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Abstract. Jatropha curcas L. is one of the wonder plant with a variety of applications and economic potentiality.

Biodiesel, an alternative fuel from non-edible oil of Jatropha curcas plants, is significantly considered as an alter-

native fuel to diesel oil as it has the anticipated physicochemical and environment friendly characteristics compared

to diesel. To get oil from Jatropha curcas plant quantitatively and qualitatively, proper plantation and protection of

this plant, mainly from virus carrying vector (white-fly), is essential. In this research article, an epidemic model is

formulated for Jatropha curcas plant, which describes the vector-borne diseases with the aim to control the effect of

vectors i.e., white-fly on the spread of mosaic disease. The reliability of the mathematical model is established by

sensitivity analysis. Here, spraying of an insecticide (Insecticidal Soap) is considered to prevent vector white-fly in

two avenues viz. continuous and impulsive strategy. The objective is to find the suitable and effective method that

can serve as an integrating measure to identify and design appropriate plant disease control strategies. Numerical

simulations are employed to support the analytical results.
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1. Introduction

Jatropha (Jatropha curcas L.), known as physic nut, is a drought resistant perennial plant,

which is popularly cultivated in the tropics as a living fence. The tree is of significant econom-

ic importance for its numerous industrial and medicinal uses. The oil extracted from Jatropha

seeds is being used as bio-fuel for diesel engines. Thus Jatropha has a great potential to con-

tribute to the renewable energy source [1, 2, 3]. In India, the area under the cultivation of

Jatropha is increasing in recent years with the ever increasing demand for fossil fuels that are

exhausting at a rapid rate. Jatropha suffers from several fungal and bacterial diseases and more

recently by the Jatropha Mosaic India Virus (JMIV), which causes Jatropha Mosaic Disease

(JMD) [4, 5, 6].

Mosaic virus is one type of plant virus that causes the leaves of plants with a spotted and

speckled look. They move frequently in the environment. The mosaic virus spreading mainly

depends on the vector white-fly. Virus frequency is raised whenever the plants are growing

robustly [7]. Therefore, the spread of the virus is highly dependent basically on the plant density.

A single white-fly is adequate to infect the host plants but transmission of the disease is scattered

when numerous infected white-flies feed on the host plants through massive flux of saliva [8].

Thus, the host plants (Jatropha curcas) are facing a lot of difficulties during such feeding.

Feeding of white-flies comprises of leaf damage and sap drainage. White-flies are tremendously

productive, if once they get conventional on any part of the plants around the home or garden,

they will voluntarily roam and try to attack any other immediate vegetation [9, 10]. Normally

white-fly needs three hours feeding time to procure the virus and a latent phase of eight hours.

It requires ten minutes time to contaminate the young leaves. Symptoms seem to be appeared

after a latent period of three to five weeks [7].

There are several constituents that can be sprayed over white-flies to control its population.

The Insecticidal Soap belongs to that group of organic insecticide. It is too safe and harmless

that one can easily eat the fruits or vegetables on which the soap has been sprayed. It performs

in many avenues to control or block the spreading of the white-fly population. It breaks the

gatherings from the laying more amounts of eggs. It also prevents adults from flying that helps

for not migrating to the neighbouring plants [5, 11].
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Plant virus causes serious losses in yield and quality of cultivated plants and therefore, plant

diseases are an important constraint to crop production. Epidemiological information can be

used to build up an effective integrated disease management strategies for various situations.

Huge population or intense feeding by white-flies can harm plants causing Pigment dysfunction

in leaves and death to the host plants [12].

Mathematical models of plant-virus epidemics are developed to provide detailed explanation

on how to describe, analyze, and predict epidemics of plant disease for the ultimate purposes of

developing and testing control strategies and tactics for crop protection [13, 14]. In recent times,

mathematical modeling and analysis of vector-borne plant diseases have attracted the interest of

many researchers. For instance, Bosch and Jeger have researched plant virus characteristics and

population dynamics and they have analyzed the dynamics of virus plant diseases [15]. Grill

has discussed the influence of the timings of insects mediators feeding on plant virus’ infection

rate [16]. Jeger et al. have presented some control strategies and they pointed out that biological

control method has become an important part of the integrated pest management [17].

