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Abstract. This paper addresses the issue of how to promote the spread of computer virus, which is regarded

as an intelligence weapon, by means of the optimal control method. First, a state-delay computer virus spread

model is established. Second, an objective functional for optimizing the control cost and effect is described. Third,

an algorithm for computing the gradient of the optimal control problem is developed. Finally, several numerical

examples is shown.
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1. Introduction

Computer virus is a malicious mobile code that are intended to spread among computers and

perform detrimental operations including virus, worm, logic bomb and so on[1]. From their first

appearance in 1986, computer virus has become a great threat to our work and daily life. Espe-

cially, in recent years, this threat has become more and more serious because of the development
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of hardware and software technology and the popularity of computer networks. So computer

viruses are an important risk to computational systems endangering either corporations of all

sizes or personal computers used for domestic applications, then we can use computer viruses

to cripple a computational system, which will be serious damaged. Computer virus is consid-

ered as one of the most important weapon in the internet, and their emergence and spread may

have great effect on the computer world[2]. For example, the U.S. military has been using the

primary computer virus techniques against the Iraqi command heart when the outbreak of the

Gulf War in the 1991. This is the first time in the world of battle with a computer virus and

uncover the prelude of computer virus in actual combat. Different codes have different ways to

spread in the internet. Virus mainly attack the file system and worm uses system vulnerability

to search and attack the computer. And for trojan horses, they camouflage themselves and thus

induce the users to download them[3].

Since Kephart and White [4,5] took the first step towards computer virus spread model, much

effort has been done in the area of developing a mathematical model for the computer virus

propagation[1,2,3,6-10]. But we noticed that the above-mentioned work ignores the fact that

computer viruses can be regarded as not only a threat to our information system, but also a

intelligence weapon to attack computer systems of the enemies. Some scientists asserted: in the

future, the greatest threat of mankind is not a nuclear war any more, but computer virus which is

more direct and more dangerous. So the computer virus attack has become a new and important

topic in modern information warfare.

The classic epidemic SIR model have been borrowed to depict the spread of a computer

virus[7,11,12]. In [13], Zou et al. investigated how the spread of red worms is affected by the

worm characteristics based on the SIR model. But this paper present the issue of how to let the

damage of computer virus for computational systems as serious as possible. First, a delayed

computer virus spread model with control is established by introducing an appropriate control

variable into a delayed model presented in [3]. Second, an optimal control problem is described

by suggesting an objective functional for optimizing the control cost and control effect. Third,

we develop a numerical algorithm for computing the gradient of the optimal control problem

by the lights of optimal state-delay control problem and Pontryagin-type minimum (maximum)
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principle. Finally, numerical examples demonstrate that the spread of computer virus can be

maximized effectively by use of an optimal control strategy, while the budget of the spread can

be minimized.

2. Model formulation

Our work is based on the delayed computer virus model on internet.



dS
dt = (1− p)b−µS−βS(t− τ1)I(t− τ1)+νR(t− τ2),

dI
dt = βS(t− τ1)I(t− τ1)− (µ + γ +α)I

dR
dt = pb+ γI−µR−νR(t− τ2).

(2.1)

It is assumed that each node is denoted as one computer and the state of it can be the healthy

computers who are susceptible (S(t)) to infection, the already infected computers (I(t)) who

can transmit the virus to the healthy ones or the recovered (R(t)) who cannot get the virus or

transmit it[3,14,15]. Here b is the number of newly coming nodes, p is the immune rate of a

newly coming node, β is the infection rate of an infected node, µ is the natural leaving rate of

a node, ν is the loss rate of immunity of a recovered node, γ is the recovery rate of an infected

node, α is the removing rate of an infected node due to the action of the virus, τ1 is the latent

period of an infected node, and τ2 is the immune period of a recovered node [3].

Next, we will introduce network attacks into model (2.1). Let τ3 be the latent period of an

offensive node, η be the budget for attacking susceptible computers. Then the corresponding

model with the network attack of computer virus is employed as follows:



dS
dt = (1− p)b−µS−βS(t− τ1)I(t− τ1)+νR(t− τ2)−ηS(t− τ3),

dI
dt = βS(t− τ1)I(t− τ1)− (µ + γ +α)I +ηS(t− τ3)

dR
dt = pb+ γI−µR−νR(t− τ2),

(2.2)

The initial conditions for model (2.2) are

(φ1(θ),φ2(θ),φ3(θ)) ∈C+ =C([−τ,0],R3
+), φi(0)> 0, i = 1,2,3, (2.3)
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where τ = max{τ1,τ2,τ3},R3
+ = {(S, I,R)∈ R3,S≥ 0, I ≥ 0,R≥ 0}. Therefore, all the standard

results on existence, uniqueness and continuous dependence on initial condition of solutions are

evidently satisfied.

