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Abstract. In this paper, we study the dynamical behaviour of HBV infection model with antiviral therapy and

CTL immune response. The model is given by a system of four ordinary differential equations with discrete time

delay which describes the time between infection and the immune response. The existence and stability/unstability

of the equilibrium points without treatment are proved with respect to the time delay and the basic reproduction

number is estimated. The conditions of occurrence of Hopf bifurcation at the endemic steady state are established

when the delay crosses some critical value by using the delay as a parameter of bifurcation. By incorporating

interferon-α (IFN) and nucleotside analogs (NAs) treatments, the disappearance of oscillations and appearance of

new equilibrium point with maximal value of uninfected cells and minimal value of effector cells and vanishing

values of virus and infected cells are investigated via optimality control. Numerical illustrations are given to

support theoretical results.

Keywords: HBV infection; antiviral therapy; immune system; delay differential equations; optimal control.

2010 AMS Subject Classification: Primary 34K20, 92C50; Secondary 92D25.

∗Corresponding author

E-mail address: a-tridane@uaeu.ac.ae

Received October 25, 2015

1



2 A. TRIDANE, K. HATTAF, R. YAFIA, F. A. RIHAN

1. Introduction and mathematical model

Hepatitis B virus (HBV) infection is a major human disease and is transmitted by percuta-

neous and mucosal exposure to infected blood or other body fluids and by area, particularly from

mother to child at birth, or between persons in childhood. According to World Health Organi-

sation (WHO) more than 2 billion persons have been infected, among 360 millions chronically

infected see [14]. 0.5-1 million of infected population die each year [11] and are infective at the

later stage of latent period with an average of 90 days.

Mathematical modelling had played a significant role to better understanding the dynamics

of HBV disease and the various drugs therapy strategies to control it (see [18, 2, 16, 9, 19] and

references therein). In fact, a wealth of mathematical models were based on the earliest model

introduced by Nowak et al. in 1996 [17] which is given by:

dx
dt

= r−dx− γvx

dy
dt

= γvx−ay

dv
dt

= py−µv

where x(t), y(t) and v(t) are the total number of healthy cells (hepatocytes), HBV infected

hepatocytes, and free virions respectively. The healthy hepatocytes are produced at a constant

rate r and d is mortality rate. γvx is the infected number of healthy cells, where γ is the rate of

infection and a is the rate of mortality rate of infected hepatocytes. The virus is produced with

the rate p, die at rate µ .

This simple model led to study different models that analysis several issues related to the

HBV, such as the dynamic of the virus, the adaptive and innate immune responses, the drug

therapy and it management.

Understanding the impact of a compromised immune response on the progress of the HBV

disease is an important step to improve the effect of the antiviral treatment and to find the best

practice to manage the treatment. The actual therapy, which includes pegylated and standard
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interferon-α and nucleoside analogues, can not completely eradicate the infection. Instead it

reduces the infection to level that does not let the infection progress to point where the patient

get lever disease or hepatocellular carcinoma (HCC)[11].

The immune response by CD8+ is not immediate and the presence of the time delay between

infection and this immune response was observed in HBV infection [21] and this delay was

quantify with a given data [22] and [2]. The problem is that quantification has a lot of uncer-

tainty when consider patients with co-infection and immunocompromise, which is the case for

big population of the HBV positive. Therefore our goal is to take this fact into consideration

particularly when it comes to antiviral therapy management.

First, we consider the following system delay differential equations:

(1)

dT
dt

= rT T
(

1− T + I
Tmax

)
− γTV

T + I
+ρI

dI
dt

= rII
(

1− T + I
Tmax

)
+

γTV
T + I

−bIE−ρI

dV
dt

= pI−µVV

dE
dt

= β I(t− τ)E(t− τ)−µEE.

Where T represents healthy hepatocytes , I is infected hypatocytes cells, V represents free

virus particles and E stands of CD8+ the antigen-specific cells. We assume that in the absence

of the infection the number of hepatocytes, T, is maintained by homeostasis described by a

logical equation, with carrying capacity Tmax and maximal growth rate per hepatocyte rT . These

healthy cells get infected with a standard incidence function ([9, 6, 24] at maximum rate γ . Due

to the burden of supporting HBV replication, we allow infected cells to proliferate slower than

uninfected cells, that is., rI ≤ rT (One special case is to ignore this proliferation by considering

rI = 0 as we did in the previous work [24] and recently in [19]). We also consider the possibility

of infected get cured by the noncytolytic processes at a constant rate ρ per cell. The free virus

is produced at rate p and it is cleared from circulation by all mechanisms, that include the
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antibody neutralization, healthy cell absorption and the dendritic cells effect (APC), at rate µV .

The antigen specific CD8+ cells are activated with rate β with time delay τ and die at rate µE .

This paper is organised as follows: Section 2 introduce some basic results, e.g., positivity

and boundedness of solutions, and we give the estimation of parameters values of the model.

In Section 3, we study the existence of equilibria and their stability and the occurrence of

Hopf bifurcation from the nontrivial steady state by considering the delay as a parameter of

bifurcation and the switch of stability via Mikhailov Theorem . In Section 4, we study the

optimal control of the antiviral therapy treatment and we introduce the numerical algorithm for

the simulation of the effectiveness of the optimal treatment.

2. Basic properties and parameter estimations

2.1. Positivity and boundedness of solutions

Let C =C([−τ,0], IR4) the Banach space of continuous functions mapping the interval [−τ,0]

into IR4 with the topology of uniform convergence. Notice that system (1) is locally Lips-

chitzian. From the standard theory of DDE [13] there exists a unique solution (T (t), I(t),V (t),E(t))

of system (1) on [0,a[, for some a > 0, with initial data (T0, I0,V0,E0) ∈C.

In addition, for biological reasons, we assume that the initial conditions for system (1) satisfy:

(2)


T0(s)≥ 0, I0(s)≥ 0, V0(s)≥ 0, E0(s)≥ 0,

for all s ∈ [−τ,0]

Tmax ≥ N(s) = T (s)+ I(s)> 0

Theorem 2.1. Each component of the solution of system (1), subject to condition (2), remains

non-negative and bounded for all t ∈ [0,+∞[.

