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Abstract. In this paper, we propose an epidemic model with age-structure in the exposed and infectious classes for
a disease like hepatitis-B. Asymptotic smoothness of semi-flow generated by the model is studied. By calculating
the basic reproduction number and analyzing the characteristic equation, we study the local stability of disease-free
and endemic steady states. By using Lyapunov functionals and LaSalle’s invariance principle, it is proved that if

the basic reproduction number is less than unity, the disease-free steady state is globally asymptotically stable; if

the basic reproduction number is greater than unity, the endemic steady state is globally asymptotically stable.
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1. Introduction

Hepatitis B is a worldwide disease and it has become a serious threat to human health. To
study the transmission of Hepatitis B, several epidemic models for the infection of Hepatitis B
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have been studied extensively. Hepatitis B virus carriers may become acute hepatitis or chronic
hepatitis B patients after incubation, and two types hepatitis B patients’ scaled probability of

infection are different. In [1], Liu considered an HBV infection epidemic model as follows:

S(t) =A—(u+p)S(t) — BiSE) (1) — B3S(1) L2 (1),

V() = pS(t) = (L+p)V () = BV (1)1 (t) — B4V (1)L (0),

E(t) =5S(t) (Bi1y(t) + B3L2(1)) + V(1) (Bo11 (1) + Baba (1)) — (L + 1 + R)E(D),

Li(t)=nE({t)— (u+8 +e)h(t),

(1.1)
L(t)=pE(t) - (L+ & +e)h(1),
R(t) = pV (1) + 011 (1) + &L(t) — uR(t),

where the variables S(¢), V(¢), E(t), I(t), I(t) and R(t) represent the numbers of susceptible
individuals, vaccinees, hepatitis B virus carriers, patients with acute hepatitis B, patients with
chronic hepatitis B and recovered individuals at time 7, respectively. Liu assume that different
individuals in the same class have the same behavior and waiting time. Then system (1.1)
can be regarded as ODEs(see, for example, [2-7]). In [1], Liu has proved that if the basic
reproduction number is less than unity, the disease-free steady state is globally asymptotically
stable; if the basic reproduction number is greater than unity, the endemic steady state is globally
asymptotically stable.

However, there are differences in individuals’ physical condition and social environment,
Hepatitis B virus carriers’ incubation stage and Hepatitis B patients’ convalescence differ from
man to man. Several medical studies show that the scaled probability of Hepatitis B virus
infection is in connection with age of infection and the risk per unit time of activation appears
to be higher in the early stages of infection than in later stages. In [8], McCluskey has shown
that the risk of activation can be modeled as a function of duration age, and this form can be
employed to describe more generality in the distribution of waiting time by introducing the
duration age in latent class as a variable. Therefore, it’s necessary to incorporate the duration

age into modeling.
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Motivated by the above works, in this paper, we propose an SVEI LR epidemic model with

continuous age-dependent latency, acute hepatitis B infection and chronic hepatitis B infection

as follows:
S(t)=A—(u+p)s / Bi(a)i(t,a)da—S(t / Bs(a)j(t,a)da,
V(t)=pS(t)—(u+p)V / B2(a)i(t,a)da—V / Bas(a
8egc;a) n 86(;;61) (@) 4 m(a)elt.a),
i(t,a i(t.a (1.2)
o) L D) (i 5i(a) e (a) + )il a),

i) 2(ta) _
da or

R(t) =pV(t —l—/ O1(a tada+/ )j(t,a)da— UR(t),

—(1+82(a) +&(a))j(t,a),

with boundary conditions

/[31 i(t,a)da+S(t) /[33 j(t,a)da
+V(t /[32 i(t,a)da+V(t /[34 t,a)da,

i(1.0) / nia (1.3)

(t,O)—/O »(a) rada+/g

and initial conditions

§(0) =80 >0,V (0) =Vp > 0,R(0) = gg > 0,
e(0,a) = @(a) € L} (0,00),i(0,a) = ¢i(a) € L} (0, o), (1.4)

j(0,a) = ¢;(a) € L (0,%),
where, e(t,a) represents the density of exposed individuals with age of latency a at time 7.
i(t,a), j(t,a) represent the density of patients with acute hepatitis B and chronic hepatitis B

with age of infection a at time ¢, respectively. The parameters of model (1.2) are biologically

explained as in Table 1.
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TABLE 1. Parameters and their biological meaning in model (1.2)

Parameter | Interpretation

A constant recruitment rate

u natural death rate

p the rate for susceptible individuals to be vaccinated

p the rate for vaccinees to obtain immunity and move into recovered population
Bi(a) the rate for acute hepatitis B patients infecting susceptible individuals at age a
Ba(a) the rate for acute hepatitis B patients infecting vaccinees at age a

Bs(a) the rate for chronic hepatitis B patients infecting susceptible individuals at age a
Ba(a) the rate for chronic hepatitis B patients infecting vaccinees at age a

Yi(a) the rate for exposed individuals being acute hepatitis B patients at age a

P(a) the rate for exposed individuals being chronic hepatitis B patients at age a

€ (a) acute hepatitis B death rate at age a

&(a) chronic hepatitis B death rate at age a

01(a) the rate for acute hepatitis B patients being recovered population at age a

O (a) the rate for chronic hepatitis B patients being recovered population at age a

Note: All these constants are assumed to be positive.

