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Abstract. A nonautonomous discrete competitive system with nonlinear inter-inhibition terms and feedback con-

trols is studied in this paper. By using difference inequality theory, a set of conditions which guarantee the perma-

nence of system is obtained. The results indicate that feedback control variables have no influence on the persistent

property of the system. Our results not only supplement but also improve some existing ones. Numerical simula-

tions show the feasibility of our results.
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1. Introduction

For any bounded sequence {a(n)}, aL = inf
n∈N
{a(n)}, aU = sup

n∈N
{a(n)}. Recently, many authors

pay attention to the following competitive system with nonlinear inter-inhibition terms (see [1-

5]):

(1)


ẋ1(t) = x1(t)

{
r1(t)−a1(t)x1(t)−

c2(t)x2(t)
1+ x2(t)

}
,

ẋ2(t) = x2(t)
{

r2(t)−a2(t)x2(t)−
c1(t)x1(t)
1+ x1(t)

}
,
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where xi (i = 1,2) are the population densities of two competing species; ri (i = 1,2) are the

intrinsic growth rates of species; ai (i = 1,2) are the rates of intraspecific competition of the

first and second species, respectively; ci (i = 1,2) are the rates of interspecific competition of

the first and second species, respectively. For more ecological sense of model (1), one can see

[1] and the references cited therein. By using differential inequality, the module containment

theorem and the Lyapunov function, the existence and global asymptotic stability of positive

almost periodic solutions of system (1) is obtained by Wang et al. [2].

As we all know that continuous models can excellently show the dynamic behaviors of those

populations who have a long life cycle, overlapping generations, and large quantity; Also, the

discrete-time models governed by difference equations are more appropriate than the continu-

ous ones when populations have a short life expectancy, nonoverlapping generations in the real

word. Considering discrete-time models can provide efficient computational models of contin-

uous models for numerical simulations, Qin et al. [3] study the following system which is the

discrete analogue of system (1):

(2)


x1(n+1) = x1(n)exp

{
r1(n)−a1(n)x1(n)−

c2(n)x2(n)
1+ x2(n)

}
,

x2(n+1) = x2(n)exp
{

r2(n)−a2(n)x2(n)−
c1(n)x1(n)
1+ x1(n)

}
,

they investigated the permanence and global asymptotic stability of positive periodic solutions

of system (2). When all coefficients in system (2) are bounded nonnegative almost periodic

sequences, Wang and Liu [4] further investigate the existence, uniqueness and uniformly as-

ymptotic stability of positive almost periodic solution of the above almost periodic system. Qin

et al. [3] obtained the following result about permanence of system (2).

Theorem A (see [3]). Suppose that system (2) satisfies the following assumptions:

rL
1 − cU

2 > 0, rL
2 − cU

1 > 0. (A1)

Then system (2) is permanent i.e. any positive solution (x1(n),x2(n))T of system (2) satisfies

0 < xi∗ ≤ liminf
n→+∞

xi(n)≤ limsup
n→+∞

xi(n)≤ x∗i <+∞.
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Noting that ecosystems in the real world are often disturbed by outside continuous forces,

Wang et al. [5] incorporate feedback controls into model (2) and consider the following model:

(3)


x1(n+1) = x1(n)exp

{
r1(n)−a1(n)x1(n)−

c2(n)x2(n)
1+ x2(n)

− e1(n)u1(n)
}
,

x2(n+1) = x2(n)exp
{

r2(n)−a2(n)x2(n)−
c1(n)x1(n)
1+ x1(n)

− e2(n)u2(n)
}
,

∆u1(n) = −b1(n)u1(n)+d1(n)x1(n), ∆u2(n) =−b2(n)u2(n)+d2(n)x2(n),

where xi(n) stand for the densities of species xi (i = 1,2) at the nth generation, respectively, for

i = 1,2, {ai(n)}, {bi(n)}, {ci(n)}, {di(n)}, {ei(n)} and {ri(n)} are all bounded nonnegative

sequences such that

(4)
0 < aL

i ≤ ai(n)≤ aU
i , 0 < cL

i ≤ ci(n)≤ cU
i , 0 < dL

i ≤ di(n)≤ dU
i ,

0 < eL
i ≤ e(n)≤ eU

i , 0 < rL
i ≤ ri(n)≤ rU

i , 0 < bL
i ≤ bi(n)≤ bU

i ≤ 1.