3. Optimal control problems with state-delay controls

To formulate an optimal problem on the network attack, we introduce some preliminary def-

initions[16]. Let τ = (τ1,τ3) be a vector of delays and η be the budget for attacking susceptible

computers. We impose the following bound constraints on the delays and budget:

τ̃i ≤ τi ≤ τ̄i, i = 1,3, (3.1)

and

η̃ ≤ η ≤ η̄ , (3.2)

where τ̃i, τ̄i, η̃ j and η̄ j are given constants such that 0≤ τ̃i < τ̄i and η̃ j < η̄ j.

Any vector τ = (τ1,τ3)
T satisfying (3.1) is called an admissible state-delay vector. Let Γ

denote the set of all such admissible state-delay vectors. The vector η satisfying (3.2) is called

an admissible budget vector. Let Z denote the set of all such admissible parameter vectors. Any

combined pair (τ ,η) ∈ Γ×Z is called an admissible control pair for system (2.2). Let

X(t) =
[

S(t) I(t) R(t)
]T

.

For a given terminal time t f and given time points ti, i = 1,2, ..., p satisfying

0 < t1 ≤ t2 . . .≤ tn ≤ tp,< t f (3.3)

our aim is to find an admissible control pair (τ ,η) ∈ Γ×Z that minimizes the following cost

function

J =min{Φ(S(ti | τ ,η), I(ti | τ ,η),R(ti | τ ,η))

+
∫ tp

0
L(X(t | τ ,η),X(t− τ1 | τ ,η),X(t− τ2 | τ ,η),η)dt

}
,

(3.4)

where

Φ =−
p

∑
i=1

I(ti | τ1,τ3,η)
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L =
∫ tp

0

η2

2
dt

In (3.4), our objective aim is to find a control to maximize the accumulated number of infected

nodes at the characteristic times and meaning while to minimize the total budget for network

attack during the time period [0, tp]. In order to achieve those goals, we will focus on the

following algorithms.

4. Gradient computation

For convenient calculation, define the right side of (2.2) for t ∈ [0,tp] as:

f(X(t|τ ,η),X(t− τ1|τ ,η),X(t− τ3|τ ,η)) =
[

dS
dt

dI
dt

dR
dt

]T
,

and initial conditions for t ≤ 0 as

X(t) =
[

S(t) I(t) R(t)
]T

= φ(t,η).

Furthermore, in order to find an optimal solution, define

ψ(t | τ ,η) =


∂φ(t,η)

∂ t , if t < 0,

f(X(t|τ ,η),X(t− τ1|τ ,η),X(t− τ3|τ ,η)), if t ∈ [0, t f ],

and for i = 1,3

∂ f̄(t | τ ,η)

∂X
=

∂f(X(t | τ ,η),X(t− τ1 | τ ,E),X(t− τ3 | τ ,η),η)

∂X
,

∂ f̄(t | τ ,η)

∂ x̃i =
∂f(X(t | τ ,η),X(t− τ1 | τ ,η),X(t− τ3 | τ ,η),η)

∂X(t− τi)
,

∂ L̄(t | τ ,η)

∂ x̃i =
∂L(X(t | τ ,η),X(t− τ1 | τ ,η),X(t− τ3 | τ ,η),η)

∂X(t− τi)
.

According to literature [16] and model (2.2), we deduce the auxiliary impulsive system cor-

responding to this problem as follows:

λ̇(t)=−
[

∂ f̄(t | τ ,η)

∂X(t)

]T

λ(t)− ∑
l=1,3

{[
∂ f̄(t + τl | τ ,η)

∂ x̃l

]T

λ(t + τl)+

[
∂ L̄(t + τl | τ ,η)

∂ x̃l

]T
}
.
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Then for the system(2.2), given the admissible control pair (τ ,η) ∈ Γ× Z and the corre-

sponding solution of state system (2.2), there exist adjoint variables λi (i=1, 2, 3) satisfying


λ̇1(t) = µλ1(t)+β Iλ1(t + τ1)−β Iλ2(t + τ1),

λ̇2(t) = (µ + γ +α)λ2(t)− γλ3(t)+βSλ1(t + τ1)−βSλ2(t− τ1)+ηλ2(t + τ3),

λ̇2(t) = µλ3(t).

