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Abstract. In this paper, the main purpose is to promote the global dynamics of system (2) in [1]. By using method

of constructing Lyapunov functionals, we establish global asymptotic stability of the infection-free equilibrium,

the immune-free equilibrium and the existence of a unique HAM/TSP equilibrium. Our numerical simulations

suggest that if 1 < R1, an increase of the intracellular delay may stabilize the HAM/TSP equilibrium while the

immune delay can destabilize it.
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1. Introduction

In [1], Lu , Hui and Liu consider the following system:

dx
dt

= λ −µ1x(t)−βx(t)y(t),

dy
dt

= σβx(t− τ1)y(t− τ1)−µ2y(t)− γy(t)z(t),
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dz
dt

= v
y(t− τ2)z(t− τ2)

z(t− τ2)+K
−µ3z(t). (1)

where x(t), y(t) are the population sizes of the uninfected and infected CD4+ T-cells, and z(t)

the number of HTLV-I-specific CD8+ T cells at time t, respectively. Parameter λ is a constant

input rate of CD4+ T-cells, µ1, µ2, and µ3 the removal rates of uninfected and infected CD4+ T

cells, and HTLV-I-specific CD8+ T cells, respectively, β the transmission coefficient, σ ∈ [0,1]

a fraction of cells newly infected by contacts that survive the antibody immune response, γ

the rate of CTL mediated lysis. The main purpose of [1] is to explore the global dynamics of

system (1) and investigate the impact of the intracellular delay τ1 and the immune delay τ2 on the

dynamical behavior of the system. Lu et al show that the global dynamics of the model system

are determined by two threshold values R0, the corresponding reproductive number of a viral

infection, and R1, the corresponding reproductive number of a CTL response, respectively. If

R0 < 1, the infection-free equilibrium is globally asymptotically stable, and the HTLV-I viruses

are cleared. If R1 < 1 < R0, the immune-free equilibrium is globally asymptotically stable,

and the HTLV-I infection is chronic but with no persistent CTL response. If 1 < R1, a unique

HAM/TSP equilibrium exists, and the HTLV-I infection becomes chronic with a persistent CTL

response. Moreover, Lu et al [1] show that the immune delay can destabilize the HAM/TSP

equilibrium, leading to Hopf bifurcations. Numerical simulations suggest that if 1 < R1, an

increase of the intracellular delay may stabilize the HAM/TSP equilibrium while the immune

delay can destabilize it. If both delays increase, the stability of the HAM/TSP equilibrium may

generate rich dynamics combining the “stabilizing” effects from the intracellular delay with

those “destabilizing” influences from immune delay. In this paper, we shall investigate HTLV-I

Infection Model which includes a nonlinear incidence rate h(x,y). We consider the following

system:
dx
dt

= λ −µ1x(t)−h(x(t),y(t)),

dy
dt

= σh(x(t− τ1),y(t− τ1))−µ2y(t)− γy(t)z(t),

dz
dt

= v
y(t− τ2)z(t− τ2)

z(t− τ2)+K
−µ3z(t).

(2)

where all the other parameters of model (1) except τ1,τ2 are the same as model (2). The nonlin-

ear incidence function h(x,y) is assumed to satisfy the following conditions: In this paper, we
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assume that the function h(x,y) is always positive, differentiable, and monotonically increasing

for all x > 0,y > 0, and that h(x,y) is concave with respect to y; that is, it satisfies the following

:

(H1) h(x,y),hx(x,y),hy(x,y), and−hyy(x,y) are positive for any x> 0 and y> 0. Furthermore

h(x,0) = h(0,y) = 0, hy(x,y)> 0 for x > 0 and y > 0.

(H2)h′y(x,0) is increasing with respect to x > 0.

The paper is organized as follows. In Section 2, the threshold parameters R0 and R1 are de-

rived and the existence conditions for all equilibria are established in terms of the values of R0

and R1. In Section 3, main analytical results on the stability of the equilibria, uniform persis-

tence of the system. Numerical simulations are presented in Section 4, and brief conclusions

finally complete the paper in Section 5.

2. Preliminaries

To investigate the dynamics of system (2), we need to consider a suitable phase space and a

feasible region.