Control strategy to prevent diseases of plant has been considered by many researchers through

mathematical modeling. The selection and application of a wide range of control strategies are

adopted that minimize losses and maximize yield. Gilligan et al. considered the effect of

biological control on soil-borne plant pathogens. An antagonist is included in their model to

control plant diseases. They obtained invasion criteria for all species [18]. A cultural control

approach including replanting and removing of diseased plants is a widely accepted treatment

policy for plant epidemics. It involves periodic inspections that is followed by removal of the

detected infected plants [17, 19].

In this article, a mathematical model is formulated to analyze the dynamics of the epidemics

of Jatropha curcas plant. The insecticide, Insecticidal Soap is sprayed on the host plants in

two different modes. We investigate both the continuous spraying and the impulsive control

approach. A comparative analysis between two different approaches has been analyzed to find

the most effective method to control the vector white-flies. Analytical outcomes are supported

numerically through Matlab.

2. The mathematical model
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The following assumption are made to formulate the mathematical model. The model, we

analyze in this paper, has four population densities, viz.

(i) The healthy Jatropha plant, x(t),

(ii) The latent plant, l(t),

(iii) The infected plant, y(t),

(iv) The healthy vector (white-fly), u(t) and.

(v)The infected vector, v(t).

The mosaic virus is carried through the vector white-flies. After being penetrated of mosaic

virus, the vectors are infected. When this infected vectors come in touch with Jatropha plants,

the virus enters into the plants. As a result, the plants become infected after the latent period.

So the disease is mainly transmitted through the infected white-flies. Thus we are not taking

into consideration the virus population into our mathematical model. When we spray the insec-

ticide in to the environment, it affects both non-infected and infected population simultaneously

because we are unable to distinguish between two kinds of vector population.

Logistic fashion in the growth equation of healthy plants is taken as the plants can not grow

unboundedly. Here, r is the maximum plantation rate and k is the maximum plant density i.e.,

the carrying capacity of the plants. Infected vectors interacts with healthy plants at a rate k1.

The rate of recovery of latent class of Jatropha plant is denoted by δ . Recovery may occur with

very low vector population in specific biological situation. Various environmental factors like

climatic conditions, water and nutrient availability, biotic and abiotic stresses etc. can play a

significant role in plant recovery [20, 21, 22]. The susceptible plants can be infected not only

by the infected vectors but also by the infected plants. A susceptible vector can be infected only

by an infected plant host and after it is infected, it will hold the virus for rest of its life. It is

considered that there is no vertical infection. The recruitment rate of insect vectors is a positive

constant and all of the new born vectors are susceptible. The rate of transfer of latent plants to

the infected state is a. Cutting of infected plants is considered at a rate g. The rate of normal
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plant loss is treated as β .

Based on the above assumptions, the following rate equations are obtained:

dx
dt = rx[1− x+l+y

k ]− k1xv+δ l,
dl
dt = k1xv−al−δ l,
dy
dt = al−gy−βy.

(2.1)

Logistic type growth is assumed in the non-infected vectors white-fly with b as the maximum

vector birth rate and m as the maximum vector abundance per plant as the population do not

grow unboundedly. The interaction between infected plants and non-infected vectors is also

considered. The non-infected vector population is reduced with k2 as the interaction rate be-

tween infected plant and non-infected vector. Finally, c is considered as the vector mortality

rate for both non-infected and infected vectors.

Based on the above assumptions, the complete mathematical model is obtained as below:

dx
dt = rx[1− x+l+y

k ]− k1xv+δ l,
dl
dt = k1xv−al−δ l,
dy
dt = al−gy−βy,
du
dt = b(u+ v)[1− u+v

m(x+l+y) ]− k2yu− cu,
dv
dt = k2yu− cv,

(2.2)

with initial condition:

x(0)> 0, l(0)> 0,y(0)> 0,u(0)> 0,v(0)> 0. (2.3)

3. Boundedness of the System

Lemma 3.1 Let us assume that W1(x(t), l(t)) = x(t)+ l(t). Then for all t > 0, W1 ≤M1, where