In order to simplify model (1.2), denote

61(a) = u+n(a)+nla), 6ia)=p+di(a)+e(a)+6(a), 6(a)=Hu+d(a)+ea)

Since the variable R(¢) does not appear in the first five equations of (1.2), in this paper, we

consider the following reduced system

$() = A= (u+p)S /51 i(t,a)da=S(t) | Ba(a)i(t.ada,

V() = pS(t) — (u+p)V /ﬁz i(t,a)da— V(1 /m a)da,
de(t,a) de(t,a)

9 "o —0i(a)e(t,a), "
81(;:1) N 81%261) = —6y(a)i(t,a),

20a) | 9D __gy(a)jr.a).
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This paper is organized as follows. In section 2, we introduce some basic results of system (1.5),
including state space, assumptions and boundedness of the solutions. Asymptotic smoothness
of the semi-flow is analyzed in section 3, which is generated by the system (1.5). Then we
study the existence of equilibria and obtain the expression of the basic reproduction number Ry
in section 4. And the local stability of equilibria is proved in section 5. Finally, in section 6, we
give proof of the global stability of equilibria.

More details concerning the global stability analysis of epidemic model approach, we refer

readers to [9-19].
2. Preliminaries

To make the model be biologically significant, we list the assumption as follows:

Assumption 2. We assume that

(i) Bi(a), B2(a), B3(a), Pa(a), 61(a), 62(a), 63(a), & (a) are non-negative and belong to L% (0, o)
with respective essential upper bound By, B2, B3, s, 61, 65, 03, E € (0,00);

(ii) B1(a), B2(a), Bs(a), Ba(a), & (a) are Lipschitz continuous on R with coefficients Mg, , Mg,
M By M By Mé , respectively;

(iii) There exits a positive constant o € (0, ] such that 0y (a) > uo, 62(a) > o, 63(a) > yo for

alla > 0.

2.1. State space

Define the space of functions 2" as
Z =Ry xRy x L (0,00) x L (0,00) x LL (0,20),
equipped with the norm
I rxa,ts,35) L = ot + bl + [ (@lda+ [ a(@)ida+ [ fas(a)da.

Then, the initial values (1.4) of system (1.5) are taken to be included in .2":

(5(0),V(0),e(0,a),i(0,a), j(0,a)) = (So. Vo, @e(a), 9i(a), @;(a)) € 2.
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By the standard theory of functional differential equation [20], it can be verified that system
(1.5) with initial conditions (1.4) has a unique nonnegative solution. Thus, a continuous semi-

flow associated with system (1.5), that is

D (Xo) :=X(t) = (S(r),V(2),e(t,-),i(t, ), jt,-) € Z,t >0, (2.1)
with
|P: (Xo)[| 2 = [1S(2),V (1), e(t-),i(t,-), i (2, )| 2

_ ]S(t)\Jr]V(t)\+/O°°]e(t,a)|da+/0°o\i(t,a)]da—l—/omlj(t,a)]da.

Finally, we define the state space for system (1.5) as
Y= {(S(0),V(t)oe(t, ), (6,2, (0)) € 210 S0 +V () + [ elt,a)da+ [ ift,a)da
0 0

+ [ jtapdas 2y,
0 Ho

which can be proved to be positive invariant by the following proposition.

2.2. Boundedness

The last three equations of system (1.5) can be reformulated as Volterra equations by use of

Volterra formulation. In order to be convenient for computation, we denote

Bi(a) = exp(— [{ 61()dc), Ba(a) = exp(— [§02(1)dc), Bs(a) = exp(— [ 65(c)d).

From the expressions of Bj(a), By(a) and Bs(a), according to assumption 2, it is easy to see
that for all @ > 0,
0<Bj(a), Bz(a), Bz(a)<e M4
By(a) = —61(a)Bi(a), Bj(a)=—6x(a)Bs(a), Bji(a)=—63(a)Bs(a).
By integrating the terms e(¢,a), i(t,a) and j(¢,a) along the characteristic line t — a = const,
respectively, we get the following expressions:

e(t —a,0)B(a) for 0<a<t,
e(t,a) = (2.2)

Pe (Cl - I)Bﬁla(i)t)
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(

i(t —a,0)By(a) for 0<a<t,

Bz(a)
\ (Pi(a_t)B—z(a—t)
([ jt—a,0)Bs(a)  for O<a<t,
j(t,a)= Bs(a) (2.4)

S )

In order to imply the boundedness of system (1.5), we have the following proposition.

Proposition 2.1. Consider system (1.5) and equation (2.1), we have
(i) Y is positively invariant for ®;, that is, ®,(Xp) € T, for Vr > 0,Xp € T;

(ii) &, is point dissipative: there is a bounded set that attracts all points in 2.

Proof. Note that

ds(t) dv(t) d

d 0 d [* d [
— || Py (X = —= — t,a)da+— (t,a)da+ — i(t,a)da. (2.5
Gl = S0+ S0 e aydat S, [Citadat S [ ja)da. (25)

By equation (2.2), we get

/0 " e(t,a)da = /()’e(t—a,O)Bl(a)da+ /t”(pe(a_t> il(a) "

Bi(a—t)

Taking the substitution 0 =t —a and T = a —t in the first and second integral, respectively, and

differentiating by t, we get

B] t+T)
B —
d/ (t,a)d d/ (0,0)B (¢ d0'+d/ ———=d7t
e(t,0)B1(0 -l—/ +Tdr-l—/ (6 —a)B|(t—o)do.
Noting that By (0) = 1 and B (a) = —6;(a)B;(a), we obtain
d o] oo
< / e(t,a)da = e(t,0) — / 0, (a)e(t,a)da. (2.6)
dt Jo 0
Similarly, we have
d/ i(t,a)da = i(t,0) / 0:(a)i(t,a)d (2.7)
" / j(t,a)da = j(t,0)— / 0s(a) j(1,a)da. (2.8)
0

By (2.6), (2.7) and (2.8), equation (2.5) becomes

%an,(xo)y\%:/\—uS() (u+p)V (/ Bila ”’d“/ Pala )a)
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(/ By(a tada+/ Bila )a)

(/ Bi(a tada+/ Bs(a )a>

(/ By tada+/ Bila ta)da)
/91 tada+/ 1(a tada—/ 6 (a)i(t,a)da

—l—/ Y (a tada+/ i(t,a)da— /63()(ta)d
0
= A—pS() — (u+PIV (D)~ /O (61(a) ~ 11 (a) ~ (@) elt,a)da
—/O (63(a) —é(a))i(t,a)da—/o 6s(a) j(1,a)da.
Thus, from (iii) of assumption 2, we can get
d « <. <.
5| Pr(X0) 22 < A= puS(t) = (+p)V (1) — Ho (/O e(t,a)da+/o l(t,a)da/0 J(t,a)da)
= A — o[ P (Xo)|| 2-
Hence, it follow from the variation of constants formula that for ¢ > 0,
A _ A
@)l < e (S -l ) 29)

which implies that ®,(Xp) € Y for any solution of (1.5) satisfying Xy € Y and all + > 0. Thus,
the positive invariance set of Y for semi-flow ® can be verified.

