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Abstract. In this paper a mathematical model for citrus Huanglongbing transmission including impulsive roguing

control strategy and general incidence is proposed and analyzed. The global dynamics of disease-free periodic

solution and the permanence of the system are investigated. Numerical simulations support our analytical conclu-

sions.
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1. Introduction

Huanglongbing (HLB), a vector-transmitted bacterial infection and caused by the bacteria Can-

didatus Liberibacter spp., is becoming one of the most serious problem of citrus worldwide.

The report from the University of Florida’s Institute of Food and Agricultural Sciences showed

that HLB had caused 3.63 billion dolors in lost revenue and over 6,000 lost jobs in the state
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of Florida from 2006 to 2011 [1]. Since HLB was first discovered in China in the late 1800s

[2], it is known to occur in African, Oceanian, South and North American countries and so on.

HLB scarcely cures and affects all citrus varieties. Once the susceptible citrus is infected, then

the infected citrus shows a blotchy mottle condition of the leaves that result in the development

of yellow shoots the early and very characteristic symptom of the disease and moreover it can

reduce the productivity of orchards, even poor quality and infection leads to plant death in ex-

treme cases [3]. So HLB has become an important issue to study.

HLB is transmitted mainly by the psyllid Diaphorina citri, known as the Asian citrus psyllid

[4]. As a general rule, the bacteria are carried in the saliva of a psyllid and when an infected

psyllid feeds on the leaves of a tree, it passes the disease to the phloem within the veins of

that tree. Similarly, a healthy psyllid can acquire the infection by feeding on an infected tree.

Besides, we also find that a single psyllid, lasting 45 days, will lay around 800 eggs during its

lifetime. It means that the population of psyllid is very large and at the same time, we need

better control methods to treat and prevent the disease or predict the incidence trends. Actual-

ly, mathematical models have been an important research tool to understand the dynamics of

vector-transmitted plant pathogens [3-5]. The applications of mathematical approach to plant

epidemics were reviewed by Van der Plank [5] and Kranz [6].

To predict the spread of HLB and explore the effective control strategies, many continuous

mathematical models have been established. A mathematical model of the transmission of HLB

between its psyllid vector and citrus host [7] was developed to characterize the dynamics of the

vector and disease development, focusing on the spread of the pathogen from flush to flush

within a tree. Dynamics of vector and host populations were simulated. The result showed that

the effect of spraying of psyllids depends on time of initial spraying, frequency, and efficacy

of the insecticides. Raphael et al. [8] proposed a model for HLB spread between citrus plants

which a delay period on the nymphal stage of Diaphorina citri and human intervention were tak-

en into consideration. Numerical simulations were performed to assess the possible impacts of

human detection efficiency of symptomatic plants, as well as the influence of a long incubation

period of HLB in the plant. To study the impact of seasonal activity of psyllid on the dynam-

ics of Huanglongbing (HLB) infection, a HLB mathematical model with periodic environment
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[9] was developed. By the concept of next generation matrix, the basic reproduction number

R0 was obtained, and proofed that the disease-free periodic solution is globally asymptotically

stable if R0 < 1, whereas the disease persists if R0 > 1.

However, the common assumption about the continuity of control activities is contradictory

for the reality that the control behavior usually occurs in regular pulses [10-12]. For example,

for the spread of citrus tristeza disease, Fishman and Marcus [13] investigated a model with

periodic removals and mainly discussed the case of two interacting populations where infection

can be transmitted from one population to another. By analyzing the properties of solutions of

the model, they studied the effectiveness of removal. In this paper, according to the above bio-

logical background, we develop a time-varying impulsive control model with general nonlinear

incidence rate, in which removing infected plants at fixed moments is considered.

This paper is structured as follows. In the next section, we mainly investigate a mathemat-

ical model with general nonlinear incidence rate and time-varying pulse control, under some

assumptions and the biological interpretation. In Sections 3, we show that global attractivity

of the disease-free periodic solution is determined by the threshold parameter R1. In Section

4, we give another expression of threshold parameter R2, and show that if R2 > 1, the disease

is permanence. Numerical simulations which demonstrate the theoretical analysis and a brief

conclusion are given in the last section.