M1 =
k(a+r)2

4r +W1(x(0), l(0))e−at is a positive constant. Thus x(t) and l(t) are bounded. Hence

y(t) is also bounded for all t > 0.
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Proof: Let, (x(t), l(t),y(t),u(t),v(t)) be any solution of the system (2.2). Let, W1(x(t), l(t)) =

x(t)+ l(t). Then, from first and second equation of system (2.2), we have

dW1
dt = rx(1− x+l+y

k )− k1xv+δ l + k1xv−al +δ l,

= rx(1− x+l+y
k )−al,

= rx(1− W1+y
k )−al,

= rx(1+ a
r −

W1+y
k )−a(x+ l).

(3.1)

Therefore,

dW1
dt +aW1 = rx(1+ a

r −
W1+y

k ),

≤ rW1(1+ a
r −

W1
k ).

(3.2)

By comparison theorem, W1 ≤ k(a+r)2

4r +W1(x(0), l(0))e−at .

Now, l(t) is bounded, then there exists a positive constant M1 such that l ≤M1.

Now,

dy
dt = al−gy−βy,

⇒ dy
dt ≤ aM1− (g+β )y,

⇒ dy
dt +(g+β )y≤ aM1,

By comparison theorem,

y≤ aM1
g+β

+ y(0)e−(g+β )t . (3.3)

Therefore, y(t) is bounded.

Lemma 3.2

Let W2(u(t),v(t))= u(t)+v(t). Then for all t > 0, W1≤M2, where M2 =
bmM

4 +W2(u(0),v(0))e−ct ,

which is a positive constant. Hence u(t) and v(t) are bounded for all t > 0.

Proof: Let, (x(t), l(t),y(t),u(t),v(t)) be any solution of the system (2.2). Since x(t), l(t),y(t)

are bounded, so W3(x(t), l(t),y(t)) = x(t) + l(t) + y(t) is also bounded. Thus there exists a

positive constant M such that W3 ≤M. Now, W2(u(t),v(t)) = u(t)+ v(t).
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Again, from system (2.2) we have:

dW2
dt = b(u+ v)[1− u+v

m(x+l+y) ]− k2yu− cu+ k2yu− cv,

⇒ dW2
dt = bW2(1− W2

mW3
)− cW2,

Thus,
dW2
dt + cW2 = bW2(1− W2

mW3
),

dW2
dt + cW2 ≤ bW2(1− W2

mM ) = bW2
mM (mM−W2).

By comparison theorem we have,

W2(u(t),v(t)) ≤ bmM
4 +W2(u(0),v(0))e−ct .

Thus, W2(u(t),v(t))→ bmM
4 as t → ∞ implies that W (t) is bounded. Thus, u(t) and v(t) are

bounded.

Theorem 3.1

All solutions of the system (2) that start in R5
+ are uniformly bounded.

Proof: The proof directly follows from Lemma 3.1 and Lemma 3.2.

4. The System with Continuous Spraying

Now, we observe the effect of optimal control i.e., continuous spraying strategy on vector pop-

ulation. Spraying of insecticide can reduce both the uninfected and infected vector population.

We consider γ as control parameter due to spraying i.e. strength of spraying. Introducing con-

tinuous spraying, the system (2.2) becomes:

dx
dt = rx[1− x+l+y

k ]− k1xv+δ l,
dl
dt = k1xv−al−δ l,
dy
dt = al−gy−βy,
du
dt = b(u+ v)[1− u+v

m(x+l+y) ]− k2yu− cu− γu,
dv
dt = k2yu− cv− γv,

(4.1)

with initial values x(0)> 0, l(0)> 0, y(0)> 0, u(0)> 0 and v(0)> 0.

