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Abstract. This paper analyzes the effect of refuge on the dynamics of a Leslie-Gower predator-prey model in

which one predator feeds on one of two competing species. Existence conditions for equilibrium points are dis-

cussed. By using differential inequality argument, we developed persistence criterion. Sufficient condition for

global stability of the unique positive equilibrium point is derived. Different type of local bifurcation near the

equilibrium points has been investigated. The role of refuges have been shown on equilibrium densities of prey,

competitor for prey and predator respectively. The results establish the fact that the effects of refuges used by prey

increase the equilibrium density of prey population under certain restrictions, whereas opposite hold for competitor

of prey population. However equilibrium density of predator may decrease or increase by increasing the amount

of prey refuge. Some numerical simulations are performed to validate the results obtained.
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1. Introduction
There has been a growing interest in the study of refuges in predator-prey system. González-

Oilvares and Ramos-Jiliberto [6] studied a predator-prey system with Holling type-II functional

response and a prey refuge. They showed that there is a trend from limit cycles through non-zero

stable points up to predator extinction and prey stabilizing at high densities. Kar [9] investigated

a Lotka-Volterra type predator-prey system incorporating a constant proportion of prey refuges

with Holling type-II response function. He remarked that it is possible to break the cyclic

behaviour of the system if harvesting effects as controls. Chen et al. [4] analysed the uniqueness

of limit cycles and global stability of the unique positive equilibrium of predator-prey system

with Holling type-II functional response and a constant number of refuges. Chen et al. [3] ,

and Yue [22] studied Leslie-Gower predator-prey system incorporating a constant proportion

prey refuge and showed the global stability at the interior equilibrium point. More results on

the effects of a prey refuge can be found in [2, 5, 7, 10, 12, 14, 15, 16, 17, 19]. Previous

studies on Leslie-Gower predator-prey system are mainly confined into constant proportion of

refuge which acts on the system as an external decreasing of the uptake rate and half saturation

constant, does not change the dynamical behaviour of the prey-predator model. Thus our main

object in this work to modify the refuge term. Recently, Mukherjee [14] studied the effect

of immigration and refuge on the dynamics of three species system. He discussed about the

persistence of the system and global stability. Model considered by him is of Lotka-Volterra

type. In another paper [16] Mukherjee investigated same type of situation without immigration

and predation process follows Holling-type II response function. Both of the papers, he did

not addressed what will be dynamical consequence if Leslie-Gower form is taken. Further we

are interested to know the dynamics consequence of the predator-prey system in presence of a

competitor for the prey in a Leslie-Gower model.

This paper is structured as follows. In Section 2, we propose our model. Some preliminaries

(positivity and boundedness) is discussed in Section 3. In Section 4, we analyze our model with

regard to equilibria and stabilities. Section 5, deals with the local bifurcation analysis around

the equilibria. Persistence criterion is established in Section 6. Influence of prey refuge is given
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in Section 7. Numerical simulations is presented in Section 8. A brief discussion is presented

in Section 9.

2. Mathematical Model

In Leslie-Gower prey-predator model, predator equation is taken logistic growth with carry-

ing capacity proportional to the prey density. This type of situation are applicable in ecology

[11, 13, 20] because the direct conversion of prey density into offspring is inappropriate for

a small mammalian predator that uses most of its energy intake on generating heat and be-

cause model of Leslie’s type assume interferences of predators which is justifiable for territorial

predators [20]. In this paper we introduce a predator-prey model with Leslie-Gower functional

response incorporating a positive constant prey refuge with the presence of a competitor for the

prey :
dx
dt

= x(r1−b1x)−αxy−a1(x−m)z

dy
dt

= y(r2−b2y)−βxy

dz
dt

= z
(

r3−
a2z

k+ x−m

) (1.1)

with initial conditions x(0)> m,y(0)≥ 0,z(0)≥ 0.

