤ 2ω(
aM

11β M
1 e−rL

1 τ1

β L
1

+
aM

12aM
22e−rL

2 τ2

β L
2

).(68)

According to (63) and (68), it can be obtained that

u1(t) ≤ u1(ξ1)+
∫

ω

0
|u′1(t)|dt

≤ ln
aM

11e−rL
1 τ1

β L
1

+2ω(
aM

11β M
1 e−rL

1 τ1

β L
1

+
aM

12aM
22e−rL

2 τ2

β L
2

) := A1.(69)

It follows from the second equation of model (59), (63) and (67) that∫
ω

0
|u′2(t)|dt <

∫
ω

0
a22(t− τ1)eu2(t−τ2)−u2(t)e−

∫ t
t−τ2

r2(s)+a23(s)eu3(s)dsdt

+
∫

ω

0
a21(t)eu1(t)+β2(t)eu2(t)dt

≤ 2ω(
aM

22β M
2 e−rL

2 τ2

β L
2

+
aM

11aM
21e−rL

1 τ1

β L
1

).(70)

According to (67) and (70), it can be obtained that

u2(t) ≤ u2(ξ2)+
∫

ω

0
|u′2(t)|dt

≤ ln
aM

22e−rL
2 τ2

β L
2

+2ω(
aM

22β M
2 e−rL

2 τ2

β L
2

+
aM

11aM
21e−rL

1 τ1

β L
1

) := A2.(71)
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By multiplying the third equation of model (59) by eu3(t) and integrating it over [0,ω], it gives

that

∫
ω

0
a31(t− τ3)dt

∫ t−τ3

t−τ1−τ3

a11(s)eu1(s)+u3(t−τ3)e
∫ s

t−τ3
r1(m)+a13(m)eu3(m)dm−

∫ t
t−τ3

r3(m)dmds

+
∫

ω

0
a32(t− τ3)dt

∫ t−τ3

t−τ2−τ3

a22(s)eu2(s)+u3(t−τ3)e
∫ s

t−τ3
r2(m)+a23(m)eu3(m)dm−

∫ t
t−τ3

r3(m)dmds

=
∫

ω

0
β3(t)e2u3(t)dt.(72)

It follows from (72) that

β
L
3

∫
ω

0
e2u3(t)dt ≤

aM
31(a

M
11)

2e−rL
1 τ1−rL

3 τ3e
2aM

11βM
1 ωe−rL

1 τ1

βL
1

β L
1 rL

1

∫
ω

0
eu3(t)dt

+
aM

32(a
M
22)

2e−rL
2 τ2−rL

3 τ3e
2aM

22βM
2 ωe−rL

2 τ2

βL
1

β L
2 rL

2

∫
ω

0
eu3(t)dt.

(73)

On the other hand, by using the inequality

(74) (
∫

ω

0
eu3(t)dt)2 ≤ ω

∫
ω

0
e2u3(t)dt.

Based on (73) and (74), it can be obtained that

β
L
3 (

∫
ω

0
eu3(t)dt)2 ≤

aM
31(a

M
11)

2ωe−rL
1 τ1−rL

3 τ3e
2aM

11βM
1 ωe−rL

1 τ1

βL
1

β L
1 rL

1

∫
ω

0
eu3(t)dt

+
aM

32(a
M
22)

2ωe−rL
2 τ2−rL

3 τ3e
2aM

22βM
2 ωe−rL

2 τ2

βL
1

β L
2 rL

2

∫
ω

0
eu3(t)dt,

which derives that

u3(ξ3)≤ ln[
aM

31(a
M
11)

2e−rL
1 τ1−rL

3 τ3e
2aM

11βM
1 e−rL

1 τ1

βL
1

β L
1 β L

3 rL
1

+
aM

32(a
M
22)

2e−rL
2 τ2−rL

3 τ3e
2aM

22βM
2 e−rL

2 τ2

βL
1

β L
2 β L

3 rL
2

].(75)
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It follows from the third equation of model (59) and (75) that

∫
ω

0
|u′3(t)|dt

<
∫

ω

0
a31(t− τ3)dt

∫ t−τ3

t−τ1−τ3

a11(s)eu1(s)+u3(t−τ3)−u3(t)e
∫ s

t−τ3
r1(m)+a13(m)eu3(m)dm−

∫ t
t−τ3

r3(m)dmds

+
∫

ω

0
a32(t− τ3)dt

∫ t−τ3

t−τ2−τ3

a22(s)eu2(s)+u3(t−τ3)−u3(t)e
∫ s

t−τ3
r2(m)+a23(m)eu3(m)dm−

∫ t
t−τ3

r3(m)dmds

+
∫

ω

0
β3(t)eu3(t)dt

≤ 2ωβ
M
3 [

aM
31(a

M
11)

2e−rL
1 τ1−rL

3 τ3

β L
1 β L

3 rL
1

e
2aM

11βM
1 ωe−rL

1 τ1

βL
1 +

aM
32(a

M
22)

2e−rL
2 τ2−rL

3 τ3

β L
2 β L

3 rL
2

e
2aM

22βM
2 ωe−rL

2 τ2

βL
1 ].

(76)

According to (75) and (76), it can be obtained that

u3(t)(77)

≤ u3(ξ3)+
∫

ω

0
|u′3(t)|dt

≤ ln[
aM

31(a
M
11)

2e−rL
1 τ1−rL

3 τ3

β L
1 β L

3 rL
1

e
2aM

11βM
1 ωe−rL

1 τ1

βL
1 +

aM
32(a

M
22)

2e−rL
2 τ2−rL

3 τ3

β L
2 β L

3 rL
2

e
2aM

22βM
2 ωe−rL

2 τ2

βL
1 ]

+2ωβ
M
3 [

aM
31(a

M
11)

2e−rL
1 τ1−rL

3 τ3

β L
1 β L

3 rL
1

e
2aM

11βM
1 ωe−rL

1 τ1

βL
1 +

aM
32(a

M
22)

2e−rL
2 τ2−rL

3 τ3

β L
2 β L

3 rL
2

e
2aM

22βM
2 ωe−rL

2 τ2

βL
1 ] := A3.