Dynamics of the System
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The variational matrix for the equilibrium point E∗(x∗, l∗,y∗,u∗,v∗) of the system (4.1) is given

by,

JE∗ =



r(1− 2x∗+l∗+y∗
k ) − rx∗

k +δ − rx∗
k 0 −k1x∗

k1v∗ −(a+δ ) 0 0 k1x∗

0 a −(g+β ) 0 0

B B B− k2u∗ A C

0 0 k2u∗ k2y∗ −(c+ γ)


,

where,

A = b[1− 2(u∗+v∗)
m(x∗+l∗+y∗) ]− k2y∗− (c+ γ),

B = (u∗+v∗)2

(x∗+l∗+y∗)2 , and C = A+ k2y∗+(c+ γ).
(4.2)

Now, the Lyapunov function is considered as follows:

ψ(x, l,y,u,v) = 1
2(c1x2 + c2l2 + c3y2 + c4u2 + c5v2),

where, ci > 0; i = 1,2,3,4,5, is to be chosen suitably. Obviously, ψ is positive definite. Deriva-

tive of ψ along the solution of the equation Ẋ(t)= JE∗X(t), where X(t)= (x(t), l(t),y(t),u(t),v(t))T

is as follows:

ψ̇ = c1xẋ+ c2ll̇ + c3yẏ+ c4uu̇+ c5vv̇, i.e.

ψ̇ = c1r(1− 2x∗+l∗+y∗
k )x2− c2(a+δ )l2− c3(g+β )y2 + c4Au2− c5(c+ γ)v2

+[c2k1v∗− c1l( rx∗
k −δ )]xl− c1rx∗

k xy+ c4Bxu− c1k1x∗xv+ c3ayl + c4Blu

+c2k1x∗lv+ c4(B− k2u∗)uy+ c5k2u∗vy+[c4(A+ k2y∗+(c+ γ))+ c5k2y∗]uv.

Thus, symmetric matrix corresponding to ψ̇ is given as:

M = 1
2



m11 c2k1v∗− c1l( rx∗
k −δ ) −c1rx∗

k c4B −c1k1x∗

m21 −2c2(a+δ ) c3a c4B c2k1x∗

−c1rx∗
k c3a −2c3(g+β ) c4(B− k2u∗) c5k2u∗

c4B c4B c4(B− k2u∗) 2c4A P

−c1k1x∗ c2k1x∗ c5k2u∗ P −2c5(c+ γ)


,
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where,

m11 = 2c1r(1− 2x∗+l∗+y∗
k ), m21 + c2k1v∗− c1l( rx∗

k −δ ),

P = c4(A+ k2y∗+(c+ γ))+ c5k2y∗.

The above matrix, M, is a symmetric matrix. Now, the system is stable, if the matrix is neg-

ative definite. The matrix is negative definite if determinants of all its principal minors are

alternatively negative and positive, i.e., if

2c1r(1− 2x∗+l∗+y∗
k )< 0, (4.3)

−4c1c2r(a+δ )(1− 2x∗+l∗+y∗
k )− [c2k1v∗− c1l( rx∗

k −δ )]2 > 0, (4.4)

P1 < 0, (4.5)

2c4AP1− c4(B− k2u∗)A3
124 + c4BA3

134− c4BA3
234 > 0, (4.6)

−2c5(c+ γ)P2− [c4(A+ k2y∗+(c+ γ))+ c5k2y∗]A4
1235 + c5k2u∗A4

1245

−c2k1x∗A4
1345− c1k1x∗A4

2345 < 0, (4.7)

where,

P1 = 2c1r(1− 2x∗+l∗+y∗
k )[4c2c3(a+δ )(g+β )− (c3a)2]− [c2k1v∗− c1l( rx∗

k −δ )]

[−(c2k1v∗− c1l( rx∗
k −δ ))2c3(g+β )+ c3a c1rx∗

k ]− c1rx∗
k [(c2k1v∗− c1l( rx∗

k −δ )c3a

−2c1c2
rx∗
k (a+δ )],

P2 = 2c4AP1− c4(B− k2u∗)A3
124 + c4BA3

134− c4BA3
234,

A3
124 = Minor with respect to the element (4,3) of matrix M1,

A3
124 = Minor with respect to the element (4,2) of matrix M1,

A3
234 = Minor with respect to the element (4,1) of matrix M1,

A4
1235 = Minor with respect to the element (5,4) of matrix M,

A4
1245 = Minor with respect to the element (5,3) of matrix M,

A4
1345 = Minor with respect to the element (5,2) of matrix M,

A4
2345 = Minor with respect to the element (5,1) of matrix M,

where, M1 =
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1
2


2c1r(1− 2x∗+l∗+y∗

k ) c2k1v∗− c1l( rx∗
k −δ ) −c1rx∗

k c4B

c2k1v∗− c1l( rx∗
k −δ ) −2c2(a+δ ) c3a c4B

−c1rx∗
k c3a −2c3(g+β ) c4(B− k2u∗)

c4B c4B c4(B− k2u∗) 2c4A

.