Proof. Suppose that there exists t1 ∈]0,a[ such that T (t1) = 0 and I(t) > 0,V (t) > 0,E(t) > 0

for t ∈]0, t1[. From the two first equations of (1), we have

dN
dt

= (rT T + rII)(1−
N

Tmax
)−bIE
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It is easy to show that 0 < N(t) ≤ Tmax for t ∈ [0, t1]. In fact, we can see that dN
dt > −bEN for

t ∈ [0, t1], which yields

N(t)≥ N(0)e−b
∫ t

0 E(s)ds.

Clearly I(t)≤ Tmax for t ∈ [0, t1], which implies that V (t)≤ v = max(V (0), pTmax
µV

) for t ∈ [0, t1].

Then for t ∈ [0, t1], we have

dT
dt
≥−( γv

N(0)
eb
∫ t

0 E(s)ds)T (t).

Hence a contradiction is obtained as

T (t1)≥ T (0)exp(− γv
N(0)

eb
∫ t1

0 E(s)ds)> 0.

We suppose now that there exists t1 ∈]0,a[ such that I(t1) = 0 and T (t)> 0,V (t)> 0,E(t)> 0

for t ∈]0, t1[. From (1), we have I′(t) ≥ −(ρ +bE(t))I(t) for t ∈ [0, t1] which yields to I(t1) ≥

I(0)e−(ρt1+b
∫ t1

0 E(s)ds) > 0, also a contradiction.

We suppose that there exists t1 ∈]0,a[ such that V (t1) = 0 and T (t) > 0, I(t) > 0,E(t) >

0 for t ∈]0, t1[. From (1), we have V ′(t) ≥ −µVV (t) for t ∈ [0, t1] which yields to V (t1) ≥

V (0)e−µV t1 > 0, also a contradiction.

Finally, we suppose that there exists t1 ∈]0,a[ such that E(t1) = 0 and T (t) > 0, I(t) >

0,V (t) > 0 for t ∈]0, t1[. From (1), we have E ′(t) ≥ −µEE(t) for t ∈ [0, t1] which yields to

E(t1)≥ E(0)e−µE t1 > 0, also a contradiction.

The above contradictions together show that components of the solution of system (1) subject

to condition (2) are non-negative for all t ∈ [0,a[. This together with the uniform boundedness

of solutions on [0,a[ imply that a =+∞. This completes the proof of the theorem.

2. Estimation of parameters

The estimation of hepatocyte carrying capacity, Tmax, is 13.6× 106 cells/ml [20]. For the

rate of virion infection of hepatocytes, it was estimated in [4, 22] to be between 3.6×10−5 and

1.8×10−3 cells virion−1 day−1. Ciupe et al. [2], based on clinical date of the virus load using

the the Akaike information criterion (AIC), estimated b to be 7±1.7×10−4 ml/cell day−1 with

median 6.4×10−4. The maximum rate of daily virion production p during acute HBV infection
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was measured to be between 200 and 1000 virions per infected cell [22], An estimation of the

same range was given in [2]. We selected the virus clearance rate to be µV = 0.67 [18] by

assuming that the half life of virus is about one day. The death rate of CD8+ cells µE was

estimated to be 0.5 days−1 [1]. The activation rate of the CD8+ cells was estimated by [2] by

4.4±1.5×10−7 ml/cell days−1 with median 4.2×10−4.

Table. Parameters, their symbols and default values used in the model (1)

Param. Value Ref.

Tmax 13.6×106 cells/ml [20]

γ 3.6×10−5−1.8×10−3 cells vir−1 day−1 [22, 4]

b 7±1.7×10−4 ml/cell day−1 [2]

p 200−1000 vir. cell−1 day−1 [22]

µV 0.67 day−1 [18]

β 4.4±1.5×10−7 ml cell−1 day−1 [2]

µE 0.5 day−1 [1]

rT

rI

ρ

E0 10 cells/ml/day [21]

3. Stability analysis

System (1) has the following steady states:

• The empty steady state S0 = (0,0,0,
E0

µE
).

• The disease free steady state S f = (Tmax,0,0,0).

• The immune-free steady state define by:

S1 = (
ρµV Tmax

pγ
,(1− ρµV

pγ
)Tmax,

p
µV

(1− ρµV

pγ
)Tmax,0),

• The endemic steady state S2 = (T2, I2,V2,E2) that can find in the following way:

From the equation of T , and using the fact that I =
µE

β
and V =

pµE

β µV
, we have

(3)
rT

Tmax
T (T +

µE

β
)(Tmax−

µE

β
−T ) =

µE

β
[(

γ p
µV
−ρ)T − ρµE

β
].
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The left side of the equality (3) is a third degree polynomial, with a negative sign in [−µE

β
,0]∪

[Tmax−
µE

β
,+∞) and positive sign in (−∞,−µE

β
]∪ [0,Tmax−

µE

β
]. Therefore, by examining the

intersection of this two graphs, we can conclude that if

(4)
ρµE µV

β (γ p−ρµV )
< Tmax−

µE

β

or

(5)
ρµE µV

β (γ p−ρµV )
> Tmax−

µE

β
,

the two graphs have unique intersection (See Figure.1 ). In the interval [−µE

β
,0], the two graphs

could have one or two points of intersections, but in this case T < 0 which isnot feasible.

As of E2, we use the sum of the first and the second equations of system (1), we get

(6) E2 =
β

bµETmax
(rT T2 + rI

µE

β
)(Tmax−

µE

β
−T2).

Then E2 exists when T2 < Tmax−
µE

β
, this condition satisfied if

(7) 0 <
ρµE µV

β (γ p−ρµV )
< Tmax−

µE

β

Since T2 is determined in unique way, then E2 would be the same. and we have the following

steady state S2.

S2 = (T2,
µE

β
,

pµE

β µV
,E2).