For τ1,τ2 ≥ 0, define the following Banach space C = C ([−τ,0],R), τ = max{τ1,τ2}, and

we assume

x(t) = φ1(θ), y(t) = φ2(θ), z(t) = φ3(θ), for − τ ≤ θ ≤ 0.

In addition, throughout this paper, we set φ = (φ1,φ2,φ3) and φi ∈C(i= 1,2,3) for−τ ≤ θ ≤ 0,

with norm ||φ ||= sup−τ≤θ≤0{|φ1(θ)|, |φ2(θ)|, |φ3(θ)|} for φi ∈C, i = 1,2,3. The nonnegative

cone of C is defined as C+ = C([−τ,0],R3
+). Initial conditions for system (??) are chosen at

t = 0 as

φ = (φ1, φ2, φ3) ∈C+, φi(0)> 0, i = 1,2,3. (3)

.

Lemma 2.1. Under initial conditions in (3), all solutions of system (2) are positive and ulti-

mately bounded in R×C×C.

Proof. First, we prove x(t) is positive for t ≥ 0. Assume the contrary and let t1 > 0 be the

first time reached by x such that x(t) > 0, 0 ≤ t < t1 and x(t1) = 0. It then follows from the
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first equation in (2) that x′(t1) = λ > 0, and hence x(t) < 0 for t ∈ (t1− ε, t1) where ε > 0 is

sufficiently small. This contradicts x(t) > 0 for t ∈ [0, t1), and thus it follows that x(t) > 0 for

t > 0 so long as x(t) exists.

Second, it follows from the second equation in system (2), for τ1,τ2 > 0, that

y(t) = y(0)e−
∫ t

0 µ2+γz(τ)dτ +
∫ t

0
σh(x(s− τ1),y(s− τ1))e

∫ s
t µ2+γz(τ)dτds.

Suppose there exists t0 > 0, such that y(t0) = 0, and y(t)> 0 for 0 < t < t0. Then

y(t0) = y(0)e−
∫ t0

0 µ2+γz(τ)dτ +
∫ t0

0
σh(x(s− τ1),y(s− τ1))e

∫ s
t0

µ2+γz(τ)dτds > 0,

a contraction. Thus y(t) is positive.

Similarly, if there exists t0 > 0, such that z(t0) = 0, and z(t)> 0 for 0 < t < t0, it follows from

the third equation in (2) that

z(t) = z(0)e−µ3t + v
∫ t

0
eµ3(s−t) y(s− τ2)z(s− τ2)

z(s− τ2)+K
ds,

and then it leads to a contradiction as before. Hence we have z(t)> 0, for all t > 0.

Next we prove that positive solutions of (2) are ultimately uniformly bounded for t > 0. From

the first equation in (2), it follows that x
′
(t) ≤ λ − µ1x(t), and thus limsupt→∞ x(t) ≤ λ/µ1.

Adding the first two equations in (2) together, we have

(x(t)+ y(t + τ1))
′
= λ −µ1x(t)− (1−σ)h(x(t),y(t))−µ2y(t + τ1)− γy(t + τ1)z(t + τ1)

≤ λ − µ̄(x(t)+ y(t + τ1))

where µ̄ = min{µ1,µ2}. Thus limsupt→∞(x(t)+ y(t + τ1))≤ λ/µ̄ . It then follows, in addition

from (2), that, for any ε > 0 and for a solution y(t) of system (2) with y(t)< λ

µ̄
+ε , there exists

T = T (ε)> 0 such that for t > T , the following differential inequality holds:

z(t + τ2)
′
≤ vy(t)−µ3z(t + τ2)≤ v

(
λ

µ̄
+ ε

)
−µ3z(t + τ2).

Let ε → 0. Then limsupt→∞ z(t)≤ vλ

µ3µ̄
. Hence, x(t), y(t) and z(t) are all ultimately uniformly

bounded in R×C×C.
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As a consequence of the proof of Lemma 2.1, we know that the dynamics of system (2) can

be analyzed in the following feasible region:

F =

{
(x,y,z) ∈ R+×C+×C+, |x| ≤ λ

µ1
,‖x+ y‖ ≤ λ

µ̄
, |z| ≤ vλ

µ3µ̄

}
.