(4.1)

By jump conditions,

λ(t−k ) = λ(t+k )+

[
∂Φ(X(t1 | τ ,η), . . . ,X(tp | τ ,η),η)

∂X(tk)

]T

,k = 1,2, . . . , p (4.2)

and

∂Φ(X(t1 | τ ,η), . . . ,X(tp | τ ,η),η)

∂X(tk)
=
(

∂J
∂S

∂J
∂ I

∂J
∂R

)
=
(

0 −1 0
)
, (4.3)

we get jump conditions at points tk (k = 1,2,3, ..., p) :
λ1(t−k ) = λ1(t+k )

λ2(t−k ) = λ2(t+k )−1

λ3(t−k ) = λ3(t+k ),

with boundary conditions λi(t f ) = 0 (i = 1,2,3). So, from the above derivation, we can get

following conclusion.

Theorem 4.1 For the solution of system (2.2) corresponding to the admissible control pair

(τ ,η) ∈ Γ×Z, the auxiliary impulsive system (4.1)-(4.3) is established.

Next, we devote to gradient with respect to state-delays τ1and τ3:

∂J(τ ,η)

∂τi
=

∂Φ

∂τi
+
∫ tp

0

{
∂ L̄
∂τi
−
(

∂ L̄(t | τ ,η)

∂ x̃i +λT (t | τ ,η)
∂ f̄(t | τ ,η)

∂ x̃i

)
ψ(t− τi | τ ,η)

}
dt,

here i = 1,3. After simple computer, one gets

∂Φ

∂τi
=

∂ I
∂τi

= 0,
∂ L̄
∂τi

=
∂

η2

2
∂τi

= 0,
∂ L̄(t | τ ,ζ)

∂ x̃i =
∂

η2

2
∂ x̃i = 0.
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We also get

∂ f̄(t | τ ,η)

∂ x̃i =



∂ Ṡ(t)
∂S(t−τi)

∂ Ṡ(t)
∂ I(t−τi)

∂ Ṡ(t)
∂R(t−τi)

∂ İ(t)
∂S(t−τi)

∂ İ(t)
∂ I(t−τi)

∂ İ(t)
∂R(t−τi)

∂ Ṙ(t)
∂S(t−τi)

∂ Ṙ(t)
∂ I(t−τi)

∂ Ṙ(t)
∂R(t−τi)

 ,ψ(t− τi | τ ,η) =


Ṡ(t− τi)

İ(t− τi)

Ṙ(t− τi)

 ,

and

∂ f̄(t | τ ,q)
∂X(t− τ1)

=


−β I(t− τ1) −β I(t− τ1) 0

β I(t− τ1) β I(t− τ1) 0

0 0 0

 ,
∂ f̄(t | τ ,q)
∂X(t− τ3)

=


0 0 0

0 η 0

0 0 0

 .
In conclusion, we obtain gradient with respect to state-delays τ1and τ3:

∂J(τ ,η)

∂τ1
=−

∫ tp

0

[
λ1(t) λ2(t) λ3(t)

]

−β I(t− τ1) −β I(t− τ1) 0

β I(t− τ1) β I(t− τ1) 0

0 0 0




Ṡ(t− τ1)

İ(t− τ1)

Ṙ(t− τ1)

dt

=
∫ tp

τ1

[−λ1(t)+λ2(t)][β I(t− τ1)Ṡ(t− τ1)+βS(t− τ1)İ(t− τ1)]dt,

(4.4)

∂J(τ ,η)

∂τ3
=−

∫ tp

0

[
λ1(t) λ2(t) λ3(t)

]


0 0 0

0 η 0

0 0 0




Ṡ(t− τ3)

İ(t− τ3)

Ṙ(t− τ3)

dt

=
∫ tp

τ3

λ2(t)İ(t− τ3)dt,

(4.5)

where Ṡ(t), İ(t), Ṙ(t) are given by the right hand side of (2.2).