Determining T2 (resp. S2 ) explicitly is not possible, but by parameters estimations we can

have the numerical value of these steady states.

Now, we focus on the stability of disease free equilibrium S f and we have the following

result:

Theorem 3.1 Let us define R0 =
pγ

ρµV
.
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FIGURE 1. The possibility of existence of T2 under the condition 0 <
ρµE µV

β (γ p−ρµV )
< Tmax−

µE

β

• If R0 < 1, then the disease free equilibrium, E f , is locally asymptotically stable.

• If R0 > 1, then E f is unstable.

Proof. The Jacobian matrix of our system at E f is given by

(8)


−rT −rT +ρ −γ 0

0 −ρ γ 0

0 p −µV 0

0 0 0 −µE



It is clear that this matrix has two negative eigenvalues −rT and −µE . The two other eigenval-

ues can be negative if and only if R0 < 1
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FIGURE 2. Shows the stability of disease free equilibrium S f . The parameters

are rT = 0.5, rI = 0.06, Tmax = 13.6×106, γ = 3.6×10−5, ρ = 0.01, b = 6.4×

10−4, p = 200, µV = 0.67, β = 2.3× 10−7, E0 = 10, µE = 0.5, τ = 22.9. In

this case, the basic infection reproduction number R0 is 0.5166.

Now, we study the stability of S1. From expression of R0 we can rewrite the expression of S1

as follows:

(9) S1 = (
Tmax

R0
,(1− 1

R0
)Tmax,

p
µV

(1− 1
R0

)Tmax,0).

Therefore, S1 exists when R0 > 1. Moreover, we if define the threshold R∗ by

(10) R∗ =
Tmax

Tmax−
µE

β

The following result holds

Theorem 3.2

(1) If R0 < 1, then the point S1 does not exists and S1 = S f when R0 = 1.

(2) If 1 < R0 < R∗, then S1 is locally asymptotically stable.

(3) If R0 > R∗, then S1 is unstable.
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FIGURE 3. Shows the stability of S1. The parameters values are rT = 0.5, rI =

0.01, Tmax = 13.6 × 106, γ = 3.6 × 10−5, ρ = 0.01, b = 5.4 × 10−4, p =

200, µV = 0.67, β = 3.4×10−7, E0 = 0, µE = 0.5, τ = 22.9. In this case, the

basic infection reproduction number R0 is 1.0746 < R∗ = 1.1212 .

Proof. It is clear from (9) that if R0 < 1, then the point S1 does not exists and S1 = S f when

R0 = 1.

We assume that R0 > 1, then the characteristic equation at S1 is∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− rT

R0
−ρR0(1−

1
R0

)2−λ − rT

R0
+ρ(2− 1

R0
) − γ

R0
0

(1− 1
R0

)(ρR0(1−
1

R0
)− rI) −

rI

R0
−ρ(2− 1

R0
)−λ

γ

R0
−b(1− 1

R0
)Tmax

0 p −µV −λ 0

0 0 0 β (1− 1
R0

)Tmaxe−λτ −µE −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

This equation can be reduce to

(11) [β (1− 1
R0

)Tmaxe−λτ −µE −λ ](λ 3 +a1λ
2 +a2λ +a3) = 0,
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where

a1 = µV +φ +ρR0,

a2 = φ(ρR0 +µV )+ρµV (R0−1),

a3 = ρφ µV (R0−1),

φ =
rT + rI(R0−1)

R0
.

The stability of S1 is determined by examining the roots of the following equation

(12) λ
3 +a1λ

2 +a2λ +a3 = 0,

and

(13) β (1− 1
R0

)Tmaxe−λτ −µE −λ = 0.

From equation (12) and using R0 > 1, it is clear that a1 and a3 are positive and∣∣∣∣∣∣ a1 1

a3 a2

∣∣∣∣∣∣= a1a2−a3 = (ρR0 +µV )[φ
2 +(ρR0 +µV )φ +ρµV (R0−1)]> 0.

By the Routh-Hurwitz Criterion [12], all roots of (12) have negative real parts.

For τ = 0, and from ( 13), β (1− 1
R0
)Tmax−µE is eigenvalue. In fact, It easy to show that the

sign of this eigenvalue is negative if R0 < R∗, null if R0 = R∗ and positive if R0 > R∗.

To investigate the switch of stability of S1, we need to find the pure imaginary roots of equa-

tion ( 13). Let λ = iω , with ω > 0 be a purely imaginary root of (13), then

µE + iω = β (1− 1
R0

)Tmaxe−iωτ .

Taking moduli in the above equation, we obtain

(14) ω
2 +µ

2
E = [β (1− 1

R0
)Tmax]

2.

Hence, (14) has no positive solution if 1 < R0 < R∗. Therefore, there is no purely imaginary

root of ( 13), implying that the roots of (13) can not cross the purely imaginary axis. Thus all

roots of (13) have a negative real parts provided 1 < R0 < R∗. Then S1 is locally asymptotically

stable when 1 < R0 < R∗.
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Finally, it easy to show that (11) has a real positive root when R0 > R∗. Indeed, we put

f (λ ) = β (1− 1
R0

)Tmaxe−λτ −µE −λ .

We have f is a continuous function on [0,+∞[. Moreover,

f (0) = β (1− 1
R0

)Tmax−µE > 0 and lim
λ→+∞

f (λ ) =−∞.

Consequently, f has a positive real root. Hence, S1 is unstable.

Now, we study the stability of S2.

From expressions of R0 and R∗ we get

S2 = (T2,(1−
1

R∗
)Tmax,

p
µV

(1− 1
R∗

)Tmax,
(Tmax−R∗T2)[rT R∗T2 + rI(R∗−1)]

T 2
maxR∗(R∗−1)

).

Note that the point S2 exists if

(15) 0 <
ρµE µV

β (γ p−ρµV )
< Tmax−

µE

β
,

i.e, 0 <
µE

β (R0−1)
<

Tmax

R∗
. In this case we have

(16)
R∗−1

R∗(R0−1)
≤ T2

Tmax
≤ 1

R∗
.