Moreover, the region F is positively invariant and hence the model system is well posed.

Lemma 2.2. Given system (2) with φi(0)≥ 0, i= 1,2,3, we have all solutions x(t)> 0, y(t)≥ 0,

z(t)≥ 0, ∀t > 0.

Proof. By similar arguments as in the proof of Lemma 2.1, the positivity of x(t) for all t > 0

follows directly.

Next, we show that y(t) and z(t) must be non-negative for all t > 0. Otherwise, there must

exist t0 > 0 such that min{y(t0),z(t0)}< 0.

Let

ť0 = inf
t0
{t0 > 0|min{y(t0),z(t0)}< 0}.

Then we have ť0 > 0 and there exists a sufficiently small constant ε > 0, ε < 1
2 min{τ1,τ2}, such

that min{y(ť0 + ε),z(ť0 + ε)}< 0. Hence we have the following three cases:

(i) y(ť0 + ε)< 0.

(ii) z(ť0 + ε)< 0.

(iii) y(ť0 + ε)< 0 and z(ť0 + ε)< 0.

We first assume (i), and put ť0 + ε into (5). Then we have

y(ť0 + ε) = y(0)e−
∫ ť0+ε

0 µ2+γz(τ)dτ +
∫ ť0+ε

0
σh(x(s− τ1),y(s− τ1))e

∫ s
ť0+ε

µ2+γz(τ)dτds. (4)

This contradicts y(ť0 + ε)≥ 0 for t > 0. Similarly, we can prove (ii) and (iii).

System (1) has the infection-free equilibrium P1 =

(
λ

µ1
,0,0

)
. The reproductive number of

a viral infection is defined as R0 :=
(

σ

µ2

∂h(x0,0)
∂y

)
. There exists an equilibrium P2 = (x̄, ȳ,0)

with no CTL response, as R0 > 1, that we call the immune-free equilibrium, which satisfies

λ −µ1x̄−h(x̄, ȳ) = 0,

σh(x̄, ȳ)−µ2ȳ = 0,
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We define R1 :=
(

vȳ
µ3k

)
. We call R1 the basic reproductive number of a CTL response.

In the following, we give a lemma gives the existence condition of the immune-free equilib-

rium.

Lemma 2.3. If R0 > 1, then there exists a immune-free equilibrium P2 = (x̄, ȳ,0).

Proof. Let the right-hand sides of the three equations in system (2) equal zero, and we have that

λ −µ1x = h(x,y) =
µ2

σ
y.

After substituting the expression of x by y, we obtain the following equation for y:

H(y) = h(
λσ −µ2y

σ µ1
,y)− µ2

σ
= 0.

It is obvious that H(0) = 0, and when y = y0 =
λσ

µ2
,

H(y0) = h(0,y0)−λ =−λ < 0.

Since H(y) is continuous for y≥ 0, we have that

H ′(0) = lim
y→0+

H(y)−H(0)
y

=
∂h(x0,0)

∂y
− µ2

σ
− µ2

σ µ1
∂h′x(x0,0) =

µ2

σ
(R0−1).

A chronic infection equilibrium P3 = (x∗,y∗,z∗) with CLT response (z∗ > 0) is called a

HAM/TSP equilibrium. The coordinates x∗, y∗, z∗ satisfy

λ −µ1x∗−h(x∗,y∗) = 0,

σh(x∗,y∗)−µ2y∗− γy∗z∗ = 0,

v
y∗z∗

z∗+K
−µ3z∗ = 0,

(5)

and P3 exists as R1 > 1.

3. Main results

In this section, we investigate the stability of the equilibria P1, P2, P3, respectively. In order to

avoid an excessive use of parentheses in some of later calculations, we write x = x(t), y = y(t),
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z = z(t), and let g(x) := x− lnx− 1, such that g(x) ≥ 0 for x > 0, and g(x) = 0 if and only if

x = 1.

Theorem 3.1. For system (2), if R0 < 1, the infection-free equilibrium P1 is globally asymptoti-

cally stable in F .

