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1. Introduction

Human health is inextricably linked to animal health because the two populations share the

same environment. This is more so when in developing countries animals provide energy in

the form of power for transport. Animals droppings such as cow dung also serve as fuel and

the products are source of protein food supplement and raw materials for making clothing. It is

estimated that about 75% of human infectious diseases are zoonotic and basically transmitted

from both domestic and wildlife animals [1]. Cleaveland, Laurenson and Taylor [2], identi-

fied 1,415 species of infectious organisms as causing emerging infectious diseases known to

be pathogenic to humans. These include 217 viruses and prions, 538 bacteria and rickettsia,

307 fungi, 66 protozoa and 287 helminths. Out of these, 868 infectious organisms representing

about 61% were classified as zoonotic and 175 ( about 12%) of the pathogenic species were con-

sidered to be associated with emerging diseases. Among the group of 175 pathogenic emerging

diseases, 132 representing about 75% were zoonotic. These are diseases that are transmitted

from both domestic and wild animals to human beings. This group of infectious diseases pose

much threat to human life as the associated cost continue to increase. The up-front costs associ-

ated with preparing for and responding to epidemic-prone infectious diseases is always factored

into planning to combat any epidemic. The financial burden of these preventable zoonotic epi-

demics from 1995 to 2008 exceed $120 billion globally[3]. The economic consequences are

felt in many areas such as industry, agriculture, trade and tourism as well as health [3].

Despite the impact of zoonoses on human life, most infections go undiagnosed causing untold

suffering and the death of thousands of people [4]. In sub-Saharan Africa, farming practices,

culture and eating habits, increased movement of animals, low educational levels, inadequate

disease control programs and lack of information about the disease have been reported to be the

contributing factors for the persistence of zoonotic diseases [4, 5, 6, 7, 8, 9].

There is therefore the need to study the transmission dynamics of zoonotic diseases from

one animal to the other and also to humans by employing mathematical modelling. This is a

powerful tool that has brought revealing results in ecological studies [10, 11]. Hsieh and Hsiao

[12] stated that the population of animals, including human beings, are significantly controlled

by infectious diseases.
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2. Model formulation

In this section, the mathematical model under discussion is developed through incorporation

of the following assumptions into the model of Bornaa, Makinde and Seini, [13]:

(1) The susceptible human , Y (T ), and animal populations, S(T ), become infected through

contact with the infective human population , Z(T ), and animal populations, I(T ).

(2) The contact process is assumed to follow the simple mass action kinetics with β as the

rate of transmission.

(3) The infected animal population is also treated with a recovery rate of γ are incorporated.

All other assumptions pertaining to [13] remain constant. These assumption are as follows:

(i) In the absence of the disease, the susceptible animal (prey) population grows logisti-

cally with intrinsic growth rate r1, environmental carrying capacity K, (r1,K ∈ R+) and

decreases in the population due to predation rate of n.

(ii) Only the susceptible S(T) can procreate. Logistic law is then use to model the birth

process with the assumption that births should always be positive.

(iii) The infected animals I(T) is remove with a death rate c or by human predation before

they can possibly reproduce. However, both the infected I(T) and susceptible S(T) ani-

mals populations contribute to the population growth towards the carrying capacity K.

(iv) Susceptible animals S(T) become infected through contact with an infected animals I(T)

and this contact process is assumed to follow the simple mass action kinetics with β as

the rate of transmission.

(v) Susceptible humans Y(T) become infected through contact with the infective popula-

tion, {I(T) and Z(T)}, and this contact process is assumed to follow the simple mass

action kinetics with β as the rate of transmission.

(vi) The disease can cross species barrier from the animal population N1(T ) to the human

population N2(T ). Hence the susceptible predator(human), Y(T), adds up to the in-

fected predator, Z(T), through predation and/or contact with the infected and it is not

genetically inherited.



4 CHRISTOPHER SAAHA BORNAA, YAKUBU IBRAHIM SEINI, BABA SEIDU

(vii) The infected human Z(T) population can recover by treatment at the rates γ and pos-

sesses a death rate of (σ + µ), where σ and µ are the death rates due to infection and

nature respectively.