As R∗ > 1, we conclude that the point S2 exists when R0 > R∗.

If R0 = R∗, From (16) we have T2 =
Tmax
R0

. Then E2 = 0 and S2 = S1.

Assume that R0 > R∗, at S2 (8) reduces to

(17) W (λ ,τ) = λ
4 +b1λ

3 +b2λ
2 +b3λ +b4−µE(λ

3 + c1λ
2 + c2λ + c3)e−λτ = 0,
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where

b1 = µV +µE +ϕ(T2)+ρ(1− 1
R∗

)
Tmax

T2
+ρR0x(T2),

b2 = µE(b1−µE)+χ(T2)+µV [ϕ(T2)+ρ(1− 1
R∗

)
Tmax

T2
],

b3 = µE [b2−µE(b1−µE)]+ρµV R0(rT − rI)(1−
1

R∗
)x(T2),

b4 = ρµV µE(1−
1

R∗
)[rI + rI(1−

1
R∗

)
Tmax

T2
+(rT − rI)R0x(T2)],

c1 = b1−µE −bE2,

c2 = b2−µE(b1−µE)+bE2(ψ(T2)−µV ),

c3 =
b4

µE
+µV bE2ψ(T2),

x(T ) =
R∗T

R∗T +(R∗−1)Tmax
,

ϕ(T ) =
rT T
Tmax

+ rI(1−
1

R∗
),

ψ(T ) = rT (
1

R∗
− 2T

Tmax
)−ρR0

(R∗−1)2T 2
max

[R∗T +(R∗−1)Tmax]2
,

χ(T ) = ρR0[
rT T2

Tmax
−ρ(R∗−1)Tmax

R∗(R0−1)T − (R∗−1)Tmax

[R∗T +(R∗−1)Tmax]2
]+ρrI

R∗−1
R∗x(T )

.

When τ = 0, (17) become

(18) λ
4 + b̄1λ

3 + b̄2λ
2 + b̄3λ + b̄4 = 0,
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where

b̄1 = µV +ϕ(T2)+ρ(1− 1
R∗

)
Tmax

T2
+ρR0x(T2),

b̄2 = χ(T2)+µV [ϕ(T2)+ρ(1− 1
R∗

)
Tmax

T2
]+µEbE2,

b̄3 = ρµV R0(rT − rI)(1−
1

R∗
)x(T2)+µEbE2(µV −ψ(T2)),

b̄4 = −µV µEbE2ψ(T2).

If ψ(T2)> 0, then equation (18) has a real positive root. Hence S2 is unstable.

According to the study of the function ψ , we deduce the following remark.

Remark

• If R0 <
rT (2R∗−1)3

27ρR∗(R∗−1)2 , then there exists Tc <
Tmax

2R∗
satisfying the equation

rT

Tmax
(
Tmax

R∗
−2Tc)(Tc +

µE

β
) = ρR0(

µE

β
)2,

such that ψ is positive on [0,Tc] and negative on [Tc,
Tmax

R∗
].

• If R0 >
rT (2R∗−1)3

27ρR∗(R∗−1)2 , then ψ(T ) is negative for all T ∈ [0,
Tmax

R∗
].

• If R∗ < R0 < 2R∗−1, then ψ(T2)< 0.

From the Routh-Hurwitz Criterion, we have the following Theorem.

Theorem 3.3 Suppose that τ = 0 and R0 > R∗, we have :

(1) If ψ(T2)< 0, b̄1b̄2− b̄3 > 0 and b̄3(b̄1b̄2− b̄3)− b̄2
1b̄4 > 0, then S2 is locally asymptoti-

cally stable.

(2) If ψ(T2)> 0, then S2 is unstable.

3.1 Hopf bifurcation analysis

In this subsection, we prove the occurrence Hopf bifurcation by using the time delay τ as the

bifurcation parameter. Throughout this subsection, we will assume that R0 > R∗, which means

that the endemic equilibrium S2 exists.
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Let λ (τ) = α(τ)+ iω(τ) be the root of (17). If the conditions

ψ(T2)< 0, b̄1b̄2− b̄3 > 0, b̄3(b̄1b̄2− b̄3)− b̄2
1b̄4 > 0,(H1)

are satisfied. Then, from Theorem 3.4, we have α(0) < 0. By continuity of α , α(τ) < 0 for

0≤ τ < τc for some critical value τc > 0.

Assume α(τc) = 0, and α(τ) < 0 for 0 ≤ τ < τc, then the steady state S2 may loses it’s

stability at τ = τc. Let λ = iωIn fact, iω is a purely imaginary root of equation (17). Then, we

have

(19) W (iω,τ) = ω
4−b2ω +b4 + iω(b3−b1ω

2) = µE [c3− c1ω
2 + iω(c2−ω

2)]e−iωτ .

Equating real parts and imaginary parts, we have the following:

(20)

 ω4−b2ω2 +b4 = µE(c3− c1ω2)cos(ωτ)+µEω(c2−ω2)sin(ωτ),

ω(b3−b1ω2) =−µE(c3− c1ω2)sin(ωτ)+µEω(c2−ω2)cos(ωτ).

Squaring and adding both equation of (20), one obtains

(21) ω
8 +d1ω

6 +d2ω
4 +d3ω

2 +d4 = 0,

where

d1 = b2
1−2b2−µ

2
E ,

d2 = b2
2 +2b4−2b1b3 +µ

2
E(2c2− c2

1),

d3 = b2
3−2b2b4 +µ

2
E(2c1c3− c2

2),

d4 = b2
4−µ

2
Ec2

3.

By applying the Mikhailov criterion, we show the switch of stability of the steady state S2 and

we have the following result.