2. Model formulation and preliminary

The total citrus population is divided into two groups: susceptible citrus (S) and infected citrus

(I). Based on the above works, now we establish an impulsive model with general incidence.

The system is modeled by the following equations:

(2.1)



dS(t)
dt

= α(K−S(t)− I(t))− f (t,S, I)−µS(t),

dI(t)
dt

= f (t,S, I)−µI(t)− γI(t),

 t 6= tn,

S(t+) = S(t),

I(t+) = (1−θn)I(t),

 t = tn,(n ∈ N).
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The model is derived from the following assumptions.

• S(t) and I(t) are left continuous for [t0,+∞), that is, S(t) = lim
h→0+

S(t−h) and I(t) = lim
h→0+

I(t−

h).

• There is maximum plant population size K > 0. Recruitment to the population is by replanting

at a rate proportional α > 0 to the difference between the actual number of plants present S+ I

and maximum population size K.

• µ > 0 denotes the natural death rate of susceptible and infected citrus, γ ≥ 0 is the HLB-

induced death rate.

• There exist a positive integer r and positive number ω such that tn+r = tn +ω for all n ∈ N.

And θn (0≤ θn < 1) is the proportion of infected citrus removed at each fixed time t = tn, and

θk = θnr+k for k = 1,2, · · · ,r.

• The general nonlinear incidence rate f (t,S, I) is a piecewise continuous, nonnegative, periodic

function with period ω . The form of f (t, S, I) is as follows:

(2.2) f (t,S, I) =



f1(t,S, I), t ∈ (nω + t0, nω + t1],

...

fr(t,S, I), t ∈ (nω + tr−1, nω + tr],

for all integer n≥ 0, and fk(t,0, I) = fk(t,S,0) = 0 for k = 1, 2, · · · , r.

3. Global attractivity of the disease-free periodic solution

From system (2.1), we can easily obtain that the solution (αK/(α + µ), 0) is the disease-free

periodic solution. To discuss the attractivity of the disease-free periodic solution of system

(2.1), we firstly assume the following hypothesis:

(A): There exist positive, continuous, periodic functions βk(t) with period ω , such that fk(t,S, I)≤

βk(t)SI, for k = 1,2, · · · ,r and t ≥ t0.
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Theorem 1. If R1 < 1 and system (2.1) satisfies the hypothesis (A), then the disease-free peri-

odic solution (αK/(α +µ), 0) is globally attractive, where

(3.1) R1 =

αK
α +µ

r

∑
i=1

∫ ti

ti−1

βi(t)dt

ω(µ + γ)−
r
∑

i=1
ln(1−θi)

.

Proof. Let (S(t), I(t)) be any solution of system (2.1). Since R1 < 1, we can choose a suffi-

ciently small number ε1 > 0 such that

(3.2) Λ, exp

[
r

∑
i=i

∫ ti

ti−1

[βi(t)(
αK

α +µ
+ ε1)]dt +

r

∑
i=i

ln(1−θi)−ω(µ + γ)

]
< 1,

From the first equation of (2.1), we have dS(t)
dt ≤ α(K − S(t))− µS(t). By the comparison

theorem, we can get that there exists a constant t1(> t0) such that

(3.3) S(t)<
αK

α +µ
+ ε1, for all t ≥ t1.

It follows from (3.3) and the second equation of system (2.1) that, for t ∈ (nω + tk−1,nω +

tk] (k = 1, 2, · · · , r) and t ≥ t1,

dI(t)
dt

= f (t,S, I)− (µ + γ)I(t)

≤ βk(t)S(t)I(t)− (µ + γ)I(t)

≤
[

βk(t)(
αK

α +µ
+ ε1)− (µ + γ)

]
I(t).

Thus,

I(t)≤ I((nω + tk−1)
+)exp

(∫ t

nω+tk−1

[
βk(τ)(

αK
α +µ

+ ε1)− (µ + γ)

]
dτ

)
= (1−θk−1)I(nω + tk−1)exp

(∫ t

tk−1+nω

[
βk(τ)(

αK
α +µ

+ ε1)− (µ + γ)

]
dτ.