Proof. From (H2), it is easy to see that the following inequalities hold:

h′y(x0,0)
h′y(x,0)

> 1 f or x ∈ (0,x0) and
h′y(x0,0)
h′y(x,0)

< 1 f or x > x0. (6)

We define the following Lyapunov functional

U =U1(xt ,yt ,zt)+U2 +U3,

where

U1(xt ,yt ,zt) := x(t)− x0−
∫ x(t)

x0

lim
y→0+

h(x0,y)
h(θ ,y)

dθ +
1
σ

y+
kγ

vσ
z, (7)

U2 :=
∫

τ1

0
h(x(t−θ),y(t−θ))dθ , (8)

and

U3 :=
kγ

vσ

∫
τ2

0

vy(t−θ)z(t−θ)

z(t−θ)+ k
dθ . (9)

Calculating the time derivatives of (7), (8) and (9) along solutions of system (2), we have

dU1

dt
=

(
1− lim

y→0+

h(x0,y)
h(x,y)

)
(λ −µ1x−h(x,y))+h(x(t− τ1),y(t− τ1))

− µ2

σ
y− γ

σ
yz+

kγ

vσ

(
v

y(t− τ2)z(t− τ2)

z(t− τ2)+K
−µ3z(t)

)
,

(10)

dU2

dt
= h(x,y)−h(x(t− τ1),y(t− τ1)), (11)

and

dU3

dt
=

Kγ

vσ

(
v

yz
z+K

− v
y(t− τ2)z(t− τ2)

z(t− τ2)+K

)
. (12)
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Combining(10), (11), and (12), we have

dU
dt

∣∣∣∣
(2)

=−µ1x
(x0

x
−1
)(

1− lim
y→0+

h(x0,y)
h(x,y)

)
+h(x,y) lim

y→0+

h(x0,y)
h(x,y)

− µ2

σ
y− γ

σ
yz+

Kγ

σ

yz
z+K

− Kγµ +3
vσ

z

=−µ1x
(x0

x
)−1

)(
1− lim

y→0+

h(x0,y)
h(x,y)

)
+

µ2

σ

(
σ

µ2

h(x,y)
y

) lim
y→0+

h(x0,y)
h(x,y)

−1
)
− γyz2

σ(z+ k)
.

From (H2), it is easy to see that the following inequalities hold:

h′y(x0,0)
h′y(x,0)

> 1 f or x ∈ (0,x0),

h′y(x0,0)
h′y(x,0)

< 1 f or x > x0.

We have (x0

x
−1
)(

1− lim
y→0+

h(x0,y)
h(x,y)

)
=
(x0

x
−1
)(

1−
h′y(x0,0)
h′y(x,0)

)
≤ 0.

Furthermore, the concavity of h(x,y), with respect to y implies that

σ

µ2

h(x,y)
y

lim
y→0+

h(x0,y)
h(x,y)

=
σ

µ2

h(x,y)
y

∂h(x0,0)
∂y

∂h(x,0)
∂y

≤ σ

µ2

∂h(x0,0)
∂y

= R0.

Therefore, it follows from R0 < 1 that dU
dt |(2) ≤ 0 for all x(t),y(t),z(t)> 0.

Set

A0 =
{
(x,y,z) ∈F |U ′ = 0

}
.

Then dU
dt = 0 if and only if

x = x∗, z = 0. (13)
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Substituting (13) into the first equation in system (2) then yields y = 0. By the LaSalle-

Lyapunov theorem ([2], Theorem 3.4.7), the largest compact invariant set of A0 is the singleton

point P1. Thus we conclude that P1 is globally asymptotically stable in F .

Theorem 3.2. For system (2), if R0 > 1 > R1, the immune-free equilibrium P2 is globally

asymptotically stable in F\{x-axis}.