Here x,y,z denotes the density of the prey, competitor for the prey and predator respectively.

r1 is the intrinsic growth rate of the prey species and r2 is the intrinsic growth rate of the

competitor for the prey species. b1 is the infraspecific competition coefficient of the prey. α

denotes the interspecific competition coefficient of the competitor for the prey. b2 represents

the infraspecific competition coefficient of the competitor for the prey. β corresponds to the

intraspecific competition coefficient of the competitor for the prey. r3 describes the growth rate

of predator. a1 is the per capita predator consumption rate. a2 is the efficiency with which

predators convert consumed prey. m is the constant number of prey using refuge. k is the half

saturation constant.

Specific example illustrates the above model: Consider two species of aphid (Acyrthos-

iphon pisum and Megoura viciae) competing for the same food plant and a species of a specialist

parasitoid (Aphidius ervi) that attacks only one of the aphids (A. pisum). From experimental
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studies van Veen et al. [21]showed that (i) when the two aphid species compete for resources

in the absence of parasitoid. A. pisum excludes M. viciae. (ii) When the aphid species and the

parasitoid are all present, all three species can coexist.

3. Preliminaries

1.1. Positivity

Lemma 1.1 All solution of system (1.1) with positive initial conditions are positive i.e x(t) >

0,y(t)> 0,z(t)> 0 for all t ≥ 0 in the interval [0,∞).

Proof. Since the right hand side of system (1.1) is continuous and locally Lipschitzian on C, the

solution (x(t),y(t),z(t)) of system (1.1) with initial conditions exists and is unique on [0,φ),

where 0 < φ ≤ ∞ [8].

From system (1.1), we have

x(t)≥ x(0)exp
{∫ t

0(r1−b1x(ξ )−αy(ξ )−a1z(ξ ))dξ

}
≥ 0

y(t) = y(0)exp
{∫ t

0(r2−b2y(ξ )−βx(ξ ))dξ

}
≥ 0

z(t) = z(0)exp
{∫ t

0(r3− a2z(ξ )
k+x(ξ )−m)dξ

}
≥ 0.

Thus any trajectory starting in R3
+ cannot cross the co-ordinate axes. This completes the proof.

1.2. Boundedness

Lemma 1.2. The set B = {(x,y,z) ∈ R3
+ : 0 < W (t) = x+ y+ z ≤ M

ζ
} is a region of attraction

for all solutions initiating in R3
+ with positive initial conditions, where M = (r1+λ )2

4b1
+ (r2+λ )2

4b2
+

ζ (r3+λ )2

4a2
,ζ = b1

(r1+b1(k−m)) provided k > m.

Proof. Let us define W (t) = x+ y+ z and λ > 0 be a constant. Then
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dW
dt +λW = x(r1−b1x)−αxy−a1(x−m)z+λx+ y(r2−b2y−βx+λ )+ z(r3 +λ − a2z

k+x−m)

≤ x(r1−b1x+λ )+ y(r2−b2y+λ )+ z(r3 +λ − a2z
k+x−m)

≤ (r1+λ )2

4b1
+ (r2+λ )2

4b2
+ ξ (r3+λ )2

4a2
= M, where ζ = b1

(r1+b1(k−m)) .

By using differential inequality [1] we obtain,

0 <W (x(t),y(t),z(t))≤ M(1−e−ζ t)
ζ

+(x(0),y(0),z(0))e−ζ t

Taking limit t→ ∞, we have 0 <W (t)≤ M
ζ

.

This proves the Lemma.

4. Equilibria

Evidently, system (1.1) has at most five equilibrium points: the trivial equilibrium point

E0 = (0,0,0) which does not belongs to B. The axial equilibrium point E1 = ( r1
b1
,0,0). Planner

equilibrium point E12 = (x̄, ȳ,0) where x̄ = r1b2−r2α

b1b2−αβ
, ȳ = r2b1−r1β

b1b2−αβ
. E12 is feasible if b1b2 >

αβ and r1b2 > r2α,r2b1 > r1β or b1b2 < αβ and r1b2 < r2α,r2b1 < r1β . Another planner

equilibrium point E13 = (x̂,0, ẑ) where x̂ is the positive root of the equation

(a2b1 +a1r3)x2 +(a1r3k−2ma1r3−a2r1)x+a1r3m(m− k) = 0. (4.1)

and ẑ = r3(k+x̂−m)
a2

. The interior equilibrium point is given by E∗ = (x∗,y∗,z∗) where y∗ =
r2−βx∗

b2
,z∗ = r3(k+x∗−m)

a2
and x∗ is the positive root of the equation

(b1a2b2−αβa2 + r3b2a1)x2−{r1a2b2−αr2a2− r3b2a1(k−2m)}x− r3b2a1m(k−m) = 0.