Now, we choose c1,c2,c3,c4,c5 such that

c2k1v∗− c1l( rx∗
k −δ ) = 0,

c4(A+ k2y∗+(c+ γ))+ c5k2y∗ = 0.
(4.8)

From (4.3) and (4.4), we get k < 2x∗+ l∗+ y∗.

Now we choose c1 and c2 from (10) as

c1 = k1v∗ = m3 (say),

c2 = l( rx∗
k −δ ) = m1 (say)

(4.9)

It is also clear from (4.3) and (4.5) that (4.6) holds if

4c2(a+δ )(g+β )− c3a2 > 0. (4.10)

Putting the value of c2 in (4.10), the following relation can be obtained,

0 < c3 <
4l( rx∗

k −δ )(a+δ )(g+β )

a2 . (4.11)

Now, c3 is chosen from the equation (4.11) as below,

c3 =
2l( rx∗

k −δ )(a+δ )(g+β )

a2 = m2 (say), (4.12)

and c4 and c5 are chosen from condition (4.12).

From the the above discussion, we get following conditions:

(1) k < 2x∗+ l∗+ y∗,

(2) 2rm2(1− 2x∗+l∗+y∗
k )[4m1(a+δ )(g+β )−m2a2]+m1m3(

rx∗
k )2(a+δ )< 0,

(3) 2c4AP1− c4(B− k2u∗)A3
124 + c4BA3

134− c4BA3
234 > 0,

(4) −2c5(c+ γ)P2− [c4(A+ k2y∗+(c+ γ))+ c5k2y∗]A4
1235

+c5k2u∗A4
1245− c2k1x∗A4

1345− c1k1x∗A4
2345 < 0.

(4.13)
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Theorem 4.1 If the conditions, given in (4.13), hold then the system is locally asymptotically

stable around the interior equilibrium E∗(x∗, l∗,y∗,u∗,v∗).

5. Impulsive Control Approach

The virus population is not taken into concern for our mathematical model as the mosaic virus

is carried by the vector white-flies. Simultaneously, we spray the insecticide Insecticidal Soap

on the host plant to reduce the white-fly population. We introduce the impulsive method for

spraying to control the vector population (white-fly) to protect the natural resource Jatropha

curcas plants. Thus, we have the following impulsive system:

dx
dt = rx[1− x+l+y

k ]− k1xv+δ l, t 6= nT
dl
dt = k1xv−al−δ l, t 6= nT
dy
dt = al−gy−βy, t 6= nT
du
dt = b(u+ v)[1− u+v

m(x+l+y) ]− k2yu− cu, t 6= nT
dv
dt = k2yu− cv, t 6= nT,

(5.1)

where,

∆x(t) = 0, t = nT

∆l(t) = 0, t = nT

∆y(t) = 0, t = nT

∆u(t) =−s, t = nT

∆v(t) =−s, t = nT

(5.2)

and

∆x(t) = x(t+)− x(t),

∆l(t) = l(t+)− l(t),

∆y(t) = y(t+)− y(t),

∆u(t) = u(t+)−u(t),

∆v(t) = v(t+)− v(t).

(5.3)
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We assume w as the sum of non-infected and infected vectors (white-fly), i.e., u+ v = w and

we also denote the sum of healthy, latent class and infected Jatropha Curcas plants as N, i.e.,

x+ l + y = N. The one-dimensional impulsive differential equation takes the form:

dw
dt = bw(1− w

mN )− cw(t), t 6= nT,

∆w =−s, t = nT.

The number of vector in the environment is reduced at a rate s at t = nT , n ∈ N = 0,1,2, ...,

where T is the period of the impulsive control.

We consider the following sub-system given below:

dw(t)
dt =−bw, t 6= nT,

w(t+) = w(t)− s,

w(0+) = w0.