Proof. From (2), there exists a immune-free equilibrium P2, when R0 > 1. Define a Lyapunov

functional for P2:

V =V1 +V2 +V3,

where

V1 := x− x̄−
∫ x

x̄

h(x̄, ȳ)
h(s, ȳ)

ds, (14)

V2 :=
1
σ

(
ȳg
(

y
ȳ

)
+σh(x̄, ȳ)

∫
τ1

0
g
(

h(x,y)
h(x̄, ȳ

)
ds
)
, (15)

and

V3 :=
Kγ

vσ

(
z+ v

∫
τ2

0

yz
z+K

ds
)
. (16)

Then calculating the time derivatives of (14), (15), and (16) along solutions of system (2) yields

dV1

dt
=

(
1− h(x̄, ȳ)

h(x, ȳ)

)
(λ −µ1−h(x,y)), (17)

dV2

dt
=

1
σ

y− ȳ
y

(
σh(x(t− τ1),y(t− τ1))−µ2y− γyz

)
+h(x,y)−h(x(t− τ1),y(t− τ1))+h(x̄, ȳ) ln

h(x(t− τ1),y(t− τ1))

h(x,y)
,

(18)

and

dV3

dt
=

Kγ

vσ

(
−µ3z+ v

yz
z+K

)
. (19)
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Combining (17), (18), (19), we have

dV
dt

∣∣∣∣
(2)
=

dV1

dt
+

dV2

dt
+

dV3

dt

=µ1x̄
(

1− x
x̄

)(
1− h(x̄, ȳ)

h(x, ȳ)

)
− γyz2

σ(z+K)
+

γ

σ
ȳz− Kγµ3

vσ
z

+h(x̄, ȳ)
(

2− h(x̄, ȳ)
h(x, ȳ)

+
h(x,y)
h(x, ȳ)

)
−h(x̄, ȳ)

(
y
ȳ
− ȳ

y
h(x(t− τ1),y(t− τ1))

h(x̄, ȳ)
+ ln

h(x(t− τ1),y(t− τ1))

h(x,y)

)
=µ1x̄

(
1− x

x̄

)(
1− h(x̄, ȳ)

h(x, ȳ)

)
−h(x̄, ȳ)

(
h(x̄, ȳ)
h(x, ȳ)

− ln
h(x̄, ȳ)
h(x, ȳ)

−1
)

−h(x̄, ȳ)
(

ȳh(x(t− τ1),y(t− τ1))

yh(x̄, ȳ)
− ln

ȳh(x(t− τ1),y(t− τ1))

yh(x̄, ȳ)
−1
)

−h(x̄, ȳ)
(

yh(x, ȳ)
¯yh(x,y)
− ln

yh(x, ȳ)
¯yh(x,y)
−1
)

+h(x̄, ȳ)
(

y
ȳ
− h(x,y)

h(x, ȳ)

)(
h(x, ȳ)
h(x,y)

−1
)

− γyz2

σ(z+K)
+

γz
σ

(
ȳ− Kµ3

v

)
=µ1x̄

(
1− x

x̄

)(
1− h(x̄, ȳ)

h(x, ȳ)

)
−h(x̄, ȳ)g

(
h(x̄, ȳ)
h(x, ȳ)

)
−h(x̄, ȳ)g

(
ȳh(x(t− τ1),y(t− τ1))

yh(x̄, ȳ)

)
−h(x̄, ȳ)g

(
yh(x, ȳ)

¯yh(x,y)

)
+h(x̄, ȳ)

(
y
ȳ
− h(x,y)

h(x, ȳ)

)(
h(x, ȳ)
h(x,y)

−1
)
− γyz2

σ(z+K)
+

γz
σ

(
ȳ− Kµ3

v

)
.

From the monotonicity of the function h(x,y) on x, the following inequality holds:(
1− x

x̄

)(
1− h(x̄, ȳ)

h(x, ȳ)

)
≤ 0.

Furthermore, from the concavity and monotonicity of the function h(x,y) on y, the inequalities

1≥ h(x,y)
h(x, ȳ)

≥ y
ȳ

f or 0 < y≤ y∗, and 1≤ h(x,y)
h(x, ȳ)

≤ y
ȳ

f or y≥ y∗. (20)

hold, which implies that (
y
ȳ
− h(x,y)

h(x, ȳ)

)(
h(x, ȳ)
h(x,y)

−1
)
≤ 0.
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Then, V
′
= 0 if and only if

x = x̄, z = 0. (21)

Substitute (21) into the first equation in system (2), we have y = ȳ. By the LaSalle-Lyapunov

theorem ([2], Theorem 3.4.7), the largest compact invariant set of A0 is the singleton point P2.