By using Lyapunov function and some preliminary lemmas, the existence and uniformly as-

ymptotic stability of unique positive almost periodic solution of the system (3) are investigated

by Wang et al. [5]. More specifically, as for permanence, Wang et al. [5] obtained the following

result.

Theorem B (see [5]). If the following inequalities

rL
1 − cU

2 − eU
1 u∗1 > 0, rL

2 − cU
1 − eU

2 u∗2 > 0 (A2)

hold, then system (3) is permanent i.e. any positive solution (x1(n),x2(n),u1(n),u2(n))T of

system (3) satisfies

0≤ xi∗ ≤ liminf
n→+∞

xi(n)≤ limsup
n→+∞

xi(n)≤ x∗i <+∞,

0≤ ui∗ ≤ liminf
n→+∞

ui(n)≤ limsup
n→+∞

ui(n)≤ u∗i <+∞,

where x∗i =
exp(rU

i −1)
aL

i
and u∗i =

x∗i dU
i

bL
i

, for i = 1,2.

Comparing with Theorem A, Theorem B shows that feedback control variables play impor-

tant roles on the persistent property of the system (3). But the question is whether or not the

feedback control variables have influence on the permanence of the system. On the other hand,

as was pointed out by Fan and Wang [6], “if we use the method of comparison theorem, then the

additional condition, in some extent, is necessary. But for the system itself, this condition may
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not necessary.” In [6] , by establishing a new difference inequality, Fan and Wang showed that

feedback control has no influence on the permanence of a single species discrete model. Their

success motivated us to consider the persistent property of system (3). Indeed, in this paper, we

will apply the analysis technique of Fan and Wang [6] to establish sufficient conditions, which is

independent of feedback control variables, to ensure the permanence of the system. We finally

obtain the following main results:

Theorem C . Assume that

rL
1 − cU

2 > 0, rL
2 − cU

1 > 0 (A3)

hold, then system (3) is permanent.

Comparing with Theorem B, it is easy to see that (A3) in Theorem C are weaker than (A2)

in Theorem B and feedback control variables have no influence on the permanent property of

system (3), so our results improve the main results in [5]. For more works on this direction, one

could refer to [7-18] and the references cited therein.

By the biological meaning, we will focus our discussion on the positive solutions of sys-

tem (3). So, we consider (3) together with the following initial conditions:

(5) xi(0)> 0, ui(0)> 0, i = 1,2.

It is not difficult to see that the solutions of (3)-(5) are well defined and satisfy

(6) xi(n)> 0, ui(n)> 0, i = 1,2, for n ∈ N.

The remaining part of this paper is organized as follows. In Section 2, we will introduce

several lemmas. The permanence of system (3) is then studied in Section 3. In Section 4, a

suitable example together with its numerical simulations shows the feasibility of our results.

2. Preliminaries

In this section, we will introduce several useful lemmas.

Lemma 2.1 (see [19]). Assume that {x(n)} satisfies

x(n+1)≥ x(n)exp{a(n)−b(n)x(n)}, n≥ N0,
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limsup
n→+∞

x(n) ≤ x∗ and x(N0) > 0, where a(n) and b(n) are non-negative sequences bounded

above and below by positive constants and N0 ∈ N. Then

liminf
n→+∞

x(n)≥min{ aL

bU exp{aL−bU x∗}, aL

bU }.

Lemma 2.2 (see [6]). Assume that A > 0 and y(0)> 0. Suppose that

y(n+1)≤ Ay(n)+B(n), n = 1,2, ....

Then for any integer k ≤ n,

y(n)≤ Aky(n− k)+
k−1

∑
i=0

AiB(n− i−1).

Especially, if A < 1 and B is bounded above with respect to M, then

limsup
n→+∞

y(n)≤ M
1−A

.

Lemma 2.3 (see [6]). Assume that A > 0 and y(0)> 0. Suppose that

y(n+1)≥ Ay(n)+B(n), n = 1,2, ....