Lemma 3.1 (Mikhailov criterion) Assume that W has no pair imaginary roots. Then the steady

state of the system with the characteristic equation is locally stable if and only if

[arg(W (iw))]w=+∞

w=0 = n
π

2
,

where W is a polynomial with degree n
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The calculation of total change of argument of the complex function W (iw) when w increases

from 0 to +∞ gives the stability of the corresponding steady state. In delay differential equa-

tions, the characteristic equation is written as

W (λ ) = P(λ )+
k

∑
i=0

aiλ
ieλτi

where P is a polynomial function with deg(P) = n > k. Then, the condition which ensures the

local stability of the corresponding steady state (See Fig. and Fig. ) is given as follows:

[arg(W (iw))]w=+∞

w=0 = n
π

2
.

From equation (19) we can write

sin(W (iw)) =
Im(W (iw))√

Re(W (iw))2 + Im(W (iw))2
−→w→+∞ 0

cos(W (iw)) =
Re(W (iw))√

Re(W (iw))2 + Im(W (iw))2
−→w→+∞ 1

and

W (0) = b4−µEc3

Then arg(W (iw))w→+∞ −→ 2π .

If b4 > µEc3, then arg(W (0)) = 0 and

[arg(W (iw))]w=+∞

w=0 = 2π = 4
π

2

If b4 < µEc3, then arg(W (0)) = π

[arg(W (iw))]w=+∞

w=0 = 2π−π < 4
π

2

which imply that the steady state is unstable for τ = 0 and unstable for all τ > 0 (see Fig.).

In the next we compute the critical value τcof the delay τ at which we obtain the switch of

stability of the equilibrium point S2.

Let z = ω2, then equation (21) becomes

(22) g(z) = z4 +d1z3 +d2z2 +d3z+d4 = 0,
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FIGURE 4. Mikailov Hodographs illustrating the stability of the steady state S2

forτ = 0

Lemma 3.2 Assume that Re(λ (0)) < 0. If equation (22) has no positive roots. Then, all roots

of equation (17) have negative real parts.

Proof. If (22) has no positive roots, then any real number ω is not a root of equation (21). This

ensures that any real number ω is not a root of equation (19). Hence, for any real number ω ,

iω is not a root of equation (17), which implies that there is no τc such that λ (τc) = iω(τc) is a

root of equation (17).

Since Re(λ (0)) < 0 and Re(λ (τ)) is a continuous function of τ , we conclude that all roots of

(17) have negative real parts.

Next, we present conditions which ensure that equation (17) has a positive root or has no

positive roots. To this end, we differentiate

g′(z) = 4z3 +3d1z2 +2d2z+d3.

We put x = z+
d1

4
, then the equation

(23) 4z3 +3d1z2 +2d2z+d3 = 0,
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FIGURE 5. Mikailov Hodographs illustrating the stability of the steady state S2

forτ = 40

becomes

(24) z3 +m1z+m2 = 0,

where

m1 =
8d2−3d2

1
16

, and m2 =
d3

1−4d1d2 +8d4

27
.

From Cardano’s method, the discriminant of equation (24) is

∆ =
m2

2
4

+
m3

1
27

,

and, solutions of equation (24) are:

xk = jk 3

√
−m2

2
+
√

∆+ j2k 3

√
−m2

2
−
√

∆, k = 0,1,2, j =
−1
2

+

√
3

2
i = e

i
2π

3 .

Hence,

(25) g′(z) = 4
k=2

∏
k=0

(z− zk), with zk = xk−
d1

3
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FIGURE 6. Mikailov Hodographs illustrating the instability of the steady state

S2 for τ = 80

According to the sign of the discriminant, we have three cases:

• If ∆ > 0, then z0 is real, z1 and z2 are conjugate roots.

• If ∆ = 0, then there is one real root (a triple root) or two real roots (a single root and a

double root).

• If ∆ < 0, then there are three real roots.

Lemma 3.3

(i): If either (a) d4 < 0, or (b) d4 ≥ 0, and there exists k ∈ {0,1,2} such that zk > 0 and

g(zk)≤ 0, then equation (22) has a positive root.

(ii): If the conditions (a) and (b) are not satisfied, then equation (22) has no positive roots.

Proof. (i) Suppose that condition (a) holds, that is, d4 < 0. Then, we have that g(0) = d4 < 0.

On the other hand, since

lim
x−→+∞

g(x) = +∞,

by the intermediate value Theorem, equation (22) has a positive root.

Now, suppose that condition (b) holds. Then, there exists k ∈ {0,1,2} such that zk > 0 and
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g(zk)≤ 0. Since g(0) = d4 < 0 , again by the intermediate value Theorem, g has a zero between

the origin and zk.

(ii) Suppose that condition conditions (a) and (b) are not satisfied. If ∆≥ 0, then

g′(z) = 4(z− z0)Q(x),

where Q is a quadratic polynomial with discriminant negative or nul. Hence g′ is negative on

]−∞,z0], positive on [z0,+∞[. So g is decreasing ]−∞,z0] and increasing on [z0,+∞[. Moreover

g(z0) is the global minimum of g on IR. If g(z0) > 0, then g is is strictly positive on the real

numbers. Thus, equation (22) has no positive roots. If z0 ≤ 0, then g is increasing on [0,+∞[.

Hence, g(z)≥ g(0) = d4 ≥ 0 for all z≥ 0. So equation (22) has no positive roots.

If ∆ < 0, then (23) are three real roots zk, k = 0,1,2, and g(zk) are three extremums of g. If

g(zk)> 0 for all k, then g is is strictly positive on the real numbers. Thus, equation (22) has no

positive roots. If zk ≤ 0 for all k, then g is increasing on [0,+∞[. Then g(z)≥ g(0) = d4 ≥ 0 for

all z≥ 0. So equation (22) has no positive roots.

Using the above lemmas, we have the following result.

Theorem 3.4 Suppose R0 > R∗ and (H1) is satisfied.

If the conditions (a) and (b) of Lemma 3.3 are not satisfied, then S2 is asymptotically stable for

all values of the time delay τ ≥ 0.

Next, we will provide the conditions on the parameters to ensure that the Hopf bifurcation

occurs at τ = τc. Suppose conditions in Lemma 3.3 hold, then equation (22) has a positive root.