Thus, we conclude that P2 is globally asymptotically stable in F\{x-axis}. This completes the

proof.

As R1 > 1, system (2) has a unique endemic HAM/TSP equilibrium P3 = (x∗,y∗,z∗). We

further have the following uniform persistence result.

Theorem 3.3. System (2) with τ1 ≥ 0, τ2 ≥ 0, and initial conditions given in (3) is uniformly

persistent if R1 > 1; that is, there exists a positive constant ε0 > 0 such that all solutions of (2)

satisfy

liminf
t→∞

(
x(t,φ),y(t,φ),z(t,φ)

)
≥ ε0.

Proof. It follows from Lemma 2.1 and the similar arguments in [8, Proposition 1]8 that x(t) has

positive ultimate lower boundary. Thus it suffices to prove both of y(t) and z(t) have positive

eventual lower boundaries.

Define

X := {(φ1,φ2,φ3) ∈ R+×C+×C+},

and

X0 := {(φ1,φ2,φ3) ∈ X : φ2(0)> 0,φ3(0)> 0}, ∂X0 = X\X0.

Let Ψ(t) : X→ X be the solution semiflow of system (2), that is, Ψ(φ) = (xt(φ),yt(φ),zt(φ)).

We proved earlier that the solution semiflow Ψ(φ) of (2) has a global attractor F on X . Clearly,

X0 is relatively closed in X . Moreover, by Lemma 2.2, system (2) is positively invariant and

point dissipative in R+
3 . Thus X0 is positively invariant for Ψ.

Define

Ω∂ := {φ ∈ X : Ψ(φ) ∈ ∂X0, ∀t ≥ 0}.

We now claim that

Ω∂ = {φ ∈ ∂X0 : y(t,φ) = 0 for ∀t ≥ 0, or z(t,φ) = 0 for ∀t ≥ 0}. (22)
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Assume φ ∈Ω∂ . We only need to show that either y(t,φ) = 0 for ∀t ≥ 0 or z(t,φ) = 0 for all

t ≥ 0. For the sake of contradiction, assume that there exist two nonnegative constants t0 ≥ t1

such that y(t0,φ) > 0,z(t1,φ) > 0. Following the definition of Ω∂ , one must have y(t1,φ) =

z(t0,φ) = 0.

By the last two equations in (2) and Lemma 2.2, we have

dy(t,φ)
dt

≥−(µ2 + γz(t,φ))y(t,φ), ∀t ≥ t0,

and

dz(t,φ)
dt

≥−µ3z(t,φ),∀t ≥ t1.

Thus using the comparison principle, we have y(t,φ)> 0, for all t ≥ t0, and z(t,φ)> 0, for all

t ≥ t1, which contradicts y(t1,φ) = z(t0,φ) = 0. This proves (22).

We now let

Θ0 :=
⋂

φ∈Z0

w(φ).

Here Z0 is the global attractor of Ψ(t) restricted to ∂X0. We claim that Θ0 = {P1}
⋃
{P2}.

In fact, Θ0 ⊆ Ω∂ = {(x(t,φ),y(t,φ),0),(x(t,φ),0,z(t,φ))}. If y(t,φ) = z(t,φ) = 0, for all

t ≥ 0, by (2), we obtain limt→∞ x(t) = λ/µ1. Thus P1 ∈ Θ0. For other cases, using Theo-

rem 3.2, we have limt→∞(x(t,φ),y(t,φ),0) = P2 if y(t,φ) > 0 for some t ≥ 0; and we get

limt→∞(x(t,φ),0,z(t,φ)) = P1 given that z(t,φ)> 0 for some t ≥ 0, proving Θ0 = {P1}
⋃
{P2}.

Since {P1},{P2} are two isolated invariant sets of Ψ(t) in Ω∂ , using the similar arguments

for Theorem 3.2 and noting R0 > R1 > 1, we can prove that P2 is asymptotically stable in Ω∂ as

defined in (9). Hence Θ0 has an acyclic covering.