(viii) The predation functional response of the human being towards both susceptible S(T) and

infected I(T) animals are assumed to follow Michaelis-Menten kinetics and is modeled

using a Holling type-II functional form with predation coefficients b, (b > 0) and half-

saturation constant a, (a > 0).

(ix) The efficiency at which the consumed susceptible S(T) and infected I(T) animals (prey)

are converted into predator is given as p and q respectively, where 0 < p < 1 and 0 <

q < 1.

The flow diagram of the model is presented in Figure 1.

FIGURE 1. Flowchart of the model
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The model equations are therefore as follows:

(1)



dS
dT

= r1S(1− S
K
)−βSI− nSY

aY +S
+ γI

dI
dT

= βSI− bIY
aY + I

− cI− γI
dY
dT

=
pnSY

aY +S
−µY + γZ−βY Z

dZ
dT

=
qbIY

aY + I
− (σ +µ)Z− γZ +βY Z

With initial values S(0)≥ 0, I(0)≥ 0, Y (0)≥ 0, Z(0)≥ 0.

To non-dimensionalize the system (1),we set s = S
K , i = I

K , y = aY
K , z = Z

K and t = βKT so

that the dimensionless model is given by.

(2)



ds
dt

= rs(1− s)− si− msy
a(y+ s)

+ γil

di
dt

= si− giy
a(y+ i)

− (c+ γ)il

dy
dt

=
pmsy
(y+ s)

−µyl +(aγl− y)z

dz
dt

=
qgiy

a(y+ i)
− (σ +µ + γ)zl +

yz
a

where r = r1
βK ,g = b

βK ,m = n
βK and l = 1

βK ; with initial data values s(0)≥ 0, i(0)≥ 0,y(0)≥ 0

and z(0)≥ 0.

3. Positivity Test

Theorem 3.1. Let s(0)> 0, i(0)> 0, y(0)> 0, and z(0)> 0. Then the solutions s(t), i(t),y(t)

and z(t) of the system are positive ∀t ≥ 0.

It is required to prove theorem 3.1 on (2) to show that the model is epidemiologically mean-

ingful and mathematically well posed (i.e, all the solutions of the system with positive initial

data will remain positive ∀t > 0).

Proof. Consider the last equation of model (2).
dz
dt

=
qgiy
y+ i

− (σ +µ + γ)zl +
yz
a

.

Implying
dz
dt
≥−(σ +µ + γ)zl

dz
z ≥−(σ +µ + γ)ldt∫ dz

z ≥−(σ +µ + γ)l
∫

dt
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ln |z| ≥ −(σ +µ + γ)lt +C, where C is a constant.

Let θ = (σ +µ + γ)l,

then ln |z| ≥ −θ t +C

z(t)≥ e(C−θ t)

z(t)≥ eCe−θ t

⇒ lim
t→+∞

z(t)≥ 0

Therefore ∀t ≥ 0, z(t)≥ 0. Implying that z(t) is positive.

Similarly, the solutions of the other model equations can be shown to be positive.

4. Boundedness of the System

The biological validity and behaviour of model (2) depend on bounds of the model. All the

solutions of must be within R4
+. Theorem 3.2 satisfies the condition if proven for model (2) .

Theorem 4.1. All the solutions of the system (2) are uniformly bounded within R4
+

Proof. Assume {s(t), i(t),y(t),z(t)} to be any solution of system (2).

Consider W = s+ i+ y+ z.

Therefore
dW
dt
≤ k̂(r+1)−hw.

where k̂ = max{s(0),k} and h = min{1,c,µ,σ}.

The theorem of differential inequalities gives a solution of
dW
dt

+hw≤ k̂(r+1) to be

W ≤ k̂
h(r+1)(1− e−ht).