Without loss of generality, we assume that it has four positive roots, denoted by pk, k = 0,1,2,3.

Therefore equation (21) has four positive roots, ωk =
√

pk for k = 0,1,2,3.

From (20) we know that τk,n for k = 0,1,2,3 and n ∈ IN, corresponding to ωk is

τk,n =
1

ωk
arcsin

ω(c2−ω2)(ω4−b2ω +b4)−ω(b3−b1ω2)(c3− c1ω2)

µE [(c3− c1ω2)2 +ω2(c2−ω2)2]
+

2nπ

ωk
.

Now, let τc > 0 be the smallest τ such that α(τc) = 0. Then,

(26) τc = τkc,nc = min{τk,n > 0, 0≤ k ≤ 3, n ∈ IN} and ωc = ωkc .

Theorem 3.5 For the time lag τ , let the critical time lag τc and ωc be defined as in (26). Suppose

that R0 > R∗, (H1) and 4ω6
c +3d1ω4

c +2d2ω2
c +d3 6= 0.
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If one of the conditions (a) and (b) of Lemma 3.3 are satisfied, then S2 is locally asymptoti-

cally stable when τ ∈ [0,τc[ and unstable when τ > τc. Further, system (1) undergoes Hopf

bifurcation at S2 when τ = τc.

FIGURE 7. Hopf bifurcation occurs and periodic solutions appear. For this sim-

ulation,we choose rT = 0.5, rI = 0.01, Tmax = 13.6× 106, γ = 0.0014, ρ =

0.05, b = 5.4× 10−4, p = 200, µV = 0.67, β = 3.4× 10−7, E0 = 0, µE =

0.5, τ = 16.

Proof. From Theorem 3.4, we have S2 is locally asymptotically stable for τ = 0. Then α(0)< 0.

Since α(τc) = 0, we conclude that α(τ) < 0 for all τ ∈ [0,τc[. Hence, S2 is locally asymptoti-

cally stable when τ ∈ [0,τc[. Because otherwise, there exists a ξ ∈ [0,τc[ such that α(ξ ) > 0.

Since α(0) < 0, again by the intermediate value theorem, there exists a ξ ′ ∈ [0,τc[ such that

α(ξ ′) = 0. This contradicts the fact that τc is the smallest of τ such that α(τc) = 0.

Now, we will show that

dα(τc)

dτ
> 0,

This will signify that there exists at least one eigenvalue with positive real part for τ > τc. More-

over, the conditions for Hopf bifurcation [13] are then satisfied yielding the required periodic

solution. We differentiate equation (17) with respect to τ , we obtain

(
dλ

dτ
)−1 =

4λ 3 +3b1λ 2 +2b2λ +b3

−µEλ (λ 3 + c1λ 2 + c2λ + c3)e−λτ
+

3λ 2 +2c1λ + c2

λ (λ 3 + c1λ 2 + c2λ + c3)
− τ

λ
.
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As,

sign
dRe(λ )

dτ

∣∣∣∣
τ=τc

= sign(Re(
dλ

dτ
)−1
∣∣∣∣
τ=τc

).

Then,

sign(
dα(τc)

dτ
) = sign[

4ω6
c +3d1ω4

c +2d2ω2
c +d3

ω2
c (b3−b1ω2

c )
2 +(ω4

c −b2ω2
c +b4)2 ]> 0.

Because, if
dα(τc)

dτ
< 0, then equation (17) has a root with positive real part root for τ < τc.

This contradicts that S2 is locally asymptotically stable for τ < τc.

Therefore, the transversally condition holds and hence Hopf bifurcation occurs at τ = τc. This

completes the proof of theorem.

4. Control the infection with antiviral therapy

After analyzing this model without treatment, we would like to consider the treatment. Here

we will consider two type of treatments: interferon-α (IFN) and nucleotside analogs (NAs).

It is well know that there is a correlation between the high virus load and CD8+ failure. It is

very important to know which type of therapy regime would allow to reduce the viral load and

maintain the dynamic of the peripheral CD8+ at an adequate level. For these reasons we would

like to study the following model

(27)

dT
dt

= rT T
(

1− T + I
Tmax

)
− (1−u1)

γTV
T + I

+ρI

dI
dt

= rII
(

1− T + I
Tmax

)
+(1−u1)

γTV
T + I

−bIE−ρI

dV
dt

= (1−u2)pI−µVV

dE
dt

= β I(t− τ)E(t− τ)+E0−µEE.

The INF therapy can lower the virus load p by a factor of (1−u2) with an effectiveness u2 and

NA can bloke the shedding and bending of the virus to the uninfected cells, by lowering γ by a

factor (1−u1) with an effectiveness u1. Might also define in our model the total therapy efficacy

by 1− u = (1− u1)(1− u2) and in order to keep our model with in the biological frame we
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would also suggest that there are bounds for both therapies that represent the range of the doses

of treatment protocols, of course that would change depending of the severity of the infection,

age and weight of the patient and other health condition, which means u1min ≤ u1 ≤ u1,max and

u2min ≤ u2 ≤ u2,max

We consider a control problem with objective function defined as follows

(28) J(u1,u2) =
∫ t f

t0
[QV (t)−WT (t)+R1u2

1(t)+R2u2
2(t)]dt.

The parameters Q, R1 and W are the weight constants for the virus and control inputs respec-

tively. The second term in (28) represents systemic costs of the drug treatment (i.e., severity of

unintended side effects as well as treatment cost). The case when ui(t) = uimax represents max-

imal use of the antiviral therapy. The objective function ( 28) expresses our goal to minimize

both the HBV virus population and systemic costs to body . Therefore, we seek a pair optimal

control u∗ = (u∗1,u
∗
2) such that

(29) J(u∗) = min{J(u1,u2) : (u1,u2) ∈U},

subject to the system of ODE (27) and where

U = {u = (u1,u2) |u is measurable, u1 ∈ [u1min,u1max], and u2 ∈ [u2min,u2max] for t ∈ [t0, t1]}

is the control set.