Moreover, by (2.9) we can make inferences that limsup,_,.. ||®;(Xo)|| 2= < A/ for any Xy €
Z . Therefore, ® is point dissipative and Y attracts all points in 2. This completes the proof.
O

Proposition 2.2. If Xy € .2 and ||Xo|| 2~ < M for some constant M > A/, then the following

statements hold for ¢ > 0,

1) 0<S(r),V(t), [y e(t,a)da, [y i(t,a)da, [y j(t,a)da <M,

(ii) e(1,0) < (B1 + B2 + B3 + Ba)M?, i(1,0) < 1M, j(1,0) < (B +E)M
Proposition 2.3. Let C € 2 be bounded, then

(i) ®;(C) is bounded;

(i1) &Py is eventually bounded on C.
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3. Asymptotic smoothness

In order to obtain global properties of the semi-flow ®(z),, it is necessary to prove that the
semi-flow is asymptotically smooth. Before giving the results, we first introduce some lemmas

for later use.

Lemma 3.1 ([8]). Let D C R. For j=1,2, suppose f;: D — R is a bounded Lipschitz continuous
function with bound K and Lipschitz coefficient M ;. Then the product function fi f> is Lipschitz
with coefficient Ki\M» + KoM .

The definition of asymptotic smoothness is as follows:

Definition 3.1 ([21]). A semi-flow ®(¢,Xp) := RT x 2~ — 2  is said to be asymptotically
smooth, if, for any nonempty, closed bounded set B C 2" for which ®(z,B) C B, there is a
compact set By C B such that By attracts B.

In order to prove the asymptotic smoothness of the semi-flow, we will apply the following

results, which is based on Lemma 3.2.3 in [21].

Lemma 3.2 ([21,22]). If the following two conditions hold then the semi-flow ®(t,Xy) =
0(t,Xo0) +@(1,Xp) : Rt x 2" — 2 is asymptotically smooth in X

(i) There exists a continuous function w : Rt x R™ — R such that w(t,h) — 0 as t — « and

1o, X0) |2 < w(t,h) if || Xoll 2~ < By

(ii) Fort >0, ¢(t,Xo) is completely continuous.
To verify that the two conditions are fulfilled for system (1.5), we decompose ® : RT x

2 — 2 into the following two operators ¢ (¢,Xo), ¢(¢,Xo) : RT x 2" — 2. Let ¢(¢,Xp) :=

(S(t),V(t),é(t,-),i(t,-), j(t,)) and @(t,Xo) := (0,0, P2, ), @i(t,), Qj(t,-)) where

0 for 0<a<t, e(t,a) for 0<a<t,
Qe(t,a) = and é(t,a):= (3.1)
e(t,a) for 0<t<a. 0 for 0<r<a.
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0 for 0<a<t, 3 i(t,a) for 0<a<t,

Qi(t,a) == and i(t,a) = (3.2)
\ i(t,a) for 0<rt<a. 0 for 0<t<a.
( 0 for 0<a<t, 3 j(t,a) for 0<a<t,

¢(t,a) = and j(t,a) = (3.3)
\ jt,a) for 0<rt<a. 0 for 0<r<a.

Then we have ®(¢,Xo) = ¢(t,Xo) + ¢(¢,Xo) for all + > 0. In order to verify condition (i) of

lemma 3.2 holds true, we turn to prove the following proposition.

Proposition 3.1 ([22]). For 4> 0, let w(t,h) = he #0'. Then lim;_.o w(t,h) =0and ||@(¢,Xp)|| 2~ <
w(t,h) if || Xo|| 2= < h.

Proof. Obviously, lim;_,. w(t,h) = 0. For Xy € T and ||Xp|| 2~ < h, we have

I9(.0) - = 10]+10+ | " [@elr.a)lda+ [ @it lda+ [ |;(r.)lda

Y B (a) . Bs(a)
—/t ﬁDe(a—f)m‘ at | ‘Pz(a—f)m da
/oo (pj(a—t)B3B(3—(a)) da
B Bl( —l—T Bz(l‘—l—f)
/ e(f) Bl( ) dt +/ (Pz T@ at
R

drt

a@exp (- [ eviav)

:/0 00(7)exp (_/Tmel(u)dv)‘dw/:
+/0°° 0;(7)exp (_/T’“@(v)dv)

By (iii) of assumption 2, 6 (a), 6>(a), 63(a) > U for a > 0, we have

dar.

lo(t,Xo) |2 < e (J0] +[0] + J§~ |@e(T)d T + J5" [@i(T)|dT+ [ |9(7)|dT)
= e M| Xo|| 2~ < he HO" = wit,h).

This completes the proof. [

To verify (ii) of lemma 3.2, we need to prove the following lemma.

Lemma 3.3 ([23,22]). Let K C LP(0,) be closed and bounded where p > 1. Then K is com-

pact if the following conditions hold true.
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(i) im0 [ | f(z+h) — f(2)|Pdz = O uniformly for f € K.
(ii) imy, e [, | f(2)|Pdz = O uniformly for f € K.