As t → ∞, W ≤ k̂
h(r+ 1). This implies that the solution is confined for 0 ≤W ≤ k̂

h(r+ 1). It

shows that all the solutions of model (2) in R4
+ are within the region τ = {(s, i,y,z) ∈R4

+ : W ≤
k̂
h(r+1)+ ε} for all ε > 0 and t→ ∞. Hence, the theorem is satisfied

The dynamics of the model within τ can now be studied and hence consider the model to be

epidemiologically and mathematically well formed.
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5. Equilibrium States of the Model

5.1. Disease Free Equilibrium State

The disease-free equilibrium point is B(S∗,0,Y ∗,0), where

S∗ = rap−pm+µ l
rap and Y ∗ = (rap−pm+µ l)(pm−µ l)

rapµ l = pm−µl
µl S∗.

Remark 5.1. A necessary condition for existence of the disease-free equilibrium is

µ l < pm < rap+µl (or equivalently µ < pn < r1ap+µ).

5.2. Endemic equilibrium state

The endemic equilibrium state of the model (2) is given by E2(S∗∗, I∗∗,Y ∗∗,Z∗∗).

where

S∗∗ = gY ∗∗+lacY ∗∗+lacI∗∗+laγ Y ∗∗+I∗∗laγ

a(Y ∗∗+I∗∗) ,

Y ∗∗ = pmS∗∗+γ Z∗∗al−Z∗∗S∗∗−µ lS∗∗−
√

Π

2(µ l+Z∗∗)

Z∗∗ = qgY ∗∗I∗∗
(Y ∗∗+I∗∗)(laσ+laµ+aγ l−Y ∗∗) and

I∗∗ =
S∗∗(rS∗∗Y ∗∗a+rS∗∗2a+mY ∗∗−raY ∗∗−arS∗∗)

a(Y ∗∗+S∗∗)(γ l−S∗∗) .

where
Π = p2m2S∗∗2 +2 pmS∗∗Z∗∗laγ−2 pmS∗∗2Z∗∗−2 pmS∗∗2µ l +Z∗∗2l2a2γ2

+2Z∗∗2laγ S∗∗+2Z∗∗l2aγ µ S∗∗+Z∗∗2S∗∗2 +2Z∗∗S∗∗2µ l +µ2l2S∗∗2

Remark 5.2. The existence of S∗∗ and Z∗∗ is dependent on Y ∗∗ and I∗∗. For Y ∗∗ to exist,

l(σ +µ + γ)< 0 in its positive root and for I∗∗ to exist, Y ∗∗ < rS∗∗(1−S∗∗)
m−r(1−S∗∗) .

6. Reproduction Number and Stability Analysis

6.1. Reproduction Number

The Reproduction number derived from the Next Generation Matrix method [14, 15] is given

by:

R0 =
rap−pm+µ l−grp

rpa(c+γ)l .



8 CHRISTOPHER SAAHA BORNAA, YAKUBU IBRAHIM SEINI, BABA SEIDU

Theorem 6.1. The disease-free equilibrium state,B(S∗,0,Y ∗,0) of the model (2) is locally

asymptotically stable if R0 < 1, otherwise it is unstable.

It shows that with R0 < 1, the disease can be eradicated if the initial sub-population is within

the restricted region.

A feature of the Reproduction Number from R0 < 1 is S∗ < lac+aγ l+g
a .

From the original equation, S∗ < ac+aγ+b
aβK .

This relation according portrays two important points [16]:

• The persistence of the disease depends on some parameters that measure the character-

istics of the susceptible animals and infection.

• The requirement that the density of susceptible animals must not exceed a certain critical

value for the disease not to persist.

6.2. Stability Analysis

The local stability condition can be establish with the Jacobian matrix (J) of the model equa-

tion (2),

where

(3) J =


J11 γl− s − ms2

a(y+s)2 0

i J22 − gi2

a(y+i)2 0
pmy2

(y+s)2 0 J33 (aγl− y)

0 qgy2

a(y+i)2
qgi2

a(y+i)2 +
z
a J44



J11 = r(1−2s)− i− my2

a(y+s)2

J22 = s− gy2

a(y+i)2 − (c+ γ)l

J33 =
pms2

(y+s)2 −µl− z, and

J44 =
y
a − (σ +µ + γ)l.