(78)

It should be noted that

∫
ω

0
a11(t− τ1)e

−
∫ t

t−τ1
r1(s)+a13(s)eu3(s)dseu1(t−τ1)dt =

∫
ω

0
a11(t)e−

∫ t+τ1
t r1(s)+a13(s)eu3(s)dseu1(t)dt.

Based on (60), it can be obtained that

∫
ω

0
β1(t)e2u1(t)dt ≥ (aL

11e−(r
M
1 +aM

13eA3)τ1−aM
12eA3)

∫
ω

0
eu1(t)dt,

which derives that

(79) u1(η1)≥ ln
aL

11e−(r
M
1 +aM

13eA3)τ1−aM
12eA3

ωβ M
1
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holds provided that aL
11e−(r

M
1 +aM

13eA3)τ1 > aM
12eA3 . According to (68) and (78), it can be obtained

that

u1(t) ≥ u1(η1)−
∫

ω

0
|u′1(t)|dt

≥ ln
aL

11e−(r
M
1 +aM

13eA3)τ1−aM
12eA3

ωβ M
1

−2ω(
aM

11β M
1 e−rL

1 τ1

β L
1

+
aM

12aM
22e−rL

2 τ2

β L
2

) := B1.(80)

By virtue of (69) and (79), if aL
11e−(r

M
1 +aM

13eA3)τ1 > aM
12eA3 , then

(81) max
t∈[0,ω]

|u1(t)|< max



| ln aM
11e−rL

1 τ1

β L
1
|

+2ω(
aM

11β M
1 e−rL

1 τ1

β L
1

+
aM

12aM
22e−rL

2 τ2

β L
2

),

| ln aL
11e−(r

M
1 +aM

13eA3 )τ1−aM
12eA3

ωβ M
1

|

+2ω(
aM

11β M
1 e−rL

1 τ1

β L
1

+
aM

12aM
22e−rL

2 τ2

β L
2

)


:=C1.

Similarly, it is easy to show that

∫
ω

0
a22(t− τ2)e

−
∫ t

t−τ2
r2(s)+a23(s)eu3(s)dseu2(t−τ2)dt =

∫
ω

0
a22(t)e−

∫ t+τ2
t r2(s)+a23(s)eu3(s)dseu2(t)dt.

Based on (64), it can be obtained that
∫

ω

0 β2(t)e2u2(t)dt ≥ (aL
22e−(r

M
2 +aM

23eA3)τ2−aM
21eA3)

∫
ω

0 eu2(t)dt,

which derives that

(82) u2(η2)≥ ln
aL

22e−(r
M
2 +aM

23eA3)τ2−aM
21eA3

ωβ M
2

,

holds provided that aL
22e−(r

M
2 +aM

23eA3)τ2 > aM
21eA3 . According to (70) and (81), it can be obtained

that

u2(t) ≥ u2(η2)−
∫

ω

0
|u′2(t)|dt

≥ ln
aL

22e−(r
M
2 +aM

23eA3)τ2−aM
21eA3

ωβ M
2

−2ω(
aM

22β M
2 e−rL

2 τ2

β L
2

+
aM

21aM
11e−rL

1 τ1

β L
1

) := B2.(83)
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By virtue of (71) and (82), if aL
22e−(r

M
2 +aM

23eA3)τ2 > aM
21eA3 , then

(84) max
t∈[0,ω]

|u2(t)|< max



| ln aM
22e−rL

2 τ2

β L
2
|

+2ω(
aM

22β M
2 e−rL

2 τ2

β L
2

+
aM

21aM
11e−rL

1 τ1

β L
1

),

| ln aL
22e−(r

M
2 +aM

23eA3 )τ2−aM
21eA3

ωβ M
2

|

+2ω(
aM

22β M
2 e−rL

2 τ2

β L
2

+
aM

21aM
11e−rL

1 τ1

β L
1

)


:=C2.

Furthermore, it is easy to show that∫
ω

0
a31(t− τ3)dt

∫ t−τ3

t−τ1−τ3

a11(s)eu1(s)+u3(t−τ3)e
∫ s

t−τ3
r1(m)+a13(m)eu3(m)dm−

∫ t
t−τ3

r3(m)dmds

=
∫

ω

0
a31(t)dt

∫ t

t−τ1

a11(s)eu1(s)+u3(t)e
∫ s

t r1(m)+a13(m)eu3(m)dm−
∫ t+τ3

t r3(m)dmds,

∫
ω

0
a32(t− τ3)dt

∫ t−τ3

t−τ2−τ3

a22(s)eu2(s)+u3(t−τ3)e
∫ s

t−τ3
r2(m)+a23(m)eu3(m)dm−

∫ t
t−τ3

r3(m)dmds

=
∫

ω

0
a32(t)dt

∫ t

t−τ2

a22(s)eu2(s)+u3(t)e
∫ s

t r2(m)+a23(m)eu3(m)dm−
∫ t+τ3

t r3(m)dmds.

Based on (72), it can be obtained that∫
ω

0
β3(t)e2u3(t)dt ≥ [

aL
11aL

31eB1−rM
3 τ3(1− e−rL

1 τ1)

rM
1 +aM

13eA3
+

aL
22aL

32eB2−rM
3 τ3(1− e−rL

2 τ2)

rM
2 +aM

23eA3
]
∫

ω

0
eu3(t)dt,

which yields that

(85) u3(η3)≥ ln[
aL

11aL
31eB1−rM

3 τ3(1− e−rL
1 τ1)

ωβ M
3 (rM

1 +aM
13eA3)

+
aL

22aL
32eB2−rM

3 τ3(1− e−rL
2 τ2)

ωβ M
3 (rM

2 +aM
23eA3)

].