Proposition 3.2 ([22]). For ¢t > 0, ¢(z,Xp) is completely continuous.

Proof. From lemma 3.3, for any closed and bounded set B C 2", we have ¢(¢,B) is compact.
According to proposition 2.2, S(¢) and V (¢) remain in the compact set [0, A/ ] C [0, M], where
M > A/ is bound for B. Thus, it is only to show that é(¢,a), i(t,a) and j(t,a) remain in a
precompact subset of LL(O, o), which is independent of Xy € Y. It suffices to verify that (i) and
(i1) in lemma 3.3 hold.

Now, from (2.2) and (3.1) we have

e(t—a,0)By(a), for 0<a<<t,
0<é(t,a)=
0, for 0<t<a.

Then, combing (i) of proposition 2.2, we have
&(t,a) < (Bi+ o+ B3 + Ba)M>eHo,

which implies that (ii) in lemma 3.3 is satisfied. To check condition (i), for sufficiently small

h € (0,1), we have

/Ooo |é(t,a+h)—é(t,a)|da = /Ot le(t,a+h) —e(t,a)|da
t—h
_ /0 le(t —a—h,0)B) (a) —e(t — a,0)B, (a)|da
- tih|0—e(t—a,O)Bl(a)|da
t—h
g/ e(t —a—h,0)|Bi(a+h) — B (a)|da
0

t—h

+/ Bi(a)le(t —a—h,0) —e(t —a,0)|da
0
t

+ le(t —a,0)By(a)|da
t—h
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Recall that 0 < By (a) < e #“ < | and Bj(a) is non-increasing function with respect to a, we

have
t—h t—/’l t—h
/0 Bila+h)~Bi(@lda= [ Bi(da~ [ Bi(a+h)da
= Bl da /Bl
t—h t
= Bi(a)da— Bl( )da — Bi(a)da
0 h t—h

_ /OhBl(a)da—/tthBl(a)da <h.

Hence, from (ii) of proposition 3.2, we have
| 1ete.a+ k) =2(t.a)lda < 2(Bi+ B+ B+ B+ A (3.4)

where,
t—h
A= Bi(a)le(t —a—h,0) —e(t — a,0)|da.
0

From (i) of proposition 3.2, we find that |dS(¢)/dt| is bounded by Mg = A+ (1 + p)M +
BiM? + BsM? and |dV (¢)/dt| is bounded by My = (u + p)M + BoM? + B4M?. Therefore, S(-)
and V() are Lipschitz on [0,0) with coefficients Mg and My. By Lemma 3.1 of [24], there
exist some Lipschitz coefficients My, My,, My,, My, for [y° Bi(a)i(-,a)da, [y B2(a)i(-,a)da
i B(@) (- a)da, [ Ba@) (- a)da respectively. Thus, fi” By ()i(-,a)S()da, " Ba(a)i(-,a)
V()da, [y Bs(a)j(-,a)S(-)da, [y Ba(a)j(-,a)V(-)da are Lipschitz continuous on [0, o) with co-
efficients Ms; = KM;, + KMs, Mgy = KMy, + KMs, My; = KMy, + KMy, My; = KMy, + KMy,
respectively. Denote M = Mg; + Mg; + My;+ My ;. Then,

t—h Mh
A< Mh/ e Midag < — (3.5)
0 o
Finally, by (3.4) and (3.5), we have
o] B B _ 2 M
/ (e, ) —2(0,a)lda < (2637 + 1 ) (3.6)
0 0

where, B = Bi + B2 + B3 + B4. The right hand of (3.6) converges uniformly to 0 as # — 0 and
condition (i) is proved for &(¢,a). Noting that (3.4) holds for any Xy € B, thus, &(¢,a) remains in
a precompact subset Bz of L1 (0,c0). Similarly, i(t,a) and j(¢,a) remain in a precompact subset

B;, B; of L1 (0,00) respectively. Thus, the proof is completed. [J
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From proposition 3.1 and 3.2, we apply lemma 3.2 and conclude that the following theorem

holds.
Theorem 3. The semi-flow ®(¢) >0 generated by system (1.5) is asymptotically smooth.
Then we have the following proposition.

Proposition 3.3. The semi-flow ®(¢),-( has a global attractor </ contained in 2", which attracts

the bounded sets of 2.
4. The existence of equilibria

System (1.5) always has the equilibrium Ey = (Sp, Vp,0,0,0), where

A Vo — pPA
utp 0 (wtp)(utp)

So =
By calculating the basic reproduction number, we get

Ro = So ( /O " Bi(a)Ba(a) / " 1(a)By (a)da

HB(@)B(@) [ (h@B(@) +E@B(a) /Oww(a)Bl(a)daMa)da

+V0(/ B2(a)B:(a /:7’1

HBu@)B(@) [ (h@B(@) +E@B(a) /Oww(a)Bl(a)da)da)da.

Now we consider the positive equilibrium of system (1.5). The steady state (S*,V*,e*(-),i*(-), j*(+))

of system (1.5) satisfies the following equalities

A=(u+p)s =5 [ B @da—s" [ pa(a)j'(@da =0,
—(u+p)V V/Bz da—V*/ Bs(a)j* (a)da =0,

- = —0i(a)e’(a),
d";g“) = —6x(a)i*(a), (4.1)
dj*(a) _ —63(a)j"(a), |
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¢*(0) = /0 " (Bi(a)S" + Ba(a)V*) i (a)da + /0 " (Bs(a)S" + Ba(a)V*) " (a)da,
i*(0) = /0 " yi(@)e*(a)da,

0) = /000 yz(a)e*(a)da+/0w§(a)t a)da

Solving the third, fourth and fifth equations of (4.1) yields that

¢’(a) = e (0)Bi(a), i*(a)=i"(0)Ba(a), j*(a)=j"(0)Bs(a).
Put it into the last three equations, we get

¢'0) = | (Bi@)S' +Ba(@V")i" (0)Ba(a)da
+ [ B@)s +Bi@V) [ (0)Bs(@da,

i*<o>=/0 n(a)e’(0)B1 ()

/72 0)B1(a +/§ (a).