6.2.1. Local Stability of Disease - Free Equilibrium

The Jacobian (JB), evaluated at B is given by:
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JB =



r (1− s)− my2

a(y+s)2 γl− s − ms2

a(y+s)2 0

0 s− g
a − (c+ γ) l 0 0

pmy2

(y+s)2 0 pms2

(y+s)2 −µ l aγ l− y

0 qg
a 0 −(σ +µ + γ) l + y

a



JB =



ξ
(γ l−1)rap+pm−µ l

rap − µ2l2

p2am 0

0 rap−pm+µ l−grp
rap − (c+ γ) l 0 0

(−pm+µ l)2

pm 0 (−pm+µ l)lµ
pm π

0 qg
a 0 η


where

ξ =

(
r
(

pm−µ l
rap

)
p2am−(pm−µ l)2

)
p2am ,

η =−a2l2 prµ σ+a2l2 prµ2+a2γ l2 prµ−rap2m+aprµ l+p2m2−2 pmµ l+µ2l2

a2 prµ l and

π = a2γ l2 prµ−rap2m+aprµ l+(pm−µ l)2

aprµ l .

JB =



ξ
(γ l−1)rap+pm−µ l

rap − µ2l2

p2am 0

0 (R0−1)(c+ γ) l 0 0

(−pm+µ l)2

pm 0 (−pm+µ l)lµ
pm π

0 qg
a 0 η


where R0 (c+ γ) l = rap−pm+µ l−grp

rap

The eigenvalues of the Jacobian matrix are:

λ =



0

η

(R0−1)(c+ γ) l

−µ l((pm−µ l)ap−(pm−µ l))
p2am


.
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The disease free - equilibrium state is therefore stable if R0 < 1 and since η < 0. The zero

eigenvalue indicates that the origin is stable but not asymptotically stable.

6.2.2. Local Stability of Endemic Equilibrium State

Let the Jacobean matrix for the endemic equilibrium state E(S∗∗, I∗∗,Y ∗∗,Z∗∗) be:

JE =


−C1 −C2 −C3 0

I∗∗ −C4 −C5 0

C6 0 C7 C8

0 C9 C10 −C11


where
−C1 = −raY ∗∗−raI∗∗+2rgY ∗∗+2rlacY ∗∗+2rlaγ Y ∗∗+2rlacI∗∗+2rlaγ I∗∗+aY ∗∗I∗∗+I∗∗2a

a(Y ∗∗+I∗∗)

+ mY ∗∗2a(Y ∗∗+I∗∗)2

(aY ∗∗2+aY ∗∗I∗∗+gY ∗∗+lacY ∗∗+laγ Y ∗∗+lacI∗∗+laγ I∗∗)
2

−C2 =
gY ∗∗+lacY ∗∗+lacI∗∗

a(Y ∗∗+I∗∗)

−C3 =
m(gY ∗∗+lacY ∗∗+laγ Y ∗∗+lacI∗∗+laγ I∗∗)2

a(aY ∗∗2+aY ∗∗I∗∗+gY ∗∗+lacY ∗∗+laγ Y ∗∗+lacI∗∗+laγ I∗∗)
2

−C4 =
gY ∗∗(Y ∗∗−1)
a(Y ∗∗+I∗∗)

−C5 =
gI∗∗

a(Y ∗∗+I∗∗)2

C6 =
pmY ∗∗2a2(Y ∗∗+I∗∗)2

(aY ∗∗2+aY ∗∗I∗∗+gY ∗∗+lacY ∗∗+laγ Y ∗∗+lacI∗∗+laγ I∗∗)
2

C7 =
pm(gy+lacy+laγ y+laci+laγ i)2

(ay2+ayi+gy+lacy+laγ y+laci+laγ i)
2 − µ l2yaσ+µ2l2ya+µ l2aγ y−lµ y2+µ l2iaσ+µ2l2ia+µ l2aγ i−µ lyi+qgyi