According to (76) and (84), it derives that

u3(t)(86)

≥ u3(η3)−
∫

ω

0
|u′3(t)|dt

≥ ln[
aL

11aL
31eB1−rM

3 τ3(1− e−rL
1 τ1)

β M
3 (rM

1 +aM
13eA3)

+
aL

22aL
32eB2−rM

3 τ3(1− e−rL
2 τ2)

β M
3 (rM

2 +aM
23eA3)

]

−2ωβ
M
3 [

aM
31(a

M
11)

2e−rL
1 τ1−rL

3 τ3

β L
1 β L

3 rL
1

e
2aM

11βM
1 ωe−rL

1 τ1

βL
1 +

aM
32(a

M
22)

2e−rL
2 τ2−rL

3 τ3

β L
2 β L

3 rL
2

e
2aM

22βM
2 ωe−rL

2 τ2

βL
1 ] := B3.

(87)
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By virtue of (77) and (85), it follows that

max
t∈[0,ω]

|u3(t)|

< max



| ln[aM
31(a

M
11)

2e−rL
1 τ1−rL

3 τ3

β L
1 β L

3 rL
1

e
2aM

11βM
1 ωe−rL

1 τ1

βL
1 +

aM
32(a

M
22)

2e−rL
2 τ2−rL

3 τ3

β L
2 β L

3 rL
2

e
2aM

22βM
2 ωe−rL

2 τ2

βL
1 ]|

+2ωβ M
3 [

aM
31(a

M
11)

2e−rL
1 τ1−rL

3 τ3

β L
1 β L

3 rL
1

e
2aM

11βM
1 ωe−rL

1 τ1

βL
1 +

aM
32(a

M
22)

2e−rL
2 τ2−rL

3 τ3

β L
2 β L

3 rL
2

e
2aM

22βM
2 ωe−rL

2 τ2

βL
1 ],

| ln[aL
11aL

31eB1−rM
3 τ3(1−e−rL

1 τ1)

ωβ M
3 (rM

1 +aM
13eA3)

+
aL

22aL
32eB2−rM

3 τ3(1−e−rL
2 τ2)

ωβ M
3 (rM

2 +aM
23eA3)

]|

+2ωβ M
3 [

aM
31(a

M
11)

2e−rL
1 τ1−rL

3 τ3

β L
1 β L

3 rL
1

e
2aM

11βM
1 ωe−rL

1 τ1

βL
1 +

aM
32(a

M
22)

2e−rL
2 τ2−rL

3 τ3

β L
2 β L

3 rL
2

e
2aM

22βM
2 ωe−rL

2 τ2

βL
1 ]


:=C3.

(88)

Step 2: It is obvious that Ci (i = 1,2,3) defined in (80), (83) and (86) are independent of λ .

In order to construct an appropriate open and bounded subset Ω, denote C = C1 +C2 +C3 +

C0, where C0 is sufficiently large such that the unique solution (u∗1,u
∗
2,u
∗
3)

T of the following

algebraic equations

(89)


1
ω

∫
ω

0 f1(t)dt = 0,
1
ω

∫
ω

0 f2(t)dt = 0,
1
ω

∫
ω

0 f3(t)dt = 0.

satisfies ‖ (u∗1,u∗2,u∗3)T ‖= |u∗1|+ |u∗2|+ |u∗3| < C, where fi(t) (i=1, 2, 3) have been defined in

(58). Select Ω = {(u1(t),u2(t),u3(t))T ∈ X :‖ (u1,u2,u3)
T ‖<C}, which implies that condition

(i) of Lemma 5.1 holds. When (u1(t),u2(t),u3(t))T ∈ ∂Ω∩KerL = ∂Ω∩R3, (u1,u2,u3)
T is a

constant vector in R3 with |u1|+ |u2|+ |u3|=C. Consequently, it can be concluded that

QN


u1

u2

u3

=


1
ω

∫
ω

0 f1(t)dt,
1
ω

∫
ω

0 f2(t)dt
1
ω

∫
ω

0 f3(t)dt

 6=


0

0

0

 ,

which implies that condtion (ii) of Lemma 5.1 is satisfied. Take J = I : ImQ→KerL, (u1,u2,u3)
T →

(u1,u2,u3)
T . It follows from straightforward computation that

deg(JQN(u1,u2,u3)
T ,Ω∩KerL,(0,0,0)T ) = 1,
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where (u∗1,u
∗
2,u
∗
3) is the unique solution of model (59). Hence, the condition (iii) of Lem-

ma 5.1 holds. Furthermore, it is easy to see that the set {Kp(I −Q)Nx|x ∈ Ω̄} is equicon-

tinuous and uniformly bounded. By using the Arzela-Ascoli theorem [4], it can be shown

that Kp(I−Q)N : Ω̄→ X is compact and N is L-compact. Consequently, all conditions (i)-

(iii) of Lemma 5.1 hold for Ω. It follows from Lemma 5.1 that model (57) has at least one

ω-periodic solution (u∗1(t),u
∗
2(t),u

∗
3(t))

T , and model (56) has at least one ω-periodic solu-

tion (x∗12(t),x
∗
22(t),y

∗
2(t))

T = (eu∗1(t),eu∗2(t),eu∗3(t))T . Let (x∗12(t),x
∗
22(t),y

∗
2(t))

T be a positive ω-

periodic solution of model (56), it follows from (17) and (21) that

x∗11(t) = e−
∫ t

0 r1(m)+a13(m)y∗2(m)dm
∫ t

t−τ1

a11(s)e
∫ s

0 r1(m)+a13(m)y∗2(m)dmx∗12(s)ds,

x∗21(t) = e−
∫ t

0 r1(m)+a23(m)y∗2(m)dm
∫ t

t−τ2

a22(s)e
∫ s

0 r2(m)+a23(m)y∗2(m)dmx22(s)ds,

are ω-periodic continuous function. Based on (25), it follows from further computation that

y∗1(t) = e−
∫ t

0 r3(m)dm
∫ t

t−τ3

[a31(s)x∗11(s)+a32x∗21(s)](s)e
∫ s

0 r3(m)dmy∗2(s)ds,

are ω-periodic continuous function. Based on the above analysis, the existence of positive

ω-periodic solution of model (4) is concluded in the following theorem.