Denote Ki(a) = vi(a)Bi(a), K2(a) = y2(a)Bi(a), K3(a) = fi(a)Bz(a), Ki(a) = B3(a)B3(a),
Ks(a) = Pr(a)Ba(a), Ke(a) = Ps(a)Bs(a), K7 (a) = S (a)Ba(a), Kn = [ Km(a)da,m=1,2,---1.

Furthermore, we obtain

(4.2)

e"(0) = (K3S*+ KsV*)i*(0) + (KsS* + KsV™) j*(0),
i*(0) = K,¢*(0), (4.3)
77(0) = Kze* (0) + K7i*(0).
In (4.3), put the last two equations into the first equation, we get
e"(0) = [(K1K3 + KaKs + K1 K4K7)S™ + (K1 K5 + K2 K + K1 KgK7)V ] €*(0). (4.4)
Because i*(0) # 0, then we have ¢*(0) # 0. From equation (4.4) we get
(K1K3 + KoKy + K1 K4K7)S™ + (K1 K5 + K2 K + K1 KgK7)V™ = 1. (4.5)

Denote A; = K1 K3+ K> Ky + K1 K4K7, Ay = K1 K5 + Ko K4 + K1 Ky K7. Then Ry = A1So + AL V.
It follows from the first and second equations of (4.1) that

A pA
. V= .
pu+p+Ae*(0) (L+p+A1e*(0)) (1 +p +Aze*(0))

*_
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Plugging it into equation (4.5) yields
ap(e*(0))* +are*(0)+a; =0, (4.6)

where, ag = A1A3, ay :Al(u +p) —|—A2([.L —I—p) —A1AN\, ar = (,u —|—p)([.l —|—p) (1 —Ro). Obvi-
ously, agp > 0. When Ry < 1, then a; > 0 and equation (4.6) has not positive root. When Ry > 1,

(4.6) has a unique positive real root and

Therefore, if Ry > 1, there exists a unique positive equilibrium E* of system (1.5). where,
E* = (§*,V*,e*(a),i*(a), j*(a)), e*(a) = e"(0)Bi(a), i*(a) = K1€*(0)Bz(a), j*(a) = (K> +
K1K7)e*(0)B3(a).

From the above discussions, we have the following theorem.

Theorem 4. System (1.5) always has a steady state Ey(So,Vp,0,0,0), where Sy = A/(u + p),
Vo=pA/(L+p)(L+p); ifand only if Ry > 1, system (1.5) has a unique positive equilibrium
E*(S*,V*,e* (1), (), j*())-

5. Local stability

This section is mainly used to prove the local stability of equilibrium, and to verify that the

basic reproduction number is related to the stability of the equilibrium.

Theorem 5.1. The equilibrium Ey is locally asymptotically stable if Ry < 1, and unstable if

Ry > 1.

Proof. First, we introduce the change of variables as follows
Sl(t>:S(t)_SO7 Vl(t):V(t)—Vo, el(taCI):e(t’a)? il(t7a):i(taa)7
Ji(t,a) = j(t,a).

Linearizing system (1.5) at the equilibrium Ej yields the following system
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$1(1) = —(u+p)si(t) So/ Bi(a)ii(t,a)da — So/ Bs(a)ji(t,a)da,

Vl(t):psl() (/.H—p V1 V()/ ﬁz zltada V()/ ﬁ4 j]l‘a)d

8€1(t7a) + 861 (t’a) =—-06 (Cl)€1<f,a),

da ot
dir(t.a)  dii(t,a) ,

da + ot —_92<a)ll(t7a);
dji(t,a)  dji(t,a)

5. T o = —05(a)ji(t,a),
er(t,0) = /0 (B1(a)So+ B2(a)Vo)ii(t,a da+/ (B3(a)So + Ba(a)Vo) j1(t,a)da,
i0,0) = [ n(@en(r.a)da,

J1(t,0) = /0 " w(@)er(t,a)da+ /O " E(a)i (1,a)da,

s1(1) = %M vi (1) = Wt ey (t,a) = )(a)e iy (t,a) = ()(a)e, ji (t,a) = (a)e?,

0 .0 .0

where 59,19, ¢%(a), i9(a), j(a) will be determined later. We can get

1) = ~(u+p)st=So | Bi(@i(a)e Hda=5o | Br(a) (e Hda

M = psf = (o) =Vo | Ba@if(@)e M da—Vo [ Bula) f(@e Hda
dél(a)

19—+ 01(a)ela),

¥(a
D 3+ @)

_O“ (5.1)
d]clzc(za) =—(A+65(a)) /i (@),

40 = [ B+ Ba@Vo)i(@da+ [ (Ba(@)So+Bu(@Vo) f(a)da
20)= | n@ei(@da,
| rad@da+ [ s@hia)da

~.

—O

—~~
(=)

~~
I
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Integrating the third, the forth and the fifth equation of (5.1) from O to a yields
efta) =t 0)exp (- [+ er(s)ar).
o) = #0)exp (- [0+ ox(m)ar). (52)
@)= R0 (- [+ es(opar)
Plugging (5.2) into (5.1) and solving (5.1) gives
Y(0) = €Y(0) /Ooo <S0K3 (a)e ™ +VoKs (a)e_)‘“> da /0le (a)e *da
+¢(0) /Ooo (SOK4(a)e*M —|—V0K6(a)e*’l“) da [/Ooo K>(a)e *da

-l-/ Kl(a)e_’lada/ K7(a)e_7mda].
0 0

Denote Uy, (A1) = / Kn(a)e *%da,m =1,2,---,7. Then we can get
0

e1(0) = €9(0)[SoUs(A) + VoUs(A)]U1 (A) + €9(0) [SoUa(A) + VoUs(A)]U2 (1)
+e0(0)[SoUs(A) + VoUs(A) U1 (A) U ().