(y+i)(laσ+laµ+laγ−y)

C8 = (aγl−Y ∗∗)

C9 =
qgY ∗∗2

a(Y ∗∗+I∗∗)2

C10 =
qgI∗∗(I∗∗laσ+I∗∗laµ+laγ I∗∗+Y ∗∗2)

a(Y ∗∗+I∗∗)2(laσ+laµ+laγ−Y ∗∗)

−C11 =
laσ+laµ+laγ−Y ∗∗

a

det(JE) =

∣∣∣∣∣∣∣∣∣∣∣∣

−C1−λ −C2 −C3 0

I∗∗ −C4−λ −C5 0

C6 0 C7−λ C8

0 C9 C10 −C11−λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

The characteristic equation is of the form:

λ 4 +b1λ 3 +b2λ 2 +b3λ +b4 = 0,
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where
b1 =C11−C7 +C4 +C1

b2 =C6C3−C10C8−C11C7 +C11C4 +C11C1−C7C4−C7C1 + I∗∗C2 +C4C1

b3 =C11C6C3−C9C5C8−C10C8C4−C10C8C1−C11C7C4−C11C7C1 + I∗∗C11C2

+C11C4C1 +C6C2C5 +C6C3C4− I∗∗C7C2−C7C4C1

b4 = I∗∗C9C3C8−C9C5C8C1− I∗∗C10C8C2−C10C8C4C1 +C11C6C2C5 +C11C6C3C4

−I∗∗C11C7C2−C11C7C4C1

From Routh-Hurwitz stability criterion, if the conditions

(a) b1 > 0, b3 > 0 and b4 > 0

(b) b1b2b3 > b2
1b4 +b2

3

are satisfied, then the endemic equilibrium point is stable. Otherwise it is unstable.

7. Sensitivity Analysis

Using the estimated parameter values, r = 10.00, l = 0.95, p = 0.10, µ = 0.01, m = 0.42,

γ = 1.12, a = 0.50 and σ = 0.02, the sensitivity indexes are calculated and indicated in table 1.

TABLE 1. Sensitivity Indexes of R0

Parameter Description Value Index

l = 1
βK K = Environmental carrying capacity of susceptible prey and

β = Disease transmission rate 0.95 -1.0017

p Conversion rate of susceptible predator 0.10 -1.0828

γ Recovery rate due to treatment 1.12 -0.9825

m = n
βK n= Predation rate of susceptible prey 0.42 0.0076

r = r1
βK r1= Logistic intrinsic growth rate of susceptible prey 10.00 -0.0059

c Death rate of the infected prey 0.02 -0.0175

g = b
βK Rate of predation of infected prey 1.20 1.0845

µ Natural death rate of the predator 0.01 -0.0017

a Half saturation constant 0.50 -0.0059
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From Table 1, the most sensitive parameters are l, p and g ( That is the rates of disease trans-

mission, Conversion rate of susceptible predator and predation of the infected prey with K, the

environmental carrying capacity remaining constant). An increase (decrease) in β , all other

things remaining constant, or b by 10% leads to an approximate increase (decrease) in R0 by

10% and 11% respectively. An increase (decrease) in p by 10% will lead to an approximate

decrease (increase) in R0 by 11%.

8. Optimal Controls Analysis

We consider the case where time dependent control variables are incorporated into the basic

model as given:

(4)



ds
dt

= rs(1− s)− (1−u1)si− msy
a(y+ s)

+ γil

di
dt

= (1−u1)si− (1−u2)giy
a(y+ i)

− (c+ γ)il

dy
dt

=
pmsy
(y+ s)

−µyl +aγzl−{(1−u3)− (1−u2)y}z
dz
dt

=
(1−u2)qgiy

a(y+ i)
− (σ +µ + γ)zl +{(1−u3)− (1−u2)y}

z
a

The control interventions are:

• u1 is the intervention variable based on quarantine of infected prey and vaccination of

susceptible prey.

• u2 is the intervention variable based on education and awareness of the disease by the

predator as well as vaccination of susceptible predator for protection against the disease.