Theorem 5.1 If aL
11e−(r

M
1 +aM

13eA3)τ1 > aM
12eA3 and aL

22e−(r
M
2 +aM

23eA3)τ2 > aM
21eA3 hold, where A3 has

been defined in (77), then model (4) with initial conditions (5) and (6) has at least one positive

ω-periodic solution.

6. Permanence of solutions

By constructing appropriate Lyapunov functionals, sufficient conditions for global stability

of the unique positive periodic solution are analyzed.

Theorem 6.1 If liminft→+∞ Ei(t)> 0, i = 1,2,3, then model (4) with initial conditions (5) and

(6) has a unique positive ω-periodic globally stable solution, where q > 0 is a constant and m∗i ,

M∗i , i = 1,2,3,4,5,6 are defined in (55),

E1 = 2β1(t)m∗2 +(1+q)a12(t)(m∗2 +m∗4)−a11(t)e−
∫ t+τ1

t r1(m)+a13(m)m∗6dm

−qa11(t)M∗6

∫ t+τ1+τ3

t+τ3

a31(s− τ3)e
∫ t

s−τ3
r1(m)+a31(m)M∗6 dm−

∫ s
s−τ3

r3(m)dmds,
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E2 = 2β2(t)m∗4 +(1+q)a21(t)(m∗2 +m∗4)

−a22(t)e−
∫ t+τ2

t r2(m)+a23(m)m∗6dm

−qa22(t)M∗6

∫ t+τ2+τ3

t+τ3

a32(s− τ3)e
∫ t

s−τ3
r2(m)+a32(m)M∗6 dm−

∫ s
s−τ3

r3(m)dmds,

and

E3 = 2qβ2(t)m∗6−
∫ t+τ1

t
a11(s− τ1)a13(t)M∗2ds

−
∫ t+τ2

t
a22(s− τ2)a23(t)M∗4ds

−qa31(t)e−
∫ t+τ3

t r3(m)dm
∫ t

t−τ1

a11(m)M∗2e
∫ m

t r1(θ)+a13(θ)M∗6 dθ dm

−qa13(t)
∫ t+τ1+τ3

t+τ3

a31(s− τ3)M∗6e−
∫ s

s−τ3
r3(m)dm

∫ s−τ3

s−τ1−τ3

a11(m)M∗2dmds

−qa32(t)e−
∫ t+τ3

t r3(m)dm
∫ t

t−τ2

a22(m)M∗4e
∫ m

t r2(θ)+a23(θ)M∗6 dθ dm

−qa23(t)
∫ t+τ2+τ3

t+τ3

a32(s− τ3)M∗6e−
∫ s

s−τ3
r3(m)dm

∫ s−τ3

s−τ2−τ3

a22(m)M∗4dmds.

Proof. Constructing a Lyapunov functional as follows,

V1(t) = |x12(t)− x∗12(t)|+
∫ t+τ1

t

∫ t

s−τ1

a11(s− τ1)x∗12(s− τ1)a13(u)|y2(u)− y∗2(u)|duds

+
∫ t

t−τ1

a11(s)e
∫ s+τ1

s −r1(m)−a13(m)y2(m)dm|x12(s)− x∗12(s)|ds

+|x22(t)− x∗22(t)|+
∫ t+τ2

t

∫ t

s−τ2

a22(s− τ1)x∗22(s− τ2)a23(u)|y2(u)− y∗2(u)|duds

+
∫ t

t−τ2

a22(s)e
∫ s+τ2

s −r2(m)−a23(m)y2(m)dm|x22(s)− x∗22(s)|ds.(90)

By calculating the upper right derivative of V1(t) along the positive ω-periodic solutions of

model (4), it can be obtained that
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D+V1(t)(91)

= a11(t− τ1)sgn[x12(t)− x∗12(t)]{e
∫ t

t−τ1
−r1(s)−a13(s)y2(s)ds

(x12(t− τ1)

−x∗12(t− τ1))

+x∗12(t− τ1)[e
∫ t

t−τ1
−r1(s)−a23(s)y2(s)ds− e

∫ t
t−τ1
−r1(s)−a23(s)y∗2(s)ds

]}

−sgn[x12(t)− x∗12(t)]{a12(t)x22(t)(x12(t)− x∗12(t))

+a12(t)x∗12(t)(x22(t)− x∗22(t))

+β1(t)(x12(t)+ x∗12(t))(x12(t)− x∗12(t))}

+a22(t− τ2)sgn[x22(t)− x∗22(t)]{e
∫ t

t−τ2
−r2(s)−a23(s)y2(s)ds

(x22(t− τ2)

−x∗22(t− τ2))

+x∗12(t− τ1)[e
∫ t

t−τ1
−r1(s)−a23(s)y2(s)ds− e

∫ t
t−τ1
−r1(s)−a23(s)y∗2(s)ds

]}

−sgn[x22(t)− x∗22(t)]{a21(t)x12(t)(x22(t)− x∗22(t))

+a21(t)x∗22(t)(x12(t)− x∗12(t))