If €9(0) = 0, then i(0) = 0, j(0) = 0. Plugging it into (5.1), we have

A+u+p)si=0, A+u+p—pst=0.

For s(l) # 0 and v(l) =0, it is easy to get
A=—(+p).
If ¢9(0) # 0, then

1= (SoUs(A) +VoUs(A)) Ut (A) + (SoUs(A) +VoUs (1)) (U2(A) + U1 (A)Uz (1)) -
Then we denote

A(A) = U1(A)U3(A) + U2(A4)Us(4) + Ui (2)Us(2) U7 (R),

H(A) = U1(A)Us(1) + U2(4)Us(X) + U1 (2)Us(2)U7 (4 ).
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The characteristic equation is

(A+u)s)+ (A +u+p)+e} =0,

where,
O _M(?L)Soe? W0 _%(l)voe?
! Adut+p’ ! A+u+p’
That is
A+u
— A (A)Sg+ H(A)Vy = 1. 5.3
l+u+p1()0+ 2(A)Vo (5.3)

Assume that ReA > 0, then |21 (4)| < A; and |95 (A)| < A; hold. Hence, the modulus of the

left-hand side of equation (5.3) satisfies

A+u
— A (A)Sy+ 9 (A,
‘l+u+p]()o+ »(A)Vo

A+u
< | (A)S
S

+ |%()&)Vo| < A1So+A2Vp = Ry.

It follows from (5.3) that there is a contradiction. Thus, all the roots of equation (5.3) have
negative real part if and only if Ry < 1 and have at least one eigenvalue with positive real part if
Ro > 1. Therefore, the equilibrium E is locally asymptotically stable if Ry < 1 and unstable if

Ro > 1. This completes the proof. [J
Theorem 5.2. The equilibrium E* is locally asymptotically stable if Ry > 1.

Proof. Linearizing system (1.5) at the equilibrium E* under introducing the perturbation vari-

ables
s2(0) =8(t) = 8%, w(@t)=V()-V*, et,a)=-e(t,a)—e*(a),

i2(taa):i<t7a)_i*<a)7 jZ(I’a):j(t7a)_j*(a)7
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we obtain the following system

§2(1) = —(1+ p)sa(t) — 2t /[51 a)da — s*/ Bi(a)ir(t,a)da
—so(t /133 a)da — S*/ Bs(a)j2(t,a)da,
vo(t) = psa(t) — (L4 p)va(t) —va(t /ﬁ2 a)da— V/ Ba(a)ix(t,a)da

—V2 / ﬁ4 da V*/ ﬁ4 ]2 t a)d
dey(t,a) N dey(t,a)

oa o1 = —91 (a)ez(t,a),
dir(t, dir(t, .
al0a) | OB g, a)is(.a)
djr(t,a) dji(t,a)

y = —0s(a) ja(t,a),

+
/ a)S* + B (a)V )lz(faa)da+/m(ﬁ3(a)5*+ﬁ4(a)V*)]'2(faa)da,
0 0

/)/1 ezta
0

/'}/2 eztada—i-/é )io(t,a)da,
0

Set
s2(t) = s9eM, (1) =19eM,  ea(t,a) = €(a)e,  in(t,a) = i(a)eM,
jZ(taa) = jg(a)ema

where 59,19, €)(a), i9(a), j3(a) will be determined later. We get

A8y = —(p+p)ss— S*/ Bi(a)id(a)da — sz/ Bi(a)i*(a)d

- /ﬁ3a]2ada—s2/ Bs(a)j*(a)da,
0 0

Mg =psd—(utp)E -V [ Br@ib(@)da—3 [ Br(a)i'(@)da

v [ Bi@B@da— [ Bi(@] (a)da
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2+ 6y (@)a)
% :—(l+92(a))i(2)(a), (5.4)
D o+ o)

30 = [ (Bila)s" + Ba(a)V)B@pda+ / (B@S" + i@V Bla)da,
- / (Bi(@s3+ Bo(a)d)  (@)da-+ [ (Ba(@)sh-+ Bu(@)) J*(a)da

Integrating the third, the forth and the fifth equation of (5.4) from O to a yields
(o) = 0)exp (- [+ er(s)ar).
i&@:@@km(—éﬂk+®mmn>, (5.5)
Bla) = Borexp (- [+ or(ear).
Plugging (5.5) into (5.4) and solving (5.4) gives
e%O%zéGDAw<%Kﬂ) 94 VoKs(a “ d¢/ Ki(a)e ™ da
+¢3(0) /OM <S0K4(a)e*)““ +VoKg(a)e™ “) da/o K>(a)e *da
+¢3(0) /Ooo <SOK4(a)e_M + V0K6(a)e_la) da /Ooo Ki(a)e *da /Ooo K:(a)e *da.
The characteristic equation is

A+ )3+ (A +p+ph)+ed =0,

where,
0___ AMSE 7 CO\ o B
27 A4u+p+Aei(0) 2 A+u+p+A(0)
That is
At AN AP v =1 (5.6)
A+u+p+Ae*(0) A+u+p+Ae*0)
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Assume that ReA > 0, then |.«7] (A)| < A; and |2%4(14)| < A, hold. Hence, the modulus of the
left-hand side of equation (5.6) satisfies
A+u+p
A+ u+p+Ae*(0)

A+u+p
A+ u+p+Aze(0)

A (A)S"+ 2 (A)V*

’ A+u

A+u+p+Ae*(0)
‘ A+u

<

“A+u+p+Aef(0)

<AISTH+AVE=1.