Then for any integer k ≤ n,

y(n)≥ Aky(n− k)+
k−1

∑
i=0

AiB(n− i−1).

Especially, if A < 1 and B is bounded above with respect to m∗, then

liminf
n→+∞

y(n)≥ m∗

1−A
.

3. Permanence

In this section, we detail the proof of our main result by several lemmas.

Lemma 3.1 (see [5]). Any positive solution (x1(n),x2(n),u1(n),u2(n))T of system (3) satisfies

(7) limsup
n→+∞

xi(n)≤ x∗i limsup
n→+∞

ui(n)≤ u∗i ,
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where x∗i and u∗i (i = 1,2) are defined in Theorem B.

Lemma 3.2 Assume

rL
1 − cU

2 > 0 (A31)

holds, then there exist two positive constants x1∗ and u1∗ such that

liminf
n→+∞

x1(n)≥ x1∗, liminf
n→+∞

u1(n)≥ u1∗,

where x1∗ and u1∗ are defined in the proof.

Proof. According to Lemma 3.1, for any ε > 0 small enough, there exists enough large N1 > 0,

such that for n≥ N1,

(8) x1(n)≤ x∗1 + ε, u1(n)≤ u∗1 + ε.

Thus, it follows from (8) and the first equation of system (3) that

(9)

x1(n+1) ≥ x1(n)exp
{

rL
1 −aU

1 (x
∗
1 + ε)− cU

2 − eU
1 (u

∗
1 + ε)

}
≥ x1(n)exp

{
−aU

1 (x
∗
1 + ε)− cU

2 − eU
1 (u

∗
1 + ε)

}
4
= x1(n)exp{D1ε}

for n≥ N1, where D1ε =−aU
1 (x
∗
1 + ε)− cU

2 − eU
1 (u

∗
1 + ε)< 0. For any integer k ≤ n, it follows

from (9) that
n−1

∏
j=n−k

x1( j+1)
x1( j)

≥
n−1

∏
j=n−k

exp{D1ε}= exp{D1εk}.

Thus

(10) x1(n− k)≤ x1(n)exp{−D1εk}

From the third equation of system (3), we have

(11)

u1(n+1) = (1−b1(n))u1(n)+d1(n)x1(n)

≤ (1−bL
1)u1(n)+dU

1 x1(n)

4
= A1u1(n)+B1(n),
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where A1 = 1− bL
1 and B1(n) = dU

1 x1(n). Then, for any k ≤ n, according to Lemma 2.2, (10)

and (11) that

(12)

u1(n) ≤ Ak
1u1(n− k)+

k−1
∑

i=0
Ai

1B1(n− i−1)

= Ak
1u1(n− k)+

k−1
∑

i=0
Ai

1dU
1 x1(n− i−1)

≤ Ak
1u1(n− k)+dU

1 x1(n)
k−1
∑

i=0
Ai

1exp{−D1ε(i+1)}.

Note that 0 < bL
1 < 1, hence 0 < A1 < 1. Therefore,

(13) 0≤ Ak
1u1(n− k)≤ Ak

1(u
∗
1 + ε)→ 0, as k→ ∞.

Then, there exists a positive integer N2 > N1 such that for any positive solution of system (3),

eU
1 AN2

1 (u∗1 + ε)<
1
2
(
rL

1 − cU
2
)

for all n≥ N2. In fact, we could choose N2 = max{1, lnP1

lnA1
+1},

where P1 =
rL

1 − cU
2

2eU
1 (u

∗
1 + ε)

. Fix N2, for n≥ N1 +N2, we get

(14)

u1(n) ≤ AN2
1 u1(n−N2)+dU

1 x1(n)
N2−1

∑
i=0

Ai
1exp{−D1ε(i+1)}

≤ AN2
1 (u∗1 + ε)+dU

1 x1(n)
N2−1

∑
i=0

Ai
1exp{−D1ε(i+1)}

4
= AN2

1 (u∗1 + ε)+G1εx1(n),

where G1ε = dU
1

N2−1
∑

i=0
Ai

1exp{−D1ε(i + 1)}. Substituting (14) into the first equation of sys-

tem (3), we can get

(15)

x1(n+1) ≥ x1(n)exp
{

rL
1 −aU

1 x1(n)− cU
2 − eU

1 u1(n)
}

≥ x1(n)exp
{

rL
1 −aU

1 x1(n)− cU
2 − eU

1
(
AN2

1 (u∗1 + ε)+G1εx1(n)
)}

= x1(n)exp
{

rL
1 − cU

2 − eU
1 AN2

1 (u∗1 + ε)−
(
aU

1 + eU
1 G1ε

)
x1(n)

