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Abstract. In this paper, on the basis of the theories and methods of ecology and differential equations, a model of

predator-prey in the chemostat with microbial impulsive inputs is established. By using the theories of impulsive

equations, small amplitude perturbation skills and comparison techniques, we get the conditions which guarantee

the globally asymptotical stability of the prey and predator eradication periodic solution. At the same time, we

also prove that the system is permanent if some parameters satisfy certain conditions. Finally, some numerical

simulations are carried out to illustrate the influences of impulsive inputs on the dynamic behaviors of system.
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1. Introduction

The chemostat, a laboratory apparatus used for the continuous culture of microorganisms, has

been playing an important role in microbiology and population ecology. H.smith and P.waltman
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[1] proposed the chemostat version of predator-prey equations, which showed that if the com-

petition is moved up one level then coexistence may occur, i.e., if the competition occurs among

predators of an organism growing on the nutrient. The model is as follows:

S′(t) = (S0−S)D− m1Sx
r1(a1 +S)

,

x′(t) = x(
m1S

a1 +S
−D− m2y

r2(a2 + x)
− m3z

r3(a3 + x)
),

y′(t) = y(
m2x

a2 + x
−D),

z′(t) = z(
m3x

a3 + x
−D),

S(0) = S0 ≥ 0,x(0) = x0 ≥ 0,y(0) = y0 ≥ 0,z(0) = z0 ≥ 0

(1.1)

where S(t) and x(t) are the concentrations of nutrient and organism at time t; y(t) and z(t)

are the concentrations of two predators at time t, S0 is the input concentration of nutrient, D

is the washout rate of the chemostat, mi(i = 1,2,3) represent the maximal growth rates of the

organism x(t) and two predators y(t), z(t), ri(i = 1,2,3) represent the yield constants of the

organism x(t) and two predators y(t),z(t), ai(i = 1,2,3) are the half saturation constants. Here

x(t) is growing on the nutrient S(t); y(t) and z(t) feed on x(t).

In the discussion, it is helpful to consider the scaling for the system (1.1) and letting Σ =

1− S− x− y− z, the system (1.1) may be rewritten. Furthermore, limt→∞ Σ(t) = 0 and hence

the omega limit set of any trajectory lies in the set Σ = 0. Trajectories in the omega limit set are

solutions of the following system:

x′(t) = x(
m1(1− x− y− z)
1+a1− x− y− z

−1− m2y
a2 + x

− m3z
a3 + x

),

y′(t) = y(
m2x

a2 + x
−1),

z′(t) = z(
m3x

a3 + x
−1),

x(0) = x0 ≥ 0,y(0) = y0 ≥ 0,z(0) = z0 ≥ 0.

(1.2)

Many evolutionary processes are characterized by the fact at certain moments of time their

experience subject to instantaneous perturbations whose duration is very short and negligible

in comparison with the duration of the process considered [2, 3]. It is natural to assume that

these perturbations are “momentary” changes or impulse. In the recent years, the research of

impulsive differential equations about biological control can be thought of as a new growing
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interesting area (e.g., see [4, 5, 6, 7, 8, 9]). S.L. Sun et al. [10, 11, 12] studied some chemostat

models with nutrient impulsive inputs.

G. Robledo et al. [13] proposed a model of competition of n species in a chemostat with

constant input of some species. They proved that if the inputs satisfy a constraint, the coexis-

tence between the species is obtained in the form of a globally asymptotically stable positive

equilibrium, while a globally asymptotically stable equilibrium without the dominant species is

achieved if the constraint is not satisfied.

Motivated by the idea of adding impulsive inputs to predator, we give predator z(t) of sys-

tem (1.2) an impulsive inputs. We will consider the following system with periodic constant

impulsive inputting predator.



x′(t) = x(
m1(1− x− y− z)
1+a1− x− y− z

−1− m2y
a2 + x

− m3z
a3 + x

),

y′(t) = y(
m2x

a2 + x
−1),

z′(t) = z(
m3x

a3 + x
−1) ,


t 6= nT,

∆x(t) = 0,

∆y(t) = 0,

∆z(t) = p,

 t = nT,

x(0+) = x0 ≥ 0,y(0+) = y0 ≥ 0,z(0+) = z0 ≥ 0,

(1.3)

where x(t),y(t),z(t) are the densities of one prey and two predators at time t, respectively.