Next, we prove that W s(Pi)∩X0 = /0, i = 1,2. For i = 1, suppose it is not true; that is, there

exists a solution (x(t,φ),y(t,φ),z(t,φ)) ∈ X0, such that limt→∞(x(t,φ),y(t,φ),z(t,φ)) = P1.

Then for any sufficiently small ε > 0, there is T1 = T1(ε) large enough, such that x(t) > λ

µ1
−

ε,max{y(t),z(t)}< ε for all t ≥ T1, and y,z→ 0, as t→ ∞.

Let

U(t) :=
∫ t

t−τ1

σh(x(ξ ),y(ξ ))dξ + y.

Then we have U(t)> 0 and limt→∞U(t) = 0.
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However, by the assumption R0 > R1 > 1, we have the time derivative of U(t) satisfy

dU
dt

∣∣∣∣
(2)
≥
(

σh′y(
λ

µ1
− ε,0)−µ2− γε

)
y > 0, ∀ t ≥ T1,

which is a contradictions to limt→∞U(t) = 0. This proves the case i = 1. Similarly we can

prove the case i = 2. By ([7] Theorem 1.3.2), we conclude that there exists ε0 > 0 such that

liminft→∞(y(t,φ),z(t,φ))≥ ε0 for any φ ∈ X0. This shows the uniform persistence of solutions

of system (2).This completes the proof.

Theorem 3.4. For system (2), if R1 > 1, the HAM/TSP equilibrium P3 is globally attractive.

Proof. Consider the following Lyapunov functional

W =W1 +W2 +W3,

where

W1 := x− x∗−
∫ x

x∗

h(x∗,y∗)
h(s,y∗)

ds, (23)

W2 :=
1
σ

y∗g
(

y
y∗

)
+h(x∗,y∗)

∫
τ1

0
g
(

h(x(t− τ1),y(t− τ1))

h(x∗,y∗)

)
ds, (24)

and

W3 :=
γ(z∗+K)

vσ
g
(

z
z∗

)
, (25)

respectively.

The derivatives of (23), (24), and (25) along the solutions of system (2) are

dW1

dt
=

(
1− h(x∗,y∗)

h(x,y∗)

)
(µ1x∗−µ1x+h(x∗,y∗)−h(x,y)) , (26)

dW2

dt
=

1
σ

(
1− y

y∗

)(
σh(x(t− τ1),y(t− τ1))−µ2y− γyz

)
+h(x∗,y∗)

(
h(x,y)−h(x(t− τ1),y(t− τ1))

h(x∗,y∗)

)
+ ln

h(x(t− τ1),y(t− τ1))

h(x,y)
,

(27)

and
dW3

dt
=

γ(z∗+K)

vσ

(
1− z∗

z

)(
v

yz
z+K

−µ3z
)
, (28)

respectively.
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Combining (26), (27), (28), we have

dW
dt

∣∣∣∣
(2)
=µ1x∗

( x
x∗

)(h(x∗,y∗)
h(x,y∗)

)
−h(x∗,y∗)g

(
h(x∗,y∗)
h(x,y∗)

)
−h(x∗,y∗)g

(
y∗h(x(t− τ1),y(t− τ1))

yh(x∗,y∗)

)
−h(x∗,y∗)g

(
yh(x,y∗)
y∗h(x,y)

)
+h(x∗,y∗)

(
y
y∗
− h(x,y)

h(x,y∗)

)(
h(x,y∗)
h(x,y)

−1
)

− γy
σ(z+K)

(z− z∗)2.

(29)

It then follows that
dW
dt
≤ 0, and

dW
dt

= 0 if and only if

z = z∗, y = y∗, z = z∗.

Similarly as in the proof of Theorem 3.1, by LaSalle-Lyapunov theorem ([2], Theorem 3.4.7),

P3 is globally attractive in F if R1 > 1. This completes the proof.

4. Numerical simulations

In this section, we present computer simulation of some results of the system (2) with

h(x,y) =
βxy

1+ cy
,c = 0.01 using MATLAB, and most of these values are taken from the data

of [1], that is: a set of parameters from Tables 1-3 corresponding to the conditions in Theorem

3.1, Theorem 3.2, and Theorem 3.4, respectively. The corresponding numerical simulations are

shown in Figures 1-3.