+β2(t)(x22(t)+ x∗22(t))(x22(t)− x∗22(t))}

+
∫ t+τ1

t
a11(s− τ1)x∗11(s− τ1)a13(t)|y2(t)− y∗2(t)|ds

−
∫ t

t−τ1

a11(t− τ1)x∗11(t− τ1)a13(u)|y2(u)− y∗2(u)|du

+
∫ t+τ2

t
a22(s− τ2)x∗22(s− τ2)a23(t)|y2(t)− y∗2(t)|ds

−
∫ t

t−τ2

a22(t− τ2)x∗22(t− τ2)a23(u)|y2(u)− y∗2(u)|du

+a11(t)e
∫ t+τ1

t −r1(m)−a13y2(m)dm|x12(t)− x∗12(t)|

+a22(t)e
∫ t+τ2

t −r2(m)−a23y2(m)dm|x22(t)− x∗22(t)|

−a11(t− τ1)e
∫ t

t−τ1
−r1(m)−a13(m)y2(m)dm|x12(t− τ1)− x∗12(t− τ1)|

−a22(t− τ2)e
∫ t

t−τ2
−r2(m)−a23(m)y2(m)dm|x22(t− τ2)− x∗22(t− τ2)|.(92)
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Further computations show that

D+V1(t)

≤ a11(t− τ1)x∗12(t− τ1)|e
∫ t

t−τ1
−r1(s)−a13(s)y2(s)ds− e

∫ t
t−τ1
−r1(s)−a13(s)y∗2(s)ds|

+a22(t− τ2)x∗22(t− τ2)|e
∫ t

t−τ2
−r2(s)−a23(s)y2(s)ds− e

∫ t
t−τ2
−r2(s)−a23(s)y∗2(s)ds|

−β1(t)(x12(t)+ x∗12(t))|x12(t)− x∗12(t)|−β2(t)(x22(t)+ x∗22(t))|x22(t)− x∗22(t)|

−a12(t)(x22(t)+ x∗12(t))|x12(t)− x∗12(t)|−a21(t)(x12(t)+ x∗22(t))|x22(t)− x∗22(t)|

+
∫ t+τ1

t
a11(s− τ1)x∗11(s− τ1)a13(t)|y2(t)− y∗2(t)|ds

−
∫ t

t−τ1

a11(t− τ1)x∗11(t− τ1)a13(u)|y2(u)− y∗2(u)|du

+
∫ t+τ2

t
a22(s− τ2)x∗22(s− τ2)a23(t)|y2(t)− y∗2(t)|ds

−
∫ t

t−τ2

a22(t− τ2)x∗22(t− τ2)a23(u)|y2(u)− y∗2(u)|du

+a11(t)e
∫ t+τ1

t −r1(m)−a13y2(m)dm|x12(t)− x∗12(t)|

+a22(t)e
∫ t+τ2

t −r2(m)−a23y2(m)dm|x22(t)− x∗22(t)|.(93)

Since |e−x− e−y| ≤ |x− y| holds for arbitrary x≥ 0 and y≥ 0, it follows from (90) that

D+V1(t) ≤ −[β1(t)(x12(t)+ x∗12(t))+a12(t)(x22(t)+ x∗22(t))]|x22(t)− x∗12(t)|

−[β2(t)(x22(t)+ x∗22(t))+a21(t)(x12(t)+ x∗22(t))]|x22(t)− x∗22(t)|

+
∫ t+τ1

t
a11(s− τ1)x∗12(s− τ1)a13(t)|y2(t)− y∗2(t)|ds

+
∫ t+τ2

t
a22(s− τ2)x∗22(s− τ2)a23(t)|y2(t)− y∗2(t)|ds

+a11(t)e
∫ t+τ1

t −r1(m)−a13(m)y2(m)dm|x12(t)− x∗12(t)|

+a22(t)e
∫ t+τ2

t −r2(m)−a23(m)y2(m)dm|x22(t)− x∗22(t)|.(94)
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Similarly, constructing another Lyapunov functional as follows,