∆x(t) = x(t+)− x(t),∆y(t) = y(t+)− y(t),∆z(t) = z(t+)− z(t). p > 0 is the release amount of

predator z at t = nT , other parameters have the same biological meaning as in system (1.1).

In order to get some conditions which guarantees the system (1.3) is permanent, we will only

release amount of predator z at t = nT in that we assume that the predator y is a dominant

competitor in the system (1.3).

The paper is organized as follows. Section 2 give some notions and definitions. Section

3 give the conditions which guarantees the globally asymptotical stability of the prey x and

predator y eradication periodic solution and the system is permanent via the method of the com-

parison involving multiple Lyapunov functions. Section 4, by using the numerical simulation,

we investigate the influences on the dynamic behaviors of the system for the impulsive inputs.
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2. Notations and definitions

Let R+ = [0,∞), R3
+ = {X ∈ R3 | X ≥ 0}. Denote as f = ( f1, f2, f3) the map defined by the

right hand of the first three equations of system (1.3). Let V : R+×R3
+→ R+, then V is said to

belong to class V0 if:

(1) V is continuous in ((n−1)T,nT ]×R3
+, and for each X ∈R3

+,n∈N, lim(t,y)→(nT+,X)V (t,y)=

V (nT+,X) exist;

(2) V is locally Lipschitzian in X .

Definition 2.1. Let V ∈ V0, then for (t,X) ∈ ((n− 1)T,nT ]×R3
+,the upper right derivative of

V (t,X) with respect to the impulsive differential system (1.3) is defined as

D+V (t,X) = limsup
h→0+

1
h
[V (t +h,X +h f (t,X))−V (t,X)].

The solution of system (1.3) is a piecewise continuous function X : R+ → R3
+, X(t) is left

continuous on ((n−1)T,nT ],n∈N, X(nT+) = limt→nT+ X(t) exist. The smoothness properties

of f guarantee the global existence and uniqueness of solution of system (1.3); for the detail see

[14, 15].

Definition 2.2. system (1.3) is said to be permanent if there exists a compact Ω ⊂ intR3
+ such

that every solution (x(t),y(t),z(t)) of system (1.3) will eventually enter and remain in the region

Ω.

The following lemmas are obvious.

Lemma 2.3. Let X(t) be a solution of system (1.3) with X(0+)≥ 0, then X(t)≥ 0 for all t ≥ 0.

And further X(t)> 0, t > 0 if X(0+)> 0.

Lemma 2.4. There exists a constant M such that x(t)≤M,y(t)≤M,z(t)≤M for each solution

(x(t),y(t),z(t)) of system (1.3) for t large enough.

We will use an important comparison theorem on impulsive differential equation.

Lemma 2.5. [12] Suppose V ∈V0. Assume that D+V (t,X)≤ g(t,V (t,X)), t 6= nT,

V (t,X(t+))≤ ψn(V (t,X(t))), t = nT,
(2.1)
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where g ∈C[R+×R+,R+], ψn : R+→ R+ is nondecreasing. Let r(t) be maximal solution of the

scalar impulsive differential equation
u′(t) = g(t,u(t)), t 6= nT,

u(t+) = ψn(u(t)), t = nT,

u(0+) = u0

(2.2)

existing on [0,∞). Then V (0+,X0)≤ u0, implies that V (t,X(t))≤ r(t), t ≥ 0,where X(t) is any

solution of system (1.3).

If the prey x and predator y are absent, that is, x(t) = 0 and y(t) = 0, then system (1.3) reduces

to 
z′(t) =−z(t), t 6= nT,

z(t+) = z(t)+ p, t = nT,

z(0+) = z0.

(2.3)

Clearly, system (2.3) has a positive periodic solution z∗(t) = pexp(−(t−(n−1)T ))
1−exp(−T ) , t ∈ ((n−

1)T,nT ],n ∈ N. The solution of system (2.3) is z(t) = (z0 − p
1−exp(−T ))exp(−t) + z∗(t), t ∈

((n−1)T,nT ], where z∗(0+) = p
1−exp(−T ) . Hence, the following result is hold.