Theorem 4.2 For each admissible control pair (τ,η) ∈ Γ×Z, we obtain gradients (4.4) and

(4.5) of (2.2) with respect to delays τ1 and τ3 .
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Analogously, for η according to

∂J(τ ,η)

∂η
=

∂Φ(x(t1 | τ ,η), . . . ,x(tp | τ ,η),τ ,η)

∂η
+λT (0+ | τ ,η)

∂φ(0,η)

∂η

+
∫ tp

0

{
∂ L̄(t | τ ,η)

∂η
+λT (t | τ ,η)

∂ f̄(t | τ ,η)

∂η

}
dt

+
m

∑
l=1

∫ 0

−τl

{
∂ L̄(t + τl | τ ,η)

∂ x̃l +λT (t + τl | τ ,η)
∂ f̄(t + τl | τ ,η)

∂ x̃l

}
∂φ(t,ζ)

∂η
dt,

(4.6)

where
∂Φ(x(t1 | τ ,ζ), . . . ,x(tp | τ ,ζ),τ ,ζ)

∂ζ j
=

∂ I
∂η

= 0,

∂ L̄(t | τ ,ζ)
∂ζ j

=
∂

η2

2
∂η

= 1.

Combined with ϕ(t,q) which is a constant in [−τ,0], together with cost function J which is a

explicit function of η , it is obtain gradient with respect to the budget η :

∂J(τ ,η)

∂η
=
∫ tp

0
{
[

λ1(t) λ2(t) λ3(t)
]


∂ Ṡ(t)
∂η

∂ İ(t)
∂η

∂ Ṙ(t)
∂η

+1}dt

=
∫ tp

0
{
[

λ1(t) λ2(t) λ3(t)
]


0

I(t− τ3)

0

+1}dt

=−
∫ tp

0
{λ2(t)I(t− τ3)+1}dt

(4.7)

Theorem 4.3 For each admissible control pair (τ,η) ∈ Γ×Z, we obtain gradients (4.7) with

respect to budget η .

5. Optimal attack strategies
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As in [3], we shall take the parameter values given in Table 1. Furthermore, we shall assume

that S(0) = 8, I(0) = 1, and R(0) = 1[17].

TABLE 1. Values of the parameters.

Parameters p b β µ ν γ

Values 0.9 1 0.2 0.32 0.7 0.35

5.1. Optimal attacking problem with delay and without delay network attacks

The subject of attacking in computer systems is considered as a multidisciplinary area of

research which includes economists, network technology and resource management. And what

role does the time delay select play in optimal attack?

Simulation 1.
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FIGURE 1. The total number of infected computer with respect to budget effort

η in interval (0, 1] for without and with delays attacking.

In this subsection, we assume that the terminal time is tp = 50 and the immune period of a

recovered computer τ2 = 0.2, and we will firstly probe into optimal attacking problem based

on non-selective attack. That is, for fixed τ1 = τ3 = 0, maximum attack is studied when η is

regarded as a control parameter. Then the optimal harvest strategy with selective catch along

with τ1 = 1,τ3 = 1 are researched.

Simulation 1 reveal several significant points. The total number of infected computer fluc-

tuate between selective and non-selective attacking, and the number become higher with the

growth of budget for both of selective and non-selective attacking. It declare that selective
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attacking is more appropriate. The growth of the number not really obvious with the budget

grow.

5.2. Composite optimization problem (COP) based on the time delay attack

Problem (3.4) is a composite optimization problem related to the resources exploitation and

computer virus attacking from the perspective of economics and computer science when φ 6= 0

and L 6= 0.

Simulation 2.

When the initial of budget and ages are chosen, optimal budget and ages are computed by

algorithmic design. Furthermore the corresponding number of Infected computer is obtained in

Table 2. The terminal time is tp = 50.

Table 2: Optimal delays and budget with respect to COP

set initial of budget initial of the total number optimal budget minimum of the total

and ages of infected computer and ages number of infected computer

η0 τ10 τ30 I0 η τ1 τ3 I

1 0.4 0.3 1.5 35.07 0.55 0.31 1.45 38.70

2 0.1 1 1 20.19 0.55 0.86 0.86 38.30

5.3. Evolution of number of computers with or without man-made attack.

Simulation 3.

In this section, we shall assume that S(0)=8, I(0) = 1, and R(0) = 1. Let τ1 = 0.1, τ3 = 0.2 and

η = 0.5. Figure. 2 plots the evolution of number of susceptible nodes both with and without

man-made attack, Figure. 3 depicts the evolution of number of infected nodes both with and

without man-made attack, and Figure. 4 shows the evolution of number of recovered nodes both

with and without man-made attack. From these figures one can see that a system with optimal

man-made attack is dramatically superior to one without man-made attack.
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FIGURE 2. Evolution of number of susceptible computers with or without man-

made attack.