)
By using the similar method, we can deduce that for t ∈ (nω + tk−1,nω + tk]

I(t)≤
k−1

∏
i=1

(1−θi)I((nω + t0)+)

× exp
{
(

αK
α +µ

+ ε1)

[∫ nω+t1

nω+t0
β1(τ)dτ + · · ·+

∫ t

nω+tk−1

βk(τ)dτ

]
− (µ + γ)(t−nω− t0)

}
.

(3.4)
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Especially, when t = (n+1)ω + t0, we have

I(((n+1)ω + t0)+) = I((nω + tr)+) = (1−θr)I(nω + tr)

≤
r

∏
i=1

(1−θi)I((t0 +nω)+)exp

[
r

∑
i=1

∫ ti

ti−1

[βi(τ)(
αK

α +µ
+ ε1)]dτ− (tr− t0)(µ + γ)

]

= I((nω + t0)+)exp

[
r

∑
i=1

∫ ti

ti−1

[βi(τ)(
αK

α +µ
+ ε1)]dτ +

r

∑
i=1

ln(1−θi)−ω(µ + γ)

]

= ΛI((nω + t0)+).

Thus, for any positive integer q, we have I(((n+ q)ω + t0)+) ≤ ΛqI((nω + t0)+). It follows

from (3.2) that

(3.5) I[((n+q)ω + t0)+]→ 0, as q→ ∞.

From (3.4) and (3.5), we have

(3.6) lim
t→∞

I(t) = 0

Therefore, for above mentioned ε1, there exists t2 (> t1), we have

(3.7) I(t)< ε1 for all t > t2.

From the first equation of system (2.1) and (3.7), we have for t > t2,

dS(t)
dt

= α(K−S(t)− I(t))− f (t,S, I)−µS(t)

≥ α(K− ε1)− (α +µ +β
∗
ε1)S(t),

where β ∗=max{βi(t), t0≤ t ≤ t0+ω, i= 1, · · · , r}. Solving the above differential inequality,

we have

(3.8) S(t)≥ α(K− ε1)

α +µ +β ∗ε1
+

[
S(t2)− α(K− ε1)

α +µ +β ∗ε1

]
e−(α+µ+β ∗ε1)(t−t2) .

= Ŝ(t), for t > t2.

From (3.3) and (3.8), we have

(3.9) Ŝ(t)≤ S(t)≤ αK
α +µ

+ ε1, for t > t2.

Because ε1 is arbitrarily small, (3.9) implies that

(3.10) lim
t→∞

S(t) =
αK

α +µ
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From (3.6) and (3.10), we obtain that the disease-free periodic solution (αK/(α + µ),0) is

global attractive.

�

4. Permanence

In this section, we mainly obtain the sufficient conditions for the permanence of system (2.1).

So we give the following hypothesis (B) at first.

(B): There exist positive, continuous, periodic functions ϕk(t) with period ω , such that fk(t,S, I)≥

ϕk(t)SI, for k = 1,2, · · · ,r and t ≥ t0.

Theorem 2. If R2 > 1 and system (2.1) satisfies the hypotheses (A) and (B), then system (2.1)

is permanent, where

R2 =

αK
α +µ

r

∑
i=1

∫ ti

ti−1

ϕi(t)dt

(µ + γ)ω−
r
∑

i=1
ln(1−θi)

.

Proof. Since R2 > 1, we can easily see that there exists a sufficiently small ε > 0 such that

(4.1) Ω
.
=

r

∏
i=1

(1−θi)exp

[(
α(K− ε)

β ∗ε +α +µ
− ε

) r

∑
i=1

∫ ti

ti−1

ϕi(t)dt− (µ + γ)ω

]
> 1.

In order to illustrate the conclusion, we firstly obtain the disease is uniformly weakly persis-

tent, that is, there exists a positive constant η > 0, such that limsup
t→+∞

I(t)≥ η . By contradiction,

we have that for above given ε > 0, there exists a t3 > 0 such that I(t)< ε for all t > t3.

In view of the hypothesis (A) and the first equation of system (2.1), we have

dS(t)
dt

= α(K−S(t)− I(t))− f (t,S, I)−µS(t)≥ α(K− ε)− (β ∗ε +α +µ)S(t) for all t > t3,

where β ∗ = max{βi(t), t0 ≤ t ≤ t0 +ω, i = 1, · · · , r}.