Lemma 2.6. For a positive periodic solution z∗(t) of system (2.3) and every solution z(t) of

system (2.3) with z0 ≥ 0, have |z(t)− z∗(t)| → 0, t → ∞. Moreover, z(t) ≥ z∗(t) when z(0+) ≥

z∗(0+); z(t)< z∗(t) when z(0+)< z∗(0+).

Therefore, we obtain the complete expression of the prey x and predator y eradication periodic

solution (0,0,z∗(t)) of system (1.3). Now, we study the stability of the prey x and predator y

eradication periodic solution.

3. Extinction and permanence

Theorem 3.1. Let (x(t),y(t),z(t)) be any solution of system (1.3), then (0,0,z∗(t)) is globally

asymptotically stable if

− a1m1

1+a1
(T + ln

(1+a1)(1− exp(−T ))− pexp(−T )
(1+a1)(1− exp(−T ))− p

)+(m1−1)T − m3 p
a3

< 0.
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Proof. The local stability of periodic solution (0,0,z∗(t)) may be determined by considering

the behavior of small amplitude perturbations of the solution. Define

x(t) = u(t),y(t) = v(t),z(t) = w(t)+ z∗(t). (3.1)

Substituting (3.1) into (1.3), the linearization of system becomes

u′(t) = (
m1(1− z∗(t))
1+a1− z∗(t)

−1− m3z∗(t)
a3

)u(t),

v′(t) =−v(t),

w′(t) =
m3z∗(t)

a3
u(t)−w(t) ,


t 6= nT,

∆u(t) = 0,

∆v(t) = 0,

∆w(t) = 0,

 t = nT.

(3.2)

Therefore, we have 
u(t)

v(t)

w(t)

= Φ(t)


u(0)

v(0)

w(0)

 ,0≤ t < T,

where Φ(t) satisfies

Φ
′(t) =


m1(1−z∗(t))
1+a1−z∗(t) −1− m3z∗(t)

a3
0 0

0 −1 0
m3z∗(t)

a3
0 −1

Φ(t)

and Φ(0) = I is the identity matrix. in addition,
u(nT+)

v(nT+)

w(nT+)

=


1 0 0

0 1 0

0 0 1




u(nT )

v(nT )

w(nT )

 .

It follows from the Floquet theory that the stability of the periodic solution (0,0,z∗(t)) is

determined by the eigenvalues of the monodromy matrix

M =


1 0 0

0 1 0

0 0 1

Φ(T ) = Φ(T ).
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If the absolute values of all multipliers are less than 1, then the periodic solution (0,0,z∗(t))

is locally asymptotical stable. All eigenvalues of M are as follows:

λ1 = exp(
∫ T

0
(

m1(1− z∗(t))
1+a1− z∗(t)

−1− m3z∗(t)
a3

)dt),

λ2 = exp(−T )< 1,

λ3 = exp(−T )< 1.

According to Floquet theory, (0,0,z∗(t)) is locally asymptatically stable if |λ1|< 1, that is to

say

− a1m1

1+a1
(T + ln

(1+a1)(1− exp(−T ))− pexp(−T )
(1+a1)(1− exp(−T ))− p

)+(m1−1)T − m3 p
a3

< 0.

Next, we will prove the global attractivity of the periodic solution (0,0,z∗(t)). Since |λ1|< 1,

we can select a ε > 0 such that

σ̄ =
∫ T

0
[
m1(1− (z∗(t)− ε))

1+a1− (z∗(t)− ε)
−1− m3(z∗(t)− ε)

a3
]dt < 0.

Note that z′(t)≥−z(t), from Lemma 2.6 and comparison theorem, we have

z(t)> z∗(t)− ε (3.3)

for all t large enough. For simplicity, we may assume that (3.3) hold for all t ≥ 0. From(1.3)

and (3.3) we can obtain

x′(t)≤ (
m1(1− (z∗(t)− ε))

1+a1− (z∗(t)− ε)
−1− m3(z∗(t)− ε)

a3
)x(t). (3.4)

Which leads to

x(t) ≤ x(0+)exp(
∫ nT

0 [m1(1−(z∗(t)−ε))
1+a1−(z∗(t)−ε) −1− m3(z∗(t)−ε)

a3
]dt)

= x(0+)exp(nσ̄).
(3.5)

Hence, x(t)→ 0 as n→ ∞.