}
≥ x1(n)exp

{1
2
(
rL

1 − cU
2
)
−
(
aU

1 + eU
1 G1ε

)
x1(n)

}
4
= x(n)exp

{
E1−E2εx1(n)

}
,

where E1 =
1
2
(
rL

1−cU
2
)

and E2ε = aU
1 +eU

1 G1ε . By applying Lemma 2.1 to (15), it immediately

follows that

liminf
n→+∞

x1(n)≥min{ E1

E2ε

exp{E1−E2εx∗1},
E1

E2ε

}.
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Setting ε → 0 in the above inequality, we obtain

(16) liminf
n→+∞

x1(n)≥min{E1

E2
exp{E1−E2x∗1},

E1

E2
} 4= x1∗.

It follows from (16) that there exists large enough N3 ≥ N1 +N2 such that

(17) x1(n)≥
x1∗
2
, for all n≥ N3.

This together with the third equation of system (3) leads to

∆u1(n)≥−b1(n)u1(n)+
x1∗d1(n)

2
, for all n≥ N3.

Hence,

(18) u1(n+1)≥ (1−bU
1 )u1(n)+

x1∗dL
1

2
, for all n≥ N3.

By applying Lemma 2.3, it follows from (18) that

liminf
n→+∞

u1(n)≥
dL

1 x1∗
2bU

1

4
= u1∗.

This completes the proof the proof of Lemma 3.2.

Lemma 3.3 Assume

rL
2 − cU

1 > 0 (A32)

holds, then there exist two positive constants x2∗ and u2∗ such that

liminf
n→+∞

x2(n)≥ x2∗, liminf
n→+∞

u2(n)≥ u2∗,

where x2∗ and u2∗ are defined in the proof.

Proof. The proof of Lemma 3.3 is similar to that of Lemma 3.2. So we omit the detail here.

Lemmas 3.1-3.3 show that the conclusion of Theorem C holds.

4. Example and numeric simulation
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FIGURE 1. Dynamic behavior of the system (19) with the initial condition

(x1(0),x2(0),u1(0),u2(0)) = (0.1,0.3,0.2,0.04)T and (0.2,0.1,0.6,0.5)T , re-

spectively.

In this section, we give the following example to verify the feasibilities of Theorem C:

(19)



x1(n+1) = x1(n)exp
{

2.5+0.5sin(
√

7n)− (1.3+0.2cosn)x1(n)

−(0.75+0.25sin(
√

11n))x2(n)
1+ x2(n)

− (0.9+0.1cos(
√

3n))u1(n)
}
,

x2(n+1) = x2(n)exp
{

2.8− (2.2+0.2sinn)x2(n)

−(0.5+0.25cos(
√

13n))x1(n)
1+ x1(n)

− (1+0.5sinn)u1(n)
}
,

∆u1(n) = −(0.08+0.02sin(
√

2n))u1(n)+(0.6+0.4cos(
√

7n))x1(n),

∆u2(n) = −(0.73+0.03cos(
√

5n))u2(n)+(0.8+0.2sin(n))x2(n)),

In this case, we have

(20) rL
1 − cU

2 = 1 > 0, rL
2 − cU

1 = 2.05 > 0

(4.2) shows that (A3) holds, so the system (19) is permanent according to Theorem C. Our

numerical simulation supports our result (see Fig. 1). However,

(21) rL
1 − cU

2 − eU
1 u∗1 ≈−110.9554 < 0, rL

2 − cU
1 − eU

2 u∗2 ≈−2.7518 < 0,

that is to say (A2) does not hold and we could not obtain the result of the permanence from

Theorem B. Thus our results improve the main results in [5].
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