(5.4)

Thus the following Lemma holds.

Lemma For a positive periodic solution w∗(t) of system (5.4) and the solution w(t) of system

(5.4) with initial value w0 = w(0+)≥ 0, | w(t)−w∗(t) |→ 0 as t→ ∞, where

w∗(t) =
(−s exp(−b(t−nT ))

1−exp(−bT )

)
, t ∈ (nT,(n+1)T ],

w∗(0+) =
( −s

1−exp(−bT )

)
,

w(t) =
(
w(0+)−

( −s
1−exp(−bT )

))
exp(−bT )+w∗(t).

Theorem 5.1

The periodic solution (x∗(t),0,0,w∗(t)) is locally stable if T < 2q
k , where q =

∫ T
0 x∗(t)dt.

Proof: The solution (x∗(t),0,0,0,w∗(t)) the system (5.1),

where w∗(t) =
(−s exp(−b(t−nT ))

1−exp(−bT )

)
, t ∈ (nT,(n+1)T ] with initial condition w∗(0+) as of above
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Lemma. Variational matrix at (x(t),0,0,0,w(t)) is given by,

J(t) =


r− 2rx∗(t)

k a1 0 0

0 −a−δ 0 0

0 a2 −g−β 0

0 0 0 −b

,

Where, a1 and a2 are some constants. The monodromy matrix M(t) of variational matrix J(t)

is M(T ) = Ie
∫ T

0 X1(t)dt , where I is the identity matrix and M(T ) is given by:
exp[rT −

∫ T
0

2rx∗(t)
k dt] 0 0 0

0 exp[−aT −δT ] 0 0

0 0 exp[−gT −βT ] 0

0 0 0 exp(−bT )

,

If the absolute values of all eigenvalues are less than one, then the periodic solution (x∗(t),0,0,w∗(t))

is locally stable. If we denote the eigenvalues of J by λ1,λ2,λ3 and λ4, then λ1 = exp(rT −
2r
k
∫ T

0 x∗(t)dt), λ2 = exp[−(a+δ )T ]< 1, λ3 = exp[−(g+β )T ]< 1 and λ4 = exp(−bT )< 1.

According to the Floquet theory [32] of impulsive differential equations, the periodic solution

(x∗(t),0,0,w∗(t)) is locally stable if |λ1|< 1 i.e., when T < 2q
k , and q =

∫ T
0 x∗(t)dt. Hence the

theorem.

6. Sensitivity Analysis of the Model Parameters

The reliability of a mathematical model is reflected in the numerical values of the sensitivity

coefficients. A model must be sensitive to large (relative to typical experimental error) changes

in parameter values. Otherwise, a wide range of values will produce substantially the same

behavior. It will not be possible to verify the correct parameter values that have been used in the

simulation. Thus, the structure of the model will be suspected. Small errors in the parameter

values will produce large supplementary motions and the model will not be testable. Thus, the

predictions of the model will not be reliable [24, 25, 26]. If a model has a species x and two

parameters y and z, the time-dependent sensitivities of x with respect to each parameter value

are the time-dependent derivatives: ∂x
∂y and ∂x

∂ z respectively. The numerator is the sensitivity
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FIGURE 1. Population densities are plotted as a function of time using the

values of the parameters as in Table. We consider x(0) = 0.2 m−2, l(0) =

0.1 m−2 y(0) = 0.1 m−2, u(0) = 150 plant−1, v(0) = 50 plant−1 as initial con-

ditions.

Table: Values of the parameters used in the model equation [27, 28].

Parameters Definition Default Values Assigned

r The maximum rate of plantation 0.05 Day−1

k The plant density 0.5 Metre−2

k1 The infection rate 0.001 Vector−1 Day−1

δ The rete of recovery 8.5410−4 Day−1

a The rate of transfer to the infected state 0.5 Day−1

g The rate of cutting 0.03 Day−1

β The rate of plant loss 0.003 Day−1

b The rate of maximum vector birth 0.8 Day−1

k2 Uninfected Vector and infected 0.008 Plant−1 Day−1

plant interaction rate

m Maximum vector abundance 300 Plant−1

c The vector mortality rate 0.12 Day−1
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FIGURE 2. Comparative representation between impulsive control and continu-

ous control.

output and the denominator is the sensitivity input to sensitivity analysis.