Analogously, we can obtain

y′(t)≤−y, (3.6)

and

y(t)≤ y(0+)exp(−nT ). (3.7)

Thus, y(t)→ 0 as n→ ∞.
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Next, we prove that z(t)→ z∗(t) as t → ∞. For 0 < ε sufficiently small, there must exists a

T ′ > 0 such that 0 < x(t)< ε , 0 < y(t)< ε, t > T ′. Without loss of generality, we may assume

that 0 < x(t)< ε , 0 < y(t)< ε for all t ≥ 0, then from system (1.3) we obtain

−z(t)≤ z′(t)≤ (−1+ rε)z(t),(r =
m3

a3
).

From Lemma 2.6 and 2.5 we have v1(t) ≤ z(t) ≤ v2(t) and v1(t)→ z∗(t),v2(t)→ z∗(t) as

t→ ∞, where v1(t) and v2(t) are solutions of
v1
′(t) =−v1(t), t 6= nT,

v1(t+) = v1(t)+ p, t = nT,

v1(0+) = z(0+),

and 
v2
′(t) = (−1+ rε)v2(t), t 6= nT,

v2(t+) = v2(t)+ p, t = nT,

v2(0+) = z(0+),

respectively.

Because of v∗2(t) =
pexp((−1+rε)(t−(n−1)T ))

1−exp((−1+rε)T ) for t ∈ ((n−1)T,T ]. So for any ε1 > 0 there exists

a T1 > 0 such that v∗2(t)− ε1 < v2(t) < v∗2(t) + ε1, t > T1. Let ε → 0. We have z∗(t)− ε1 <

z(t) < z∗(t)+ ε1 for t large enough. Which implies z(t)→ z∗(t) as t → ∞. This completes the

proof. �

Now, we investigate the permanence of the system (1.3).

Theorem 3.2. The system (1.3) is permanent if the following conditions hold:

1) − a1m1
1+a1

(T + ln (1+a1)(1−exp(−T ))−pexp(−T )
(1+a1)(1−exp(−T ))−p) )+(m1−1)T − m3 p

a3
> 0;

2) [ m1
1+a1
−1− ( m1

1+a1
+ m2

a2
)M]T − ( m1

1+a1
+ m3

a3
)p > 0.

Proof. suppose that X(t) = (x(t),y(t),z(t)) is any solution of the system (1.3) with X(0) > 0.

From Lemma 2.4 we assume that x(t)≤M,y(t)≤M,z(t)≤M with t ≥ 0. From (3.3) we have

z(t) > z∗(t)− ε for all t large enough, and z(t) ≥ pexp(−T )
1−exp(−T ) − ε = ξ1 for t large enough. Thus

we only need to find a ξ2 such that x(t)> ξ2,y(t)> ξ2 for t large enough.
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We will prove the existence of ξ2 in the following two steps. First, Since the condition 2), we

can select 0 < ξ4 <
a3
m3
,ε1 > 0 be small enough such that

η1 = exp{[m1(1−ξ4)

1+a1
−1−( m1

1+a1
+

m2

a2
)M−( m1

1+a1
+

m3

a3
)ε1]T−(

m1

1+a1
+

m3

a3
)

a3 p
a3−m3ξ4

}> 1.

It is easy to prove that x(t)< ξ4 cannot hold for all t > 0. Otherwise,
z′(t)≤−(1− m3x(t)

a3
)z(t)≤−(1− m3ξ4

a3
)z(t), t 6= nT,

z(t+) = z(t)+ p, t = nT,

z(0+) = z0.

(3.8)

Then we have z(t)≤ v3(t) and v3(t)→ v∗3(t),(t→ ∞), where v3 is the solution of
v′3(t) =−(1−

m3ξ4

a3
)v3(t), t 6= nT,

v3(t+) = v3(t)+ p, t = nT,

v3(0+) = z0,

(3.9)

v∗3(t) =
pexp(−(1− m3ξ4

a3
)(t− (n−1)T ))

1− exp(−(1− m3ξ4
a3

)T )
,(n−1)T < t < nT.

Therefore, there exists a T1 > 0 such that

z(t)≤ v3(t)< v∗3(t)+ ε1

and

x′(t)≥ [
m1(1−ξ4)

1+a1
−1− (

m1

1+a1
+

m2

a2
)M− (

m1

1+a1
+

m3

a3
)(v∗3(t)+ ε1)]x(t) (3.10)

for t > T .