By comparison theorem, we have S(t) ≥ y1(t) and y1(t)→
α(K− ε)

β ∗ε +α +µ
as t → +∞, where

y1(t) is the solution of the following comparison system:

dy1(t)
dt

= α(K− ε)− (β ∗ε +α +µ)y1(t).
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Therefore, for above mentioned ε , there exists a n∗ > 0, such that

(4.2) S(t)≥ y1(t)≥
α(K− ε)

β ∗ε +α +µ
− ε for all t > t3 +n∗ω.

For above mentioned t3 +n∗ω , we know that there exists a positive integer n1 such that n1ω ≥

t3 +n∗ω . Then, for all nω + ts−1 < t < nω + ts (n≥ n1, s = 1, · · · , r), by (4.2) and the second

equation of system (2.1) yields

dI(t)
dt

= f (t,S, I)− (µ + γ)I(t)

≥
[(

α(K− ε)

β ∗ε +α +µ
− ε

)
ϕs(t)− (µ + γ)

]
I(t),

(4.3)

Consider the following auxiliary impulsive system:

(4.4)



dy2(t)
dt

=

[(
α(K− ε)

β ∗ε +α +µ
− ε

)
ϕs(t)− (µ + γ)

]
y2(t), nω + ts−1 < t < nω + ts,

y2(t+) = (1−θs)y2(t), t = nω + ts,

y2(t+0 ) = I0 > 0.

Calculating (4.4), we derive that for nω + ts−1 < t ≤ nω + ts (n≥ n1, s = 1, · · · , r)

(4.5)

y2(t) = I0Ω
n×

s−1

∏
i=1

(1−θi)exp

[(
α(K− ε)

β ∗ε +α +µ
− ε

) s−1

∑
i=1

∫ ti

ti−1

ϕi(t)dt− (µ + γ)(t−nω− t0)

]
,

From (4.1) and (4.5), we have

y2(t)→ ∞, as n→ ∞.

That is to say, as t→ ∞, we get y2(t)→ ∞. By the comparison theorem we have lim
t→∞

I(t) = ∞,

which is a contradiction to 0 < I(t)< ε . Thus the claim is proved, that is, there is a η > 0 such

that limsup
t→∞

I(t)≥ η .

By the claim, we are left the following two possibilities:

Case 1. I(t)> ε for all large t;

Case 2. I(t) oscillates about ε for all large t.

The conclusion is evident in the first case. Next we will consider the second possibility. At

first, let t and t be large enough such that

I(t)≥ ε, I(t) = ε, and I(t)< ε, for t ∈ (t, t).
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There are two possible cases for t.

Case A. If t = tk +nω (n is a positive integer and k = 1, · · · ,r), then I(t)> ε and (1−θk)ε <

I(t+) = (1− θk)I(t) < ε . We claim that there must exists a positive constant m, such that

I(t)≥m, for t ∈ (t, t). Flowing, we will consider two possible subcases in term of the size of t

and t.

(a) If t− t ≤ n∗ω (where n∗ is defined in (4.2)), then from system (2.1), we have

(4.6)



dI(t)
dt

= f (t,S, I)− (µ + γ)I(t)

≥−(µ + γ)I(t), t 6= tn,

I(t+) = (1−θn)I(t), t = tn,

It follows from (4.6) that

I(t)≥

[
r

∏
i=1

(1−θi)

]n∗+1

ε exp[−(µ + γ)n∗ω]
.
= m for all t ∈ [t, t].

(b) If t − t > n∗ω , then from the discussion in subcase (a), we have I(t) ≥ m for all t ∈

[t, t + n∗ω]. Next, we show that I(t) ≥ m for all t ∈ (t + n∗ω, t]. Otherwise, there exists a

constant t∗ > 0 such that

I(t)≥ m, for all t ∈ [t, t + t∗+n∗ω),

I(t + t∗+n∗ω)≥ m, I(t)< m, for 0 < t− (t + t∗+n∗ω)� 1.