V2(t) =
∫ t

t−τ3

∫ s

s−τ1

a31(s)e−
∫ s+τ3

s r3(m)dm|y2(s)− y∗2(s)|

×a11(m)e
∫ m

s r1(θ)+a31(θ)y2(θ)dθ x12(m)dmds

+
∫ t+τ1

t

∫ t−τ3

s−τ1−τ3

a31(s− τ3)e
−
∫ s

s−τ3
r3(m)dmy∗2(s− τ3)a11(u)|x12(u)− x∗12(u)|

×e
∫ s

s−τ3
r1(m)+a13(m)y2(m)dmduds

+
∫ t+τ1

t

∫ t−τ3

s−τ1−τ3

a31(s− τ3)e
−
∫ s

s−τ3
r3(m)dmy∗2(s− τ3)a13(u)|y2(u)− y∗2(u)|

×
∫ s−τ3

s−τ1−τ3

a11(m)x∗12(m)dmduds

+
∫ t+τ3

t

∫ u+τ1

u
a11(u− τ3)a31(s− τ3)y∗2(s− τ3)|x12(u− τ3)− x∗12(u− τ3)|

×e−
∫ s

s−τ3
r3(m)dme

∫ u−τs
s−τ3

r1(θ)+a13(θ)y2(θ)dθ dsdu

+
∫ t+τ3

t

∫ u+τ1

u
a31(s− τ3)y∗2(s− τ3)a13(u− τ3)|y2(u− τ3)− y∗2(u− τ3)|

×e−
∫ s

s−τ3
r3(m)dm

∫ s−τ3

s−τ1−τ3

a11(m)x∗12(m)dmdsdu

+
∫ t

t−τ3

∫ s

s−τ2

a32(s)e−
∫ s+τ3

s r3(m)dm|y2(s)− y∗2(s)|a22(m)e
∫ m

s r2(θ)+a32(θ)y2(θ)dθ

x22(m)dmds

+
∫ t+τ2

t

∫ t−τ3

s−τ2−τ3

a32(s− τ3)e
−
∫ s

s−τ3
r3(m)dmy∗2(s− τ3)a22(u)|x22(u)− x∗22(u)|

×e
∫ s

s−τ3
r2(m)+a23(m)y2(m)dmduds

+
∫ t+τ2

t

∫ t−τ3

s−τ2−τ3

a32(s− τ3)e
−
∫ s

s−τ3
r3(m)dmy∗2(s− τ3)a23(u)|y2(u)− y∗2(u)|

×
∫ s−τ3

s−τ2−τ3

a22(m)x∗22(m)dmduds

+
∫ t+τ3

t

∫ u+τ2

u
a22(u− τ3)a32(s− τ3)y∗2(s− τ3)|x22(u− τ3)− x∗22(u− τ3)|

×e−
∫ s

s−τ3
r3(m)dme

∫ u−τs
s−τ3

r2(θ)+a23(θ)y2(θ)dθ dsdu

+
∫ t+τ3

t

∫ u+τ2

u
a32(s− τ3)y∗2(s− τ3)a23(u− τ3)|y2(u− τ3)− y∗2(u− τ3)|

×e−
∫ s

s−τ3
r3(m)dm

∫ s−τ3

s−τ2−τ3

a22(m)x∗22(m)dmdsdu+ |y2(t)− y∗2(t)|.(95)
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By calculating the upper right derivative of V2(t) along the positive ω-periodic solutions of

model (4), it can be obtained that

D+V2(t) ≤ a31(t)e−
∫ t+τ3

t r3(m)dm
∫ t

t−τ1

a11(m)x12(m)e
∫ m

t r1(θ)+a13(θ)y2(θ)dθ dm

×|y2(t)− y∗2(t)|

+
∫ t+τ1+τ3

t+τ3

a31(s− τ3)e
−
∫ s

s−τ3
r3(m)dmy∗2(s− τ3)e

∫ t
s−τ3

r1(m)+a31(m)y2(m)dmds

×a11(t)|x12(t)− x∗12(t)|

+
∫ t+τ1+τ3

t+τ3

a31(s− τ3)y∗2(s− τ3)e
−
∫ s

s−τ3
r3(m)dmds

×
∫ s−τ3

s−τ1−τ3

a11(m)a13(t)x∗12(m)dm|y2(t)− y∗2(t)|

+a32(t)e−
∫ t+τ3

t r3(m)dm
∫ t

t−τ2

a22(m)x22(m)e
∫ m

t r2(θ)+a23(θ)y2(θ)dθ dm

|y2(t)− y∗2(t)|

+
∫ t+τ2+τ3

t+τ3

a32(s− τ3)e
−
∫ s

s−τ3
r3(m)dmy∗2(s− τ3)e

∫ t
s−τ3

r2(m)+a32(m)y2(m)dmds

×a22(t)|x22(t)− x∗22(t)|

+
∫ t+τ2+τ3

t+τ3

a32(s− τ3)y∗2(s− τ3)e
−
∫ s

s−τ3
r3(m)dmds

×
∫ s−τ3

s−τ2−τ3

a22(m)a23(t)x∗22(m)dm|y2(t)− y∗2(t)|

−a12(t)(x22(t)+ x∗12(t))|x12(t)− x∗12(t)|

−a21(t)(x12(t)+ x∗22(t))|x22(t)− x∗22(t)|

−β2(t)(y2(t)+ y∗2(t))|y2(t)− y∗2(t)|.(96)

Let V (t) =V1(t)+qV2(t), where q > 0 is a constant. By calculating the upper right derivative

of V (t) along the positive ω-periodic solution of model (4) based on (91) and (93), it can be
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obtained as follows:

D+V (t) ≤ −|x12(t)− x∗12(t)|{2β1(t)m∗2 +(1+q)a12(t)(m∗2 +m∗4)

−a11(t)e
∫ t+τ1

t −r1(m)−a13(m)m∗6dm

−qa11(t)M∗6

∫ t+τ1+τ3

t+τ3

a31(s− τ3)e
∫ t

s−τ3
r1(m)+a31(m)M∗6 dm−

∫ s
s−τ3

r3(m)dmds}

−|x22(t)− x∗22(t)|{2β2(t)m∗4 +(1+q)a21(t)(m∗2 +m∗4)

−a22(t)e
∫ t+τ2

t −r2(m)−a23(m)m∗6dm

−qa22(t)M∗6

∫ t+τ2+τ3

t+τ3

a32(s− τ3)e
∫ t

s−τ3
r2(m)+a32(m)M∗6 dm−

∫ s
s−τ3

r3(m)dmds}

−|y2(t)− y∗2(t)|{2qβ2(t)m∗6−
∫ t+τ1

t
a11(s− τ1)a13(t)M∗2ds

−
∫ t+τ2

t
a22(s− τ2)a23(t)M∗4ds

−qa31(t)e−
∫ t+τ3

t r3(m)dm
∫ t

t−τ1

a11(m)M∗2e
∫ m

t r1(θ)+a13(θ)M∗6 dθ dm

−q
∫ t+τ1+τ3

t+τ3

a31(s− τ3)M∗6e−
∫ s

s−τ3
r3(m)dm

∫ s−τ3

s−τ1−τ3

a11(m)a13(t)M∗2dmds

−qa32(t)e−
∫ t+τ3

t r3(m)dm
∫ t

t−τ2

a22(m)M∗4e
∫ m

t r2(θ)+a23(θ)M∗6 dθ dm

−q
∫ t+τ2+τ3

t+τ3

a32(s− τ3)M∗6e−
∫ s

s−τ3
r3(m)dm

∫ s−τ3

s−τ2−τ3

a22(m)a23(t)M∗4dmds}.(97)

According to Theorem 4.1, there exists a positive value T > 0, when t ≥ T it gives that
m∗2− ε < x12(t)< M∗2 + ε,m∗2− ε < x∗12(t)< M∗2 + ε,

m∗4− ε < x22(t)< M∗4 + ε,m∗4− ε < x∗22(t)< M∗4 + ε,

m∗6− ε < y2(t)< M∗6 + ε,m∗6− ε < y∗2(t)< M∗6 + ε,

holds for sufficiently small ε > 0. Based on (94), when t > T +max{τ1,τ2,τ3}, it derives that