• u3 is the intervention variable due to the efficacy of the drug used for the treatment of

infected predator.

These interventions can be categorized into preventives and curatives. Interventions such as

quarantine, vaccination and education are preventives whilst treatment is aimed at curing the

infection. We therefore investigate the following control options to determine the best strategy:

• Strategy A: Implementing the control aim at curing the infection (i.e. u1 = u2 = 0,

u3 6= 0).
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• Strategy B: Implementing only the controls aim at preventing infection (i.e u1 6= u2 6= 0,

u3 = 0).

• Strategy C: Implementing all controls (i.e. u1 6= u2 6= u3 6= 0).

The major objective therefore is to find the optimal levels of the intervention strategies desired

to reduce the cost of implementation and hence the prevalence of the disease in both the predator

(Human)

The related objective functional J is given as:

(5) J = min
ui,i∈[1,3]

∫ t f

0
(i+ z+π1u2

1 +π2u2
2 +π3u2

3)dt

where πi, i ∈ [1,3] are non-negative weights associated with the controls. These measure the

relative cost of implementing the interventions [11]. To minimize J(u1,u2,u3) over the set of

admissible controls U given by:

U = {(u1,u2,u3) |0≤ ui ≤ 1 is measurable for t ∈ [0,T ]} .

We find an optimal control triple (u1,u2,u3)by minimizing J subject to model (2).

Pontryagin’s maximum principle [17] converts the optimal control problem into a problem

of point-wise minimization of the Hamiltonian function H with respect to u1,u2 and u3.

(6) H(ui) = i+ z+π1u2
1 +π2u2

2 +π3u2
3 +αs

ds
dt

+αi
di
dt

+αy
dy
dt

+αz
dz
dt

That is;

H(ui) = f (i,z,u, t)+αẊ = i+ z+π1u2
1 +π2u2

2 +π3u2
3

+αs

(
rs(1− s)− (1−u1)si− msy

a(y+s) +u3γil
)

+αi

(
(1−u1)si− (1−u2)giy

a(y+i) − (c+u3γ)il
)

+αya
(

pmsy
y+s −µyl +au3γzl−{(1−u3)− (1−u2)y}z

)
+αz

(
(1−u2)qgiy

a(y+i) − (σ +µ +u3γ)zl +{(1−u3)− (1−u2)y} z
a

)
Where αs,αi,αy and αz are the adjoint variables or co-state variables. By the Pontryagin’s

Maximum Principle we have;



14 CHRISTOPHER SAAHA BORNAA, YAKUBU IBRAHIM SEINI, BABA SEIDU

Proposition 8.1. If the optimal triple (u∗1,u
∗
2,u
∗
3) minimizes J(u1,u2,u3) over U then there exists

adjoint variables which satisfy the following:

(7)



dαs

dt
=−∂H

∂ s
= αsr (2s−1)+(αs−αi)(1−u1) i+

(αs/a+αy p)my2

(y+ s)2

dαi

dt
=−∂H

∂ i
= (αs−αi)(1−u1)s+

(αi−αzq)(1−u2)gy2

a(y+ i)2 +(αs +αiu3)γ l

+αicl−1
dαy

dt
=−∂H

∂y
=

(αs/a−αy p)ms2

(y+ s)2 +
(αi−αzq)(1−u2)gi2

a(y+ i)2 +
(

αz

a
−αy

)
(1−u3)z

+αyµ l
dαz

dt
=−∂H

∂ z
= (αz−αya)u3γ l +(αy−αz)(1−u2)+

(
αz

a
−αy

)
(1−u3)y

+αz (σ +µ) l−1

Where αs(t) = αi(t) = αy(t) = αz(t) are the transversality conditions. The state and adjoint

systems give the solution of the optimal control problem [18]. From equation (6) and by the

stationary condition, the optimal control triple is determined as:

(8)



u∗1(t) = min
(

1,max
(

(αi−αs)si
2π1

,0
))

u∗2(t) = min
(

1,max
(

αzqgiy+αzzy+αzzi−αigiy−αyzay−αyzai
2π2a(y+i) ,0

))
u∗3(t) = min

(
1,max

(
αiγ ila−αyza2γ l+αyzay+αzzaγ l−αzzy

2π3a ,0
))

9. Numerical Simulation

The purpose of numerical simulation is to verify the analytical results [?]. Computer simula-

tions of the solution of the system are presented with the following selected parameter values:

r = 10.00, l = 0.95, p = 0.10,c = 0.02,µ = 0.01,m = 0,42,g = 1.20,γ = 1.12,σ = 0.02,

q = 0.05,π1 = 6∗103,π2 = 6∗202,π3 = 6∗10 and a = 0.50 with initial values scaled to

s(0) = 1.00, i(0) = 0.50,y(0) = 1.20,z(0) = 0.30 per 10,000 individuals.

The simulation results are presented graphically as follows:
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Strategy A: Implementing the Control Aim at Curing the Infection
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FIGURE 2. Susceptible Prey
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FIGURE 3. Infected Prey
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FIGURE 4. Susceptible Predator
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FIGURE 5. Infected Predator

The effect of strategy A is shown in figures 2, 3, 4, and 5.
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Strategy B: Implementing the Controls Aim at Preventing Infection
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FIGURE 6. Susceptible Prey
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FIGURE 7. Infected Prey
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FIGURE 8. Susceptible Predator
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FIGURE 9. Infected Predator

By implementing strategy B, the profile is shown in figures 6, 7, 8 and 9.
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Strategy C: Implementing all Controls
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FIGURE 10. Susceptible Prey
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FIGURE 11. Infected Prey
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FIGURE 12. Susceptible Predator
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FIGURE 13. Infected Predator

Figures 10, 11, 12 and 13 show the profile of the effect of strategy C on the infection.
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Comparing the Effects of the Strategies
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FIGURE 14. Strategy A
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FIGURE 15. Strategy B
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FIGURE 16. Strategy C

The effects of the control strategies on each class are compared in the figures 14, 15 and 16.
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10. Cost-Effectiveness Analysis

TABLE 2. Incremental Cost-Effectives Analysis

Alternative Interventions Total

Cost($)

Total

Effect

Change in

Cost ($)

Change in

Effect

ICER ($)

Strategy B (Preventive) 1.6986 0.9500 1.6986 0.9500 1.79

Strategy A (Curative) 2.7986 1.5000 1.1000 0.5500 2.00

Strategy C (Preventive and

Curative)

2.1657 1.5003 -0.2329 0.0003 -776.33

From Table 2 Strategy A is excluded from the options because it produces less effect with

high cost, hence the ICER is higher $1.79 as compared to $2.00 for strategy A and negative

$776.33 for strategy C.

TABLE 3. Incremental Cost-Effectives Analysis

Alternative Interventions Total

Cost($)

Total

Effect

Change

in Cost($)

Change

in Effect

ICER

($)

Strategy B (Preventive) 1.6986 0.9500 1.6986 0.9500 1.79

Strategy C (Preventive

and Curative)

2.1657 1.5003 0.4671 0.5503 0.85

From Table 3, strategy C dominates strategy B in terms of lives saved and cost. The analysis

revealed a cost saving of $0.85 for C over B as compared to $1.79 for B over C. In other words,

it cost less ($0.85) to get an additional life-year gained with strategy C than with strategy B

($1.79).
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11. Conclusions

The model is shown to have a stable disease free equilibrium when the basic reproduction

number is less than unity. This shows a similar impression when the treatment is administered

to only the human population with all other things remaining unchanged.

It is also noted that;

• The persistence of the disease depends on some parameters that measure the character-

istics of the susceptible animals and infection.

• The second is the requirement that the density of susceptible animals must not exceed a

certain critical value for the disease not to persist.

A sensitivity analysis of the basic reproduction number indicates that the rate of infection,

Conversion rate of susceptible predator and the rate of predation of the infected prey are the

most critical parameter to consider for fighting against the infection.
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