4.1 Existence of an optimal control pair

The existence result in [7] and Lukes in [15] guarantee existence of the optimal control pair

as follows

Theorem 4.1 There exists an optimal control pair (u∗1,u
∗
2) ∈U such that

J(u∗1,u
∗
2) = min

(u1,u2)∈U
J(u1,u2).

Proof. To use an existence result in [7], we must check the following properties:
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(1) The set of controls and corresponding state variables is nonempty.

(2) The control set U is convex and closed.

(3) The right hand side of the state system is bounded by a linear function in the state and

control variables.

(4) The integrand of the objective functional is convex on U .

(5) There exist constants c1,c2 > 0 and β > 1 such that the integrand L(T,V,u1,u2) of the

objective functional satisfies

L(T,V,u1,u2)≥ c1(|u1|2 + |u2|2)
β

2 − c2.

To verify the condition 1, we use a result in [15] to show that the existent solutions of (27)

with bounded coefficients. the condition 2 is straightforward, the bilinearity of the system with

respect to u1 and u2 guarantee the condition 3 Our control set satisfies condition 2. Since the

state system is bilinear in u1 and u2 and the solution is bounded, the right hand side of system

(27) satisfies condition 3. Note that the integrand of our objective functional is convex. Since

the states are bounded, then there exists c1, c2 > 0 and β = 2 > 1 such that

L(T,V,u1,u2)≥ c1(|u1|2 + |u2|2)− c2.

Therefore,existence an optimal control pair.

4.2 Optimality system

Pontryagin’s minimum Principle with delay given in [8] provides necessary conditions for

an optimal control problem. This principle converts (27), (28) and (29) into a problem of

minimizing an Hamiltonian, H, with :

H(t,T, I,V,E, Iτ ,Eτ ,u1,u2,λ ) = QV −WT +R1u2
1 +R2u2

2

+ λ1[rT T
(

1− T + I
Tmax

)
− (1−u1)

γTV
T + I

+ρI]

+ λ2[rII
(

1− T + I
Tmax

)
+(1−u1)

γTV
T + I

−bIE−ρI]

+ λ3[(1−u2)pI−µVV ]+λ4[β IτEτ +E0−µEE].
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By applying Pontryagin’s Minimum Principle with delay in state [8], we obtain the following

Theorem.

Theorem 4.2 Given optimal controls u∗1, u∗2 and solutions T ∗, I∗, V ∗ and E∗ of the correspond-

ing state system (27), there exist adjoint variables λ1, λ2, λ3 and λ4 satisfying the equations

λ
′
1(t) = W −λ1(t)rT (1−

2T ∗(t)+ I∗(t)
Tmax

)+λ2(t)
rII∗(t)
Tmax

+ (λ1(t)−λ2(t))(1−u∗1(t))
γI∗(t)V ∗(t)

(T ∗(t)+ I∗(t))2 ,

λ
′
2(t) = λ2(t)[bE∗(t)− rI(1−

2I∗(t)+T ∗(t)
Tmax

)]+λ1(t)
rT T ∗(t)

Tmax

+ (λ2(t)−λ1(t))[(1−u∗1(t))
γT ∗(t)V ∗(t)

(T ∗(t)+ I∗(t))2 +ρ]− p(1−u∗2(t)λ3(t)

− χ[t0,t f−τ](t)λ4(t + τ)βE∗(t),

λ
′
3(t) = −Q+µV λ3(t)+(λ1(t)−λ2(t))(1−u∗1(t))

γT ∗(t)
T ∗(t)+ I∗(t)

,

λ
′
4(t) = µEλ4(t)+bI∗(t)λ2(t)−χ[t0,t f−τ](t)λ4(t + τ)β I∗(t),

with transversality conditions

λi(t f ) = 0, i = 1, ...,4.

Moreover, the optimal control is given by

(30) u∗1 = min(1,max(0,
1

2R1
(λ2(t)−λ1(t))

γT ∗(t)V ∗(t)
T ∗(t)+ I∗(t)

))

and

(31) u∗2(t) = min(1,max(0,
1

2R2
λ3(t)pI∗(t))).

Proof. The adjoint equations and transversality conditions can be obtained by using Pontrya-

gin’s Minimum Principle with delay in state [8] such that

λ
′
1(t) =−

∂H
∂T

(t), λ1(t f ) = 0,

λ
′
2(t) =−

∂H
∂ I

(t)−χ[t0,t f−τ](t)
∂H
∂ Iτ

(t + τ), λ2(t f ) = 0,

λ
′
3(t) =−

∂H
∂V

(t), λ3(t f ) = 0.
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λ
′
4(t) =−

∂H
∂E

(t)−χ[t0,t f−τ](t)
∂H
∂Eτ

(t + τ), λ4(t f ) = 0,

The optimal control u∗1 and u∗2 can be solve from the optimality conditions,

∂H
∂u1

(t) = 0,
∂H
∂u2

(t) = 0.

That is

∂H
∂u1

(t) = 2R1u1(t)+(λ1(t)−λ2(t))
γT (t)V (t)
T (t)+ I(t)

= 0

and

∂H
∂u2

(t) = 2R2u2(t)− pI(t)λ3(t) = 0.

By the bounds in U of the controls, it is easy to obtain u∗1 and u∗2 in the form of (30) and (31)

respectively.

4.3 Numerical results

To solve the optimality system, we use an approach that has been developed in [10] based on

improved Gauss-seidel-like implicit finite-difference method and called GSS1 method . This

method is given as follows: Let’s consider the step size h > 0 and integers (n,m) ∈ IN2 with

τ = mh and t f − t0 = nh. For reasons of programming, we consider m knots to left of t0 and

right of t f , we obtains the following partition:

∆ = (t−m =−τ < ... < t−1 < t0 = 0 < t1 < ... < tn = t f < tn+1 < ... < tn+m).