The time scale is based on days, a production rate of CD4+ T cells is within the range of

(20−120) cells/mm/day3 [3][4][5], the removal rates for uninfected and infected CD4+ T cells

are selected in the range of (0.01− 0.05) day−1 [5], the death rate for HTLV-I-specific CD8+

cells is selected in the range of (0.01− 0.4) day−1 [3][4], and β is chosen in the range of

10−3mm3/cell/day [6]. The range for σ is chosen as (0.01−0.05) [3], for v as (0.001−0.03)

[3], for γ as (0.002−0.02) [3], respectively. We let K be in the range of (1−20) [3][4].

Figure 4 shows the solutions of model system (2) corresponding to the increase of τ1 from 0

to 20, while τ2 = 15. For τ1 < 8 approximately, the solutions are all oscillatory. As τ1 increases



A MODEL OF HTLV-I INFECTION WITH TWO DELAYS 15

0 500 1000 1500 2000
0

50

100

150

200

250

300

350

400

450

t

x

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

y

0 500 1000 1500 2000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

z

FIGURE 1. The above three graphs are about x,y,z when R0 = 0.08≤ 1 .

from 0 to 8, the vertical amplitudes of x(t), y(t), and z(t) become smaller and smaller, and the

HAM/TSP equilibrium P3 changes from unstable for τ1 < 8 to stable for τ1 > 8.

On the other hand, it shows, in Figure 5, the stability change for the HAM/TSP equilibrium

P3 as τ2 increases from 0 to 20 while τ1 = 1. For τ2 < 7.5 approximately, P3 is asymptotically

stable. As τ2 increases in the interval (7.5,20), the HAM/TSP equilibrium P3 is unstable, and

the vertical amplitudes of x(t), y(t), z(t) become larger and larger.

Parameter table

TABLE 1.

parameter λ µ1 σ β µ2 γ v K µ3 τ1 τ2

value 20 0.05 0.01 0.001 0.05 0.02 0.03 1 0.01 5 5

TABLE 2.

parameter λ µ1 σ β µ2 γ v K µ3 τ1 τ2

value 20 0.015 0.05 0.001 0.01 0.02 0.001 1 0.4 5 5

TABLE 3.

parameter λ µ1 σ β µ2 γ v K µ3 τ1 τ2

value 20 0.01 0.02 0.001 0.005 0.02 0.03 1 0.01 10 0
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FIGURE 2. The above three graphs are about x,y,z when R1 ≈ 0.24< 1 < R0 ≈ 6.67.
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FIGURE 3. The above three graphs are about x,y,z when R1 ≈ 7.74 > 1 .
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FIGURE 4. The ultimate oscillation interval of the solution to system (2) when

τ1 increases from 0 to 20, here τ2 = 15, t ∈ [500,5000].
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FIGURE 5. The ultimate oscillation interval of the solution to system (2) as τ2

increases from 0 to 20, here τ1 = 1, t ∈ [500,5000].
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5. Conclusion

In this paper, we consider the generalized system (2) that incorporates non-liner incidence

rates. We derive formulas for the basic reproductive numbers of a viral infection, R0, and of

a CTL response, R1, and show that the infection-free equilibrium P1 is globally asymptotically

stable if R0 < 1 (Theorem 3.1 and Figure 1), the immune-free equilibrium P2 is globally asymp-

totically stable if R1 < 1 < R0 (Theorem 3.2 and Fig. 2), and the HAM/TSP equilibrium P3 is

globally attractive if τ1 > 0,τ2 = 0 (Theorem 3.4 and Figure 3). Moreover, if 1 < R1, system

(2) is uniformly persistent with chronic infection and CTL response (Theorem 3.3).Our numer-

ical simulations suggest that if 1 < R1, an increase of the intracellular delay may stabilize the

HAM/TSP equilibrium while the immune delay can destabilize it.

The bilinear incidence rate βxy and saturated incidence rate
βxy

1+ cy
are two special cases of

h(x,y). Our result also generalizes the global stability results in [1].
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