Sensitivity analysis is supported only by the ordinary differential equation (ODE) solvers. The

software calculates local sensitivities by combining the original ODE system with the auxiliary

differential equations for the sensitivities. The additional equations are derivatives of the origi-

nal equations with respect to parameters. This method is sometimes called “Forward Sensitivity

Analysis” or “Direct Sensitivity Analysis”.

7. Numerical Simulation

In this section, we perform the different figures of the models based on analytical calculation.

The Values of parameters in Table 1 are mainly taken from Holt et al. [28]. We use the fact

that the viruses that attack the Cassava plants and the Jatropha plants have been found to be

almost identical in nature. In fact in [29, 30, 31], it is observed that the Indian Cassava mosaic

virus can cause the mosaic disease on the Jatropha Curcas plants. For this reason, we chose the
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FIGURE 3. Comparative representation between impulsive control and without control.

parameters for the the virus and the vector from Table 1.

Furthermore, although the phylogenetic nature of Cassava plants and the Jatropha Plants are not

same, so that their growth and death rates differ, the plantation processes are very similar. We

have estimated their values from the literature by Holt et al. [28] for the numerical simulations,

as no real data is available for Jatropha plant.

In Figure 1, the population densities are plotted as a function of time. The healthy plant popula-

tion density is initially decreased for transfer to the latent class and then is gradually increased

due to cause of replantation. The latently infected plant population is reduced because of trans-

fer to the infected class. The population density of infected plants is initially increased due to

transfer of plants from latently infected class and then it is reduced due to cutting of infected

plants. The total vector population is reduced because of removal of infected plants.
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FIGURE 4. Sensitivity index (w.r.t. healthy plant) as a function of time for dif-

ferent parameters of system (2.2).

Figure 2 reveals the comparative analysis amongst impulsive control with 5 days interval, im-

pulsive control with 2 days interval and continuous control through spraying. When impulsive

control with 5 days interval through spraying of insecticide is applied, total vector population

dies out within 20 days but when impulsive control with 2 days interval is used, total vector

population dies out within 10 days. But continuous spraying unable to exterminate the vector

population but it can lead to reduced population growth. Thus, it is seen that if the strength of

insecticide spraying is increased, the system moves towards stability soon and complete eradi-

cation is done by impulsive control strategy.

In Figure 3, we have taken same strength for the spraying of insecticide (Insecticidal Soap). We

have observed that impulsive control with 2 days interval has achieved the better results. Now

in Figure 3, we display the comparison between the impulsive control with 2 days interval and

without control approach.

We have done a local sensitivity analysis of the system (2.2) with respect to healthy plant pop-

ulation. In Figure 4, we display the sensitivity characteristics of all parameters introduced into

our proposed ecological system. Here we observe that all parameters of the model are sensitive
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(some are positively and some are negatively sensitive). Thus we can conclude that all param-

eters are required to formulate our mathematical model. This actually validates our formulated

mathematical model.

8. Discussion and Conclusion

In this research article, a comparative analysis between two types of controlling procedures

to reduce the white-fly population is provided. One is insecticide spraying with an impulsive

mode and another one is continuous control strategy. On that basis, mathematical models are

developed for Jatropha plantation and control strategy are given on the system in two ways.

The focus is to propose the most effective method to reduce the vector, white fly, population

that affects the plants. Actually, cutting of infected plant can perform as the measure of control,

which is introduced into our model system. Along with cutting, we have applied spraying on the

Jatropha curcas plants and achieved more better results. It is established that impulsive spraying

is more suitable strategy rather than continuous spraying. Spraying, in impulsive mode, is the

best possible way to eradicate the vector population, which causes the movement of virus to

the Jatropha curcas plants. Spraying of Insecticidal soap improves the system towards the

stability more efficiently in case of impulsive control approach. So the insecticide spraying

with impulsive control in two days interval ultimately leads towards the stable position in a

disease-free situation of Jatropha curcas plants that finally contribute a good renewable source

for biodiesel.
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