H(A)S*

ARV

i

It follows from (5.6) that there is a contradiction. Therefore, ReA < 0. This means that all the
roots of (5.6) have negative real parts. Consequently, if Ry > 1, the steady state E* is locally

asymptotically stable. This completes the proof. [J
6. Global stability

This section is devoted to the global stability of equilibria. Before going into details, we
make some preparations.
First, we introduce an important function which is obtained from the linear combination of

Volterra-type functions of the form
g(x)=x—1—1Inx.

Obviously, g(x) > 0 for x > 0 and g’(x) = 1 — 1 /x. Then, g(x) has a global minimum at x = 1
and g(1) =0.

Theorem 6.1. If Ry < 1, the disease-free equilibrium Ey is globally asymptotically stable.

Proof. Consider the following Lyapunov functional defined as
Vi=Vii+Vi2+Viz + Vi,

where,

Vii = Sog(S(2)/So0) +Vog(V (1) /V(0)), V12=/000(01(a)€(f7a)da,

Viz = /Oooa)z(a)i(t,a)da, Via = /Owa)g(a)j(t,a)da,
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where,
o1(@)= [ (@:0/50) + @:(0)n(x) exp (— A el<r>dr) dx,
x@) = [ (SoPu(x)+¥0Balo) + ax O )esp (- [ et )
as(@) = [ ($0Bs() + VoBi(x)) exp (— A 93<r>dr) dx,

then

®2(0)n(a) + @3(0)na(a) + @1 (a) — 61(a) @1 (a) = 0.
SoBi(a) +VoPa+ @3(0)G (a) + @5(a) — 62(a)a(a) = O,

S0ﬁ3 (a) —|—V()B4 + COé (a) — 93(a)a)3(a) =0.

The derivative of V;; along with the solution of system (1.5) can be calculated as

Wi _ (1_%) <A—(u+p)S(t)—S(t)/m(B1( Ji(t,a)+ Bs(a)(c “”"“)

+(1—%)< S0~ PV () V@) [ Bafai

Vo | i)

_ (1) So i) _ S _ SOV
—,USO (2_S_O_S(t))+ S (3_ VO _S(t)_SOV(t))

~(50)-0) | (Bi(@i(t.) + Bal@)j(r. ) da
(VO =W [ (Ba(a)itt.a) +Bi(a)s(e,a) da.

The derivative of V|, along with the solution of system (1.5) can be calculated as

dvip
I dt/wl e(t— aOexp( /91 d’r)da
E/ o1 (a)o(a— t)exp( / 0, (t a’r)da
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Let r =t —a, then

M _ 2 / o0 (t = r)e(r, 0) exp (— / tr(%(f)c”) dr

dr
2 / o1t 4+ 7). (r)exp (— [ eteac)ar

— 01 (0)e(t,0)+ | (/(a) ~ 61(@)a1 (@) et a)da
(6.2)
Similarly, we can get
dV13 / Yi(a)e(t,a da-l—/ )(Dz(a))i(t,a)da,
% - “’3“’)/0 ((a)e(t,0) + & (@)ilt, a))da+ /O (0}(@) — 03()3(a)) j(1,a)da.
(6.3)

Combining the (6.1)-(6.3), it is easy to get

v, So () Ve S S
s <2— Ol S—O) +PSo (3 Vo St) SoV(t>>

—e(t,0) + w(0)e(t,0)

+ [ (501 (@) + VoBa(a) + x (0)£ (@) + 05 (@) — Ba(a) 02(a) i1, 0)da
+ [ (SoPa(a) + VoBi (@) + @k (a) — 65(@)an(a) (1. ada

+ [ (@0m(@ + o005 + 0'(0) - 8 (@ar(a)e(ta)da

= uSo <2— S0 _ &(t))) +pSo (3 - V‘g) - Si(t)) - sg/)z(;) + (Ro—1)e(z,0).

Therefore, Ry < 1 ensures that dLppg/dt < 0 holds. Furthermore, the strict equality holds only
if § =S80,V =V, e(t,a) =0, i(t,a) =0 and j(t,a) = 0, simultaneously. Thus, My = Ep C Y is
the largest invariant subset of dLppg /dt = 0, and by the Lyapunov-LaSalle invariance principle,

the equilibrium E is globally asymptotically stable when Ry < 1.

Theorem 6.2. If Ry > 1, the equilibrium E* is globally asymptotically stable.
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Proof. Constructing the Lyapunov functional as follows
Vo = Va1 4 Voo + Va3 + Vau,
where,
Var = g(8(t) /57) +8(V(1)/V7),
Voo = (K" +KsV") [ ar(@)glelr.a)/e’ (@))da
+(K4S" + KeV") /0 “gala)slelt,a) fe* (@) + ga(a)g(i(t.a) /" (a))]da,

Vys = /0 " ia)s(it,a) /i* (a))da,

g1(a) = / T y(0)e(0)do,  gala) = / T (o) (0)do,  gs(a) = / " £(0)i*(0)do,
a(@)= | (S'Bi(0)+V"Ba(0))i"(0)do, qj(a) = [ (5'Ba(0)+V"Bu(0))S" (0)do.
Calculating the time derivative of V5 along equations (1.5), we have

% - (1 _ ;;;) (A— (1 +p)S() —S(1) /0 "B (@)i(t,a) + s (@) j(t7a)]da)

n (1 v ) (psm oW O V) [ Bala)ita)da

s (2 50 SNy VO S SV
—us (2— - —%) +pS (3— v _S(t)_S*V(t)>

4. §* /Ooo(ﬁl (a)i*(a) + B3(a) j*(a))da — S(t) /Om(ﬁl (a)i(t,a)

(@) (1.0)da = 58" [ (B (@)1 (@) + Bo(a) () da

45 /000(131 (a)i(t,a) + B3(a)j(t,a))da —V* /0°°<ﬁ2i*<a>

+Bi(@)J" (@)da+V" [ (Ba(a)it,0) + Ba(@)j(r.)da

V() [ Bala)ite,a) + Bula)se,)da— (u+ )V (e) +p* .
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Applying the following equation