D+V (t)≤−(E1(t)−ε)|x12(t)−x∗12(t)|−(E2(t)−ε)|x22(t)−x∗22(t)|−(E3(t)−ε)|y2(t)−y∗2(t)|,

where E1(t), E2(t) and E3(t) have been given in Theorem 6.1. If liminft→+∞ Ei(t) > 0 for

i = 1,2,3, then there exists three constants δi > 0 (i = 1,2,3) such that for t ≥ T ∗ := T +

2max{τ1,τ2,τ3}

E1(t)≥ δ1,E2(t)≥ δ2,E3(t)≥ δ3.
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Consequently, for t ≥ T ∗ we have

(98) D+V (t)≤−δ1

2
|x12(t)− x∗12(t)|−

δ2

2
|x22(t)− x∗22(t)|−

δ3

2
|y2(t)− y∗2(t)|.

By integrating both sides of (95) on the interval [T ∗, t], it can be obtained that for t ≥ T ∗,

V (t)+
δ1

2

∫ t

T ∗
|x12(s)−x∗12(s)|ds+

δ2

2

∫ t

T ∗
|x22(s)−x∗22(s)|ds+

δ3

2

∫ t

T ∗
|y2(s)−y∗2(s)|ds≤V (T ∗).

Hence, V (t) is bounded on the interval [T ∗,+∞) and∫ t

T ∗
|x12(s)− x∗12(s)|ds <+∞,∫ t

T ∗
|x22(s)− x∗22(s)|ds <+∞,∫ t

T ∗
|y2(s)− y∗2(s)|ds <+∞.

According to Barbalat’s Lemma [4], it can be concluded that

(99) lim
t→∞
|x12(t)− x∗12(t)|= 0,

(100) lim
t→∞
|x22(t)− x∗22(t)|= 0,

(101) lim
t→∞
|y2(t)− y∗2(t)|= 0.

It follows from (17) and (21) that

|x11(t)− x∗11(t)| ≤
∫ t

t−τ1

a11(s)e
∫ s

t r1(m)+a13(m)y2(m)dm|x12(s)− x∗12(s)|ds

+
∫ t

t−τ1

a11(s)x∗12(s)|e
∫ s

t r1(m)+a13y2(m)dm− e
∫ s

t r1(m)+a13y∗2(m)dm|ds

≤
∫ t

t−τ1

aM
11|x12(s)− x∗12(s)|ds+

∫ t

t−τ1

aM
11M2

∫ t

s
aM

13|y2(m)− y∗2(m)|dmds,

(102)

|x21(t)− x∗21(t)| ≤
∫ t

t−τ2

a22(s)e
∫ s

t r2(m)+a23(m)y2(m)dm|x22(s)− x∗22(s)|ds

+
∫ t

t−τ2

a22(s)x∗22(s)|e
∫ s

t r2(m)+a23y2(m)dm− e
∫ s

t r2(m)+a23y∗2(m)dm|ds

≤
∫ t

t−τ2

aM
22|x22(s)− x∗22(s)|ds+

∫ t

t−τ2

aM
22M4

∫ t

s
aM

23|y2(m)− y∗2(m)|dmds.

(103)
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Based on (96), (97), (99) and (100), it can be concluded that

(104) lim
t→∞
|x11(t)− x∗11(t)|= 0, lim

t→∞
|x21(t)− x∗21(t)|= 0.

It follows from (25) that

|y1(t)− y∗1(t)| ≤
∫ t

t−τ3

[a31(s)x11(s)+a32(s)x21(s)]e
∫ s

t r3(m)dm|y2(t)− y∗2(s)|ds

≤
∫ t

t−τ3

(aM
31M1 +aM

32M3)|y2(t)− y∗2(s)|ds.(105)

Based on (98) and (102), it can be obtained that

(106) lim
t→∞
|y1(t)− y∗1(t)|= 0.

Therefore, it follows from (96), (97), (98), (101) and (103) that model (4) with initial conditions

(5) and (6) has a unique positive ω-periodic globally stable solution �

Numerical simulations are carried out to substantiate the analytical findings obtained in

this paper. In order to facilitate the numerical simulations, 2π-periodic continuous function-

s introduced in model (4) are selected as follows: a11(t) = 2.1 + sin(t)
10 , r1(t) = 0.2 + sin(t)

200 ,

a13(t) = 1
30 +

sin(t)
20 , a12(t) = 0.2+ sin(t)

300 , β1(t) = 1+ sin(t)
300 , a22 = 1.1+ sin(t)

18 , r2(t) = 0.01+ sin(t)
50 ,

a23(t) = 1
50 + sin(t)

15 , a21(t) = 0.15 + sin(t)
270 , a31(t) = 3

100 + 9sin(t)
200 , a32(t) = 1577

10000 + 1577sin(t)
30000 ,

r3(t) = 0.032+ sin(t)
180 and β3(t) = 0.3+ sin(t)

60 .