Then, we have ti = t0 + ih (−m ≤ i ≤ n+m). Next, we define the state and adjoint variables

T (t), I(t), V (t), E(t), λ1(t), λ2(t), λ3(t), λ4(t) and the controls u1(t), u2(t) in terms of nodal

points Ti, Ii, Vi, Ei, λ i
1, λ i

2, λ i
3, λ i

4, ui
1 and ui

2. Now a combination of forward and backward

difference approximation, we obtain the following algorithm.

Algorithm
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step 1 : for i =−m, . . . ,0, do :∣∣∣ Ti = T0, Ii = I0,Vi =V0,Ei = E0,ui
1 = 0,ui

2 = 0.

end for

for i = n, . . . ,n+m, do :∣∣∣ λ i
1 = 0,λ i

2 = 0,λ i
3 = 0,λ i

4 = 0.

end for

step 2 : for i = 0, . . . ,n−1, do :∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ti+1 = Ti +h[rT Ti(1− Ti+Ii
Tmax

)− (1−ui
1)

γTiVi
Ti+Ii

+ρIi],

Ii+1 = Ii +h[rIIi(1− Ti+Ii
Tmax

)+(1−ui
1)

γTiVi
Ti+Ii
−bIiEi−ρIi],

Vi+1 =Vi +h[(1−ui
2)pIi−µVVi],

Ei+1 = Ei +h(β Ii−mEi−m +E0−µEEi),

λ
n−i−1
1 = λ

n−i
1 −h[W −λ

n−i
1 rT (1− 2Ti+1+Ii+1

Tmax
)+λ

n−i
2

rIIi+1
Tmax

+(λ n−i
1 −λ

n−i
2 )(1−ui

1)
γIi+1Vi+1

(Ti+1+Ii+1)2 ],

λ
n−i−1
2 = λ

n−i
2 −h{λ n−i

2 [bEi+1− rI(1− 2Ii+1+Ti+1
Tmax

)]+λ
n−i
1

rT Ti+1
Tmax

+(λ n−i
2 −λ

n−i
1 )[(1−ui

1)
γTi+1Vi+1

(Ti+1+Ii+1)2 +ρ]− p(1−ui
2λ

n−i
3

−χ[0,t f−τ](tn−i)λ
n+m−i
4 βEi+1},

λ
n−i−1
3 = λ

n−i
3 −h[−Q+µV λ

n−i
3 +(λ n−i

1 −λ
n−i
2 )(1−ui

1)
γTi+1

Ti+1+Ii+1
],

λ
n−i−1
4 = λ

n−i
4 −h[µEλ

n−i
4 +bIi+1λ

n−i
2 −χ[0,t f−τ](tn−i)λ

n+m−i
4 β Ii+1],

Ai+1
1 = 1

2R1
(λ n−i−1

2 −λ
n−i−1
1 ) γTi+1Vi+1

Ti+1+Ii+1
,

Ai+1
2 = 1

2R2
λ

n−i−1
3 pIi+1,

ui+1
1 = min(1,max(Ai+1

1 ,0)),

ui+1
2 = min(1,max(Ai+1

2 ,0)).

end for

step 3 : for i = 1, . . . ,n, write

T ∗(ti) = Ti, I∗(ti) = Ii,V ∗(ti) =Vi,E∗(ti) = Ei,u∗1(ti) = ui
1,u
∗
2(ti) = ui

2.

end for

The following parameters and initial values conditions used for the simulation are :

T0 = 5.5× 106, I0 = 1.1× 106, V0 = 2× 108, E0 = 500, rT = 0.5, rI = 0.01, Tmax = 13.6×

106, γ = 0.0010, ρ = 0.01, b= 5.4×10−4, p= 200, µV = 0.67, β = 3.4×10−7, s= 10, µE =



28 A. TRIDANE, K. HATTAF, R. YAFIA, F. A. RIHAN

0.5, τ = 20, Q = 1, W = 1.

The period of the therapy considered is 400 days.

FIGURE 8. HBV population with and without control.

5. Conclusion

The HBV treatment could face several challenges particularly for patient with compromised

immune response, such in the case of the HBV/HIV co-infection. In this paper, we studied a

mathematical model of HBV dynamic with delay in the activation of the effector CTL cells. To

reflect the reality of the growth of hepatocytes, we considered the logistic growth of the healthy

cells and infected cells with a homeostatic carrying capacity of Tmax. We also considered more
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FIGURE 9. The controls u1 and u2.

realistic infection rate which proportional to the incidence function.

We showed that there four types of equilibria, three of them are biologically feasible. First,

the disease free-equilibrium, which locally asymptotically stable if R0 < 1. Second, the immune-

response free-equilibrium which locally asymptotically stable if 1<R0 <R∗. Finally, if R0 >R∗

then there is an endemic equilibria which is locally asymptotically stable for τ < τc and unsta-

ble for τ > τc and system undergoes Hopf bifurcation when τ = τc. The result show that if the

immune response does not response to the infection quickly, the disease dynamic can go to an

oscillating behaviour.

We use Mikhailov criterion to illustrate the switch of stability at τ = τc. In fact it clear from

Figures (, and ) that, the system loses it’s stability as τ increases and we get an oscillating

behaviour.
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When the delay of the activation of the effector immune cells is large to have oscillation in

the model, we introduced an optimal control antiviral therapy approach that aimed to minimize

the virus count, maximize the health cells and minimizing the drug doses. Our optimal control

solution was able to steer the system from oscillating to non-oscillating dynamic (see Fig. 8).

In fact, the optimal management of the antiviral therapy was successful to establish the healthy

cells and to suppress the infections. To achieve that, the antiviral therapy drugs, interferon-α

(IFN) and nucleotside analogs (NAs) must be have an optimal efficacy as represented in Fig. 9.

More precisely, our result showed that the optimal efficacy of interferon-α should be 93% with

the fifty day of the therapy. Simultaneously, the nucleotside analogs efficacy should be decrease

to around 1.3%. This result showed that if there is a weak immune response to HBV treatment,

the therapy should aim to suppress the disease by reducing cells susceptibility to the infection

more than to reduce of virus production rate.
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