On the other hand, similar to discussion in subcase (a), it is easy to know that we can choose a

proper ρ > 0, such that I(t + t∗+n∗ω)≥ ρI(t)exp[−(µ + γ)(n∗ω + t∗)]> m . Since e−(µ+γ)t

is a continuous function, that is ρI(t)exp{−(µ + γ)t} ≥ m for 0 < t � 1 hold. Then for 0 <

t− (t + t∗+n∗ω � 1), we have

I(t)≥ I(t + t∗+n∗ω)exp{−(µ + γ)(t− t− t∗−n∗ω)}

≥ ρI(t)exp[−(µ + γ)(t +n∗ω + t∗− t)]exp{−(µ + γ)(t− t− t∗−n∗ω)}

≥ m

Then, I(t)≥ m, for 0 < t− (t + t∗+n∗ω)� 1, which is a contraction. Therefore, I(t)≥ m for

any t ∈ [t, t].

Case B. If t 6= tk +nω , then I(t) = ε . Using the analogous methods of Case A, we can easily
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get I(t)≥

[
r

∏
i=1

(1−θi)

]n∗+1

ε exp[−(µ + γ)n∗ω]=m, for all t ∈ [t, t].

Thus, we see that I(t) ≥ m for any t ∈ [t, t]. Since this kind of interval [t, t] is chosen in an

arbitrary way, we conclude that I(t)≥ m for all large t.

According to our above discussion, the choice of m is independent of the positive solution

of system (2.1), and we have proved that any solution of system (2.1) satisfies I(t) ≥ m for

sufficiently large t, that is, liminf
t→+∞

I(t) ≥ m. It is easy to obtain that, there exists a positive

constant S∗ such that liminf
t→+∞

S(t)≥ S∗. Therefore, system (2.1) is permanent. �

5. Numerical simulation and conclusion

In this paper, we show that the disease will go to extinction if R1 < 1, and the disease persists if

R2 > 1. We provide numerical simulations of system (2.1) to support the conclusions of previ-

ous sections. Numerical analysis of system (2.2) is being done using Matlab.

In model (2.1), let ω = 12, r = 4, α = 0.03, K = 1, µ = 0.004,γ = 0.025, t0 = 3, t1 =

5, t2 = 7, t3 = 10, t4 = 15. We take fk(t, S, I) = βk(t)SI = ψk(t)SI (k = 1,2,3,4) and

β1(t) = 0.10+ 0.03sin(πt/6), β2(t) = 0.05+ 0.02sin(πt/6), β3(t) = 0.30+ 0.05sin(πt/6),

β4(t) = 0.25+0.05sin(πt/6).

In Fig. 1 we fix θ1 = 0.1, θ2 = 0.5, θ3 = 0.5 and θ4 = 0.1, resulting in R1 = 0.991 < 1. This,

of course, leads to the extinction of the disease, as clearly indicated by the graph.

However, in Fig.2 we use θ1 = 0.1, θ2 = 0.5, θ3 = 0.5 and θ4 = 0.1, giving R2 = 1.032 > 1.

Computer observation shows that the disease is permanent (see Fig.2).

Note that, in the hypotheses (A) and (B), if βk(t)=ψk(t) (k= 1, 2, · · · , r), that is fk(t, S, I)=

βkSI, then R1 = R2. In this case, R1 or R2 is the basic reproductive number which determines the

extinction and the uniform persistence of diseases. Whereas, if βk(t)< fk(t, S, I)< ψk(t) (k =

1, 2, · · · , r), then R1 < R2. For system (2.1), we think there exists the threshold value R0, and

R1 ≤ R0 ≤ R2. This means that conditions of Theorems 1 and 2 are sufficient, not necessary.
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FIGURE 1. This figure shows that movement path of I as functions of time t.

R0 = 0.991 < 1, where parameters θ1 = 0.1, θ2 = 0.5, θ3 = 0.5 and θ4 = 0.1.

The disease will be die out.
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FIGURE 2. This figure shows that movement path of I as functions of time t.

R0 = 1.032 > 1, where parameters θ1 = 0.1, θ2 = 0.45, θ3 = 0.45 and θ4 = 0.1.

The disease is permanent.
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