Let N1 ∈ N and (N1−1)T ≥ T1. Integrating (3.10) on((n−1)T,nT ],n > N1, we can get

x(nT )≥

x((n−1)T+)exp{
∫ nT
(n−1)T (

m1(1−ξ4)
1+a1

−1− ( m1
1+a1

+ m2
a2
)M− ( m1

1+a1
+ m3

a3
)(v∗3(t)+ ε1))dt}

= x((n−1)T )η1.

(3.11)

Then x((N1+n)T )≥ x(N1T )ηn
1 →∞ as n→∞. Which is a contradiction to the boundedness

of x(t). Hence there exists a t1 > 0 such that x(t1)≥ ξ4.
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Second, if x(t) ≥ ξ4, y(t) ≥ ξ4, for all t ≥ t3, then our aim is obtained. Hence we only need

to consider those solution which leave the region Θ = {X(t) ∈ R3
+ : x(t) ≤ ξ4} and reenter it

again. Let t∗ = inft≥t3{x(t) < ξ4}. Then x(t) ≥ ξ4, for t ∈ [t3, t∗], and x(t∗) = ξ4, suppose that

t∗ ∈ ((n1−1)T,n1T ),n1 ∈ N. There are two possible cases for t ∈ (t∗,n1T )

Case1: x(t)≤ ξ4 for all t ∈ (t∗,n1T ). Select n2,n3 ∈ N, such that

(n2−1)T >
ln( ε1

M+p)

−1+ m3ξ4
a3

,

exp(n2η2T )ηn3
1 > exp((n2 +1)η2T )ηn3

1 > 1,

where η2 = (m1(1−ξ4)
1+a1

−1−( 2m1
1+a1

+ m2
a2
)M− m3

a3
M)< 0 for ξ4 > 0 small enough and M > 0 large

enough. LetT̄ = n2T +n3T. We claim that there must be a t2 ∈ (t∗, t∗+ T̄ ) such that x(t2)> ξ4.

Otherwise, consider (3.9) with v3(t∗+) = z(t∗+), and we have

v3(t) = (v3(n1T+)− p

1− exp((−1+ m3ξ4
a3

)T )
)exp((−1+

m3ξ4

a3
)(t−n1T ))+ v∗3(t)

for (n−1)T < t ≤ nT and n1 +1≤ n≤ n1 +n2 +n3. Then

|v3(t)− v∗3(t)|< (M+ p)exp((−1+
m3ξ4

a3
)(t−n1T ))< ε1

and z(t) ≤ v3(t) ≤ v∗3(t)+ ε1, n1T ≤ t ≤ t∗+ T̄ , which implies that (3.10) hold for t∗+n2T ≤

t ≤ t∗+ T̄ . As in the first step, we have x(t∗+ T̄ )≥ x(t∗+n2T )ηn3
1 .

The first equation of the system (1.3) gives

x′(t)≥ (
m1(1−ξ4)

1+a1
−1− (

2m1

1+a1
+

m2

a2
)M− m3

a3
M)x(t). (3.12)

Integrating (3.12) on [t∗, t∗+n2T ], We have

x(t∗+n2T )≥ ξ4 exp(n2η2T ).

Thus x(t∗+ T̄ )≥ ξ4 exp(n2η2T )ηn3
1 > ξ4, and this is contradiction. Let t̄ = inft≥t∗{x(t)> ξ4},

then x(t)≤ ξ4 for t ∈ (t∗, t̄) and x(t̄) = ξ4. For t ∈ (t∗, t̄), we have

x(t)≥ x(t∗)exp(η2(t− t∗))≥ ξ4 exp((n2 +n3 +1)η2T ).

Let ξ2 = ξ4 exp((n2 +n3 +1)η2T ), so x(t)≥ ξ2 for t ∈ (t∗, t̄). For t > t̄, the same arguments

can be continued since x(t̄)≥ ξ4.
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Case2. There exists a t ∈ (t∗,n1T ) such that x(t) > ξ4. Let t̃ = inft≥t∗{x(t) > ξ4}, then

x(t) ≤ ξ4 for t ∈ (t∗, t̃) and x(t̃) = ξ4. For t ∈ (t∗, t̃), (3.12) holds. Integrating (3.12) on (t∗, t̃)

yields

x(t)≥ x(t∗)exp(η2(t− t∗))≥ ξ4 exp(η2T )> ξ2.