0 0.5 1 1.5 2 2.5 3 3.5 4
1

1.5

2

2.5

3

3.5

4

4.5

Time t

In
fe

ct
ed

 p
op

ul
at

io
n 

si
ze

 

 

with man−made attack

without man−made attack

FIGURE 3. Evolution of number of infected computers with or without man-

made attack.
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FIGURE 4. Evolution of number of recovered computers with or without man-

made attack.

6. Conclusion
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his paper aims to promote the spread of computer virus and the cost savings effectively by

means of the optimal control method. First, a controlled delayed computer virus spread model

has been established. Second, an optimal control problem has been proposed by maximizing

the number of infected nodes and minimizing the budget. Third, develop a numerical algorithm

for computing the gradient of the optimal control problem by the lights of optimal state-delay

control problem and Pontryagin-type minimum (maximum) principle. Finally, some numerical

examples have been provided, which show that the spread of computer virus can be promoted

effectively by taking optimal control measures.

Conflict of Interests

The authors declare that there is no conflict of interests.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (11101305, 11471243).

REFERENCES

[1] P. Szor, The Art of Computer Virus Research and Defense, Addison-WesleyEducation Publishers Inc., 2005.

[2] L. Billings, W.M. Spears, I.B. Schwartz, A unified prediction of computer virus spread in connected networks,

Physics Letters A, 297 (2002), 261-266.

[3] X. Han, Q. Tan, Dynamical behavior of computer virus on Internet, Appl. Math. Comput. 217 (2010), 2520-

2526.

[4] Kephart JO, White SR. Directed-graph epidemiological models of computer viruses. In: Proceedings of the

IEEE symposium on security and privacy; 1991. 343-59.

[5] Kephart JO, White SR. Measuring and modeling computer virus prevalence. In: Proceedings of the IEEE

symposium on security and privacy; 1993. 2-15.

[6] Mishra BK, Jha N. Fixed period of temporary immunity after run of anti-malicious software on computer

nodes. Appl Math Comput, 190 (2007): 1207-1212.

[7] Piqueira JRC, Araujo VO. A modified epidemiological model for computer viruses. Appl Math Comput, 213

(2009): 355-60.

[8] Piqueira JRC, de Vasconcelos AA, Gabriel CECJ, Araujo VO. Dynamic models for computer viruses. Com-

put Secur, 27 (2008): 355-359.

[9] Wierman JC, Marchette DJ. Modeling computer virus prevalence with a susceptible-infected-susceptible

model with reintroduction. Comput Stat Data Anal, 45 (2004):3-23.



OPTIMAL CONTROL OF A COMPUTER VIRUS MODEL WITH NETWORK ATTACKS 13

[10] Yuan H, Chen G. Network virus-epidemic model with the point-to-group information propagation. Appl Math

Comput, 206 (2008): 357-67.

[11] J.G. Ren, X.F. Yang, Q.Y. Zhu, L.X. Yang, C.M. Zhang, A novel computer virus model and its dynamics,

Nonlinear Anal. Real World Appl. 13 (2012), 376-384.

[12] J.G. Ren, X.F. Yang, L.X. Yang, Y.H. Xu, F.Z. Yang, A delayed computer virus propagation model and its

dynamics, Chaos Solitons Fractals 45 (1) (2012), 74-79.

[13] C. C. Zou, D. Towsley, W. Gong, On the performance of internet worm scanning strategies. Perform. Eval.

63(2006), 700-723.

[14] Guirong Jiang, Qigui Yang, Bifurcation analysis in an SIR epidemic model with birth pulse and pulse vacci-

nation, Applied Mathematics and Computation 215 (2009) 1035-1046.

[15] Ruiqing Shi, Xiaowu Jiang, Lansun Chen, The effect of impulsive vaccination on an SIR epidemic model,

Applied Mathematics and Computation 212 (2009) 305-311.

[16] Q. Chai, R. Loxton , K. Teo, C. Yang, A class of optimal state-delay control problems. Nonlinear Anal-Real

14 (2013) 1536-1550.

[17] Q.Y. Zhu, X.F. Yang, L.X. Yang, C.M. Zhang, Optimal control of computer virus under a delayed model,

Appl. Math. Comput. 218 (23) (2012) 11613-11619.