= PV +V" [ (Bala) (@) + Bula)s (@)da, (64

dVar Sit) 8 . Vi) S§°  S()v*
e (0 —m)+ * (-5 svo)

+ [ s Bi@i @) +5B <>'<a>)da—% | 5" Bu@ite,0) + 5"Bs(@)j(1,))da

s@)/( Bila)i'(@) +5" @) (@)da+ | (S'Bi(@i(t.) +S" (@) (r.)da

—/0 (V*Ba(a)i* (a) + V*Ba(a) j° da+/ (V*Ba(a)i(t,a) + V*a(a) j(t,a))da

YO [ Bat@ie.a) + v Bulaie.apda+ 1 [T B
+V*B4(a)j*(a))da
(6.5)
The derivative of V;», V3 and V)4 can be calculated as follows:
dvy § o [ . e(t,0) e(t,a) e(t,a) e(t,0)
ke (K3S* + KsV )/() 71 (a)e (G){ e (0) - e (a) +In e*(a) —In ¢*(0) }da
+(KaS* + KoV™) /0 p(a)e’ () { ZY(’&) - ZY(’;)) +n ‘;555)) —In ZYES)) } da
+(KaS* + KeV™) /0 " E(a)i*(a) {il-(*t’(()))) - ii(f(’ Z)) +1In il-g(,z)) —In ii*t(’(()))) }d“’
(6.6)
R O e B RO

@) T ™ 0)
%:/()M(S*ﬁ3(a)+V*ﬁ4(a))j*(a){ét 0) jta)  \ ita) O)}da. (6.8)
Combining (6.5)-(6.8), we get

dv. . S(i) S§* . Vi) S S(@)v*
e (2_ 5 _S(t))+ S\ _S(t)_S*V(t))

. S(t ) (t,a) S§* i(,0) i(t,a) i(¢,0)
—|—/SB1 a{— — —|—_( +1n— —In- da

* % (t,a (1, l(taa) it,O)
+/0 V*Ba(a)i (a>{_1_ V*it(a) +V([) + i*(0) +n i*(a) —In i*(0) }dd
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+ s @ 1= S - A e ) - m L faa
v {1 - S g S e - e
s ) [ (o { 00 ) O,
+ris+ o) [ mlale'to) { S - S e SR S
+(KaS* + KeV™) /Om &(a)i*(a) { i,-:(’g - iigtis)) i iiE‘lEaCl)) o ii(*t(,O)) } da
DRI ANAL

+ [ smi@r@{1- 2o en il n D

N /0"" V*Ba(a)i*(a) {—1 N VV<‘;) i iiit(,;l)) “in ’l(*t ’(()))) }da

o e {i-gen e n i e

-, V@@ {_1 o T }da

+(KaS™ + KsV*) /O “nla)e' (@ {m ZYEZ)) - Z*tég)) } a

+(KaS* +KoV") /0 (@)’ (@) {1“ Z*l{;l)) i Zgz(,g)) } da

HES + KV [ E@ (@) {ln ilf’;)) - ll*t(’g)) } da

+(K3S" + KsV™) /0 “la)e’ (@) { ee*tfc?)) } aa

+(KsS* + KgV™) /0 “pa)e’(a) { ee*t(’(()))) } da

HES +KoV) [ E @i (@) { ",i’g(?)) } da= | SB@i@ Sé?ii(f;?) ‘

-y v @ e s b @ g
o @S e s ) [T @ e
—(KaS* +KeV™) /Om n(a)e’(a) %d‘l ~(Kas RV /O°° S@)ia) ii(*tés)) a
s B+ Bl @ das [ Ba(a) 4V Bu(as @ e
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it is easy to see that the last twelve terms of the above equation equal to 0. Thus , using equation
(6.4), we have

dvy _ ¢ V(i) S§*  Sk)Vv*

dr ( S >+ HEpV ( Ve TS0 SV

V() S S@v*
+/ (V*Ba(a)i*(a) +V*Ba(a)j ()){3_ V* _S(t)_S*V(l‘)}d

. s ni(t,a)_ni(aO) ;
+ [ S B a) | 5o T i*<o>}d

+ / V*Ba(a)(a)i*(a) { - VV(:) +1In ii*t(’:;)) —1In zl(*t(,(()))) }da
v, B/ @ {1 -5+ ) 4
s vaer@{ - gg i il

+(K3S" + K5V* )/0 71 (a)e* (a) {ln 6*(7a) —lne(:(’o))}da

j(t,a) . j(2,0)
+1 )_lnj*(O }da

e*(0
+(KaS* + KV™) /0 pla)e’(a) {ln iit(’;l; - Z*t((()))) “
+(KaS* +KeV™) /Ow &(@)i"(a) {m ii(*tés) - iiit(,g)) } e

Consequently, we have

dv: y S() S§* . V(i) S° S@)v*
e (2_ 5* _S(t)>+(“+p)v (3_ iz _S(t)_S*V(t))

= [ B @)V Bala)i (@) + (5"t + v Bela) e 5 ) de

(R3S 4 KsV) / "y (@)e(a)g (e* (ef ("t) 0)) da
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_ /O V' Ba(a)i*(a)g <§(%)) “

- V(@) (a)g (?%)) “

Hence, dV,/dt < 0 holds. Furthermore, the strict equality holds only if § = S§*, V = V*,
e(t,a) = e*(a), i(t,a) = i*(a), j(t,a) = j*(a). Thus, M* = {E*} C Q is the largest invari-
ant subset of dV, /dt = 0, and by the Lyapunov-LaSalle invariance principle, when Ry > 1, the

equilibrium E* is globally asymptotically stable. This completes the proof. [
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