Since x(t)≥ ξ4 for t > t̃, the same arguments can be continued. Hence x(t)≥ ξ2 for all t > t̃.

The proved method for y(t) is similar with proved method for x(t). Set Ω = {(x,y,z) : x ≥

ξ2,y ≥ ξ2,z ≥ ξ1,x+ y+ z ≤ 3M}. Obviously, we can see that every solution of system (1.3)

will eventually enter and remain in the region Ω. Therefore, system (1.3) is permanent. The

proof is completed. �

4. Numerical analysis.

Now we will study the dynamic of a chemostat version of predator-prey models with predator

pulsed input through the numerical simulation. We choose the parameters: a1 = 0.08,a2 =

0.38,a3 = 0.9,m1 = 1.6,m2 = 1.4,m3 = 0.5,T = 20 to simulation the system (1.3): we can see

the prey x(t) and the intermediate predator y(t) can coexist, but the top predator z(t) will de-

crease to zero if p = 0(there is no impulsive input), see figure 1, This is in line with competitive

exclusion [13]. In order to prevent the predator z(t) extinction, we should give the predator z(t)

the impulsive input. The prey x and the predator y eradication periodic (0,0,z∗(t)) of system

(1.3) is globally asymptotically stable provided that p > 1.08, see figure 2, where we may ob-

serve how the top predator z(t) oscillates in a stable cycle, which is consistent with theorem 3.1.

The prey x(t) and two predators y(t),z(t) can coexist if the release amount of p on the predator

z is less than 1.08, see figure 3. This verified the correctness of the theorem 3.2.

5. Conclusions and remarks

In this paper, the dynamic behaviors of a chemostat version of predator-prey models with preda-

tor pulsed input is studied by theoretical analysis and numerical simulation. We obtain the suffi-

cient conditions which ensure that the periodic solution (0,0,z∗(t)) of the system (1.3) is glob-

ally asymptotically stable and the system (1.3) is permanent. These results are very meaningful.
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FIGURE. 1. The dynamics of system(1.3) with x(0) = 0.95,y(0) = 0.8,z(0) = 0.1 and

a1 = 0.08,a2 = 0.38,a3 = 0.9,m1 = 1.6,m2 = 1.4,m3 = 0.5,T = 20. When p = 0, the

prey x and the predator y can coexist, the predator z becomes extinction.

In particular, we consider the microbial pulsed input , which is different from the continuous in-

put substrate and pulsed input substrate in before papers. Compared with [13](they considered

a chemostat model with n species competing for a single limiting substrate), pulsed input mi-

croorganism is more practical and economic than continuous input microorganism in real work.

This paper show that if we don’t perform pulsed inputs on the microorganism predator z, then

microorganism prey x and microorganism predator y can coexist, but microorganism predator z

becomes extinction. This is according with the competitive exclusion. In order to prevent the

predator z(t) extinction, we should give the predator z(t) the impulsive release. When p < 1.08,

the prey x(t) and two predators y(t),z(t) can coexist; when P > 1.08, the prey x and the predator

y go extinction, but the predator z presents a periodic oscillation.
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FIGURE. 2. The dynamics of system(1.3) with x(0) = 0.95,y(0) = 0.8,z(0) = 0.1

and a1 = 0.08,a2 = 0.38,a3 = 0.9,m1 = 1.6,m2 = 1.4,m3 = 0.5,T = 20. When p =

1.2,(0,0,z∗(t)) is globally asymptotically stable:(a) time series of the prey population

x(t); (b) time series of the predator population y(t); (c) time series of the predator pop-

ulation z(t); (d) phase portrait of system (1.3).
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FIGURE. 3. The dynamics of system(1.3) with x(0) = 0.95,y(0) = 0.8,z(0) = 0.1 and

a1 = 0.08,a2 = 0.38,a3 = 0.9,m1 = 1.6,m2 = 1.4,m3 = 0.5,T = 20. When p = 0.15,

system (1.3) is permanence in chaos.
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