The maturation delay for sub-dominant prey, dominant prey species and predator species are

given as follows: τ1 = 0.1, τ2 = 0.12 and τ3 = 0.25, respectively. By using straightforward com-

putations, it can be found that aL
11β L

2 e−(r
M
1 +aM

13W̄ )τ1 > aM
12aM

22e−rL
2 τ2 and aL

22β L
1 e−(r

M
2 +aM

23W̄ )τ2 >

aM
21aM

11e−rL
1 τ1 hold, then solutions of model (4) are persistent. It follows from complicated com-

putation that aL
11e−(r

M
1 +aM

13eA3)τ1 > aM
12eA3 and aL

22e−(r
M
2 +aM

23eA3)τ2 > aM
21eA3 , which derives that

model (4) has at least one positive ω-periodic solution based on Theorem 5.1. Further compu-

tations show that E1(t)≥ 0.3428, E2(t)≥ 0.7006 and E3(t)≥ 1.2951. Consequently, it follows

from Theorem 6.1 that model (4) has a unique positive 2π-periodic globally stable solution

(x∗11(t), x∗12(t), x∗21(t), x∗22(t), y∗1(t), y∗2(t))
T , whose dynamical responses are plotted in Fig-

ure 1. Corresponding limit cycle of the unique positive 2π-periodic globally stable solution

(x∗11(t),x
∗
12(t),x

∗
21(t),x

∗
22(t),y

∗
1(t),y

∗
2(t))

T is plotted in the x11− x12 plane, x21− x22 and y1− y2

plane, which can be found in Figure 2, Figure 3 and Figure 4, respectively.
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FIGURE 1. Dynamical responses of the unique positive 2π-periodic globally

stable solution of model (4), and the stable solution are plotted with initial value

(0.15,1.52,12.1,2.5,0.05,0.1) from Time 8000 to 8500, where parameters of

model (4) are given as follows: a11(t) = 2.1+ sin(t)
10 , r1(t) = 0.2+ sin(t)

200 , a13(t) =
1

30 +
sin(t)

20 , a12(t)= 0.2+ sin(t)
300 , β1(t)= 1+ sin(t)

300 , a22 = 1.1+ sin(t)
18 , r2(t)= 0.01+

sin(t)
50 , a23(t) = 1

50 +
sin(t)

15 , a21(t) = 0.15+ sin(t)
270 , a31(t) = 3

100 +
9sin(t)

200 , a32(t) =
1577

10000 +
1577sin(t)

30000 , r3(t) = 0.032+ sin(t)
180 and β3(t) = 0.3+ sin(t)

60 .

7. Conclusion

Generally speaking, it takes some time for species to reach maturity and the species compete

each other for the limited life resource within closed environment, but this competition only

happens among the mature individual and does not involve the immature individual. When one

species is a better competitor, interspecific competition negatively influences the other species

by reducing population sizes and/or growth rates, which in turn affects population dynamics

of the competitor [7, 10]. Consequently, it is necessary to investigate the dynamic effect of

interspecific competition and maturation delay on population dynamics of two competing prey

and predator system, which are important issues from mathematical and experimental points

of view. In this paper, a nonautonomous dynamical model is proposed, where interspecific



42 CHAO LIU, QINGLING ZHANG, XIAOMIN WANG

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.5

1

x 11
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

1

1.5

2

x 12

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
16

18

20
x 21

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

2.6

2.8

x 22

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

1

2

y 1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0.1

0.15

0.2

Time (Days)

y 2

FIGURE 2. Dynamical responses of the unique positive 2π-periodic globally

stable solution of model (4), and the stable solution are plotted with initial value

(0.15,1.52,12.1,2.5,0.05,0.1) from Time 0 to 9000, where parameters of model

(4) are given as follows: a11(t) = 2.1+ sin(t)
10 , r1(t) = 0.2+ sin(t)

200 , a13(t) = 1
30 +

sin(t)
20 , a12(t) = 0.2+ sin(t)

300 , β1(t) = 1+ sin(t)
300 , a22 = 1.1+ sin(t)

18 , r2(t) = 0.01+
sin(t)

50 , a23(t) = 1
50 +

sin(t)
15 , a21(t) = 0.15+ sin(t)

270 , a31(t) = 3
100 +

9sin(t)
200 , a32(t) =

1577
10000 +

1577sin(t)
30000 , r3(t) = 0.032+ sin(t)

180 and β3(t) = 0.3+ sin(t)
60 .
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FIGURE 3. A limit cycle corresponding to dynamical responses of model (4)

shown in Figure 1, which is plotted in the x11− x12 plane.

competition between mature dominant prey species and sub-dominant prey species are consid-

ered, and three discrete time delays are incorporated into the model due to maturation time for

sub-dominant prey, dominant prey and predator species, respectively.
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FIGURE 4. A limit cycle corresponding to dynamical responses of model (4)

shown in Figure 1, which is plotted in the x21− x22 plane.
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FIGURE 5. A limit cycle corresponding to dynamical responses of model (4)

shown in Figure 1, which is plotted in the y1− y2 plane.

Qualitative analyses of the proposed model are discussed in this paper. It follows from The-

orem 3.1 and Theorem 3.2 that solutions of model (4) with given initial conditions are positive

and ultimately bounded. By utilizing some comparison arguments, an iterative technique is

proposed to discuss permanence of solutions of model (4), which can be found in Theorem

4.1. Furthermore, existence of positive periodic solutions is considered in Theorem 5.1 based

on continuation theorem of coincidence degree theory, which shows that model (4) has at least

one positive periodic solution. By constructing some appropriate Lyapunov functionals, suffi-

cient conditions for global stability of the unique positive periodic solution are analyzed, i.e.,
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liminft→+∞ Ei(t) > 0, i = 1,2,3, which can be found in Theorem 6.1. Finally, numerical sim-

ulations are provided to show dynamical responses of the unique positive 2π-periodic globally

stable solution, which are plotted in Figure 1. Furthermore, the phase portrait of model system

(4), corresponding limit cycle is plotted in the x11−x12 , x21−x22 and y1−y2 plane, which can

be found Figure 2, Figure 3 and Figure 4, respectively. Since biological phenomenon associat-

ed with interspecific competition and maturation delay extensively exists within prey predator

ecosystem in the natural world, theoretical results obtained in this paper are theoretically bene-

ficial to discuss dynamic effect of maturation delay and interspecific competition on population

dynamics as well as interaction and coexistence mechanism of two competing prey and one

predator system, it makes this work made in this paper has some positive and new features.
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