(4.2)

E∗ is feasible if r2 > βx∗,k+ x∗ > m.
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Theorem 1.1 (i) Equilibrium points E1 and E12 are always unstable. (ii) E13 is locally asymp-

totically stable if r2 < β x̂.

Proof. Proof follows immediately by linearising around the equilibria.

Theorem 1.2. The interior equilibrium point E∗ of system (1) is locally asymptotically sta-

ble if (a1mz∗
x∗ +b1x∗)b2 > αβx∗.

Proof. The Jacobian matrix of system (1) at the equilibrium point E∗ is given by

J(E∗) =


−a1mz∗

x∗ −b1x∗ −αx∗ −a1(x∗−m)

−β2y∗ −b2y∗ 0
r2

3
a2

0 −r3



The characteristic equation about E∗ is given by

λ
3 +A1λ

2 +A2λ +A3 = 0 (4.3)

where


A1 =

a1mz∗
x∗ +b1x∗+b2y∗+ r3,

A2 = (a1mz∗
x∗ +b1x∗)(b2y∗+ r3)+b2r3y∗−αβx∗y∗+a1(x∗−m)

r2
3

a2
,

A3 = (a1mz∗
x∗ +b1x∗)b2y∗r3−αβx∗y∗r3 +a1(x∗−m)

r2
3

a2
b2y∗

Now A1 > 0,A3 > 0 follows from the assumption of the Theorem 1.2. Also A1A2 > A3. There-

fore by Routh-Hurwitz criterion the result follows.

5. Local bifurcation analysis

In this section, we use the application of Sotomayor’s theorem [18] to investigate the local

bifurcation around the equilibrium points of system (1.1). As the existence of non-hyperbolic
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equilibrium point is a necessary but not sufficient condition for bifurcation to occur therefore

we choose a parameter which gives zero eigenvalues to the Jacobian at the equilibria. Now

rewrite system (1.1) in the form :

dX
dt = F(X) where X = (x,y,z)t and F = (F1,F2,F3) where F1 = x(r1−b1x)−αxy−a1(x−m)z,

F2 = y(r2− b2y)− βxy and F3 = z
(
r3− a2z

k+x−m

)
. The local bifurcation near the equilibrium

points is investigated in the following theorems:

Theorem 1.3. System (1.1) undergoes a transcritical bifurcation at the axial equilibrium point

E1 but no saddle node bifurcation can occur when the parameter β crosses the critical value

β ∗ = b1r2
r1

.

Proof. One of the eigenvalues of the Jacobian matrix J(E1) will be zero if β = β ∗ = b1r2
r1

.

Now the Jacobian matrix of system (1.1) at E1 with zero eigenvalue is given by

J(E1) =


−r1 −αr1

b1
−a1(

r1
b1
−m)

0 0 0

0 0 r3


Let V =(v1,v2,v3)

t be the eigenvector corresponding to eigenvalue λ = 0. Thus V =(v1,−v1b1
α

,0)t

where v1 be any non zero real number. Also, let W = (w1,w2,w3)
t represents the corresponding

eigenvector of J(E1)
t to the eigenvalues of λ = 0. Hence J(E1)

tW = 0 gives that W = (0,w2,0)t

where w2 be any non zero real number. Now Fβ (E1,β
∗) = (0,0,0)t , here Fβ (E1,β ) represents

the derivative of F = (F1,F2,F3)
t with respect to β . Then we get W t [Fβ (E1,β

∗)] = 0.

Thus according to Sotomayor’s theorem system (1.1) has no saddle-node bifurcation at β = β ∗.

Again

DFβ (E1,β
∗) =


0 0 0

0 − r1
b1

0

0 0 0





8 CHANDAN MAJI, DEBASIS MUKHERJEE, DIPAK KESH

Then, W t [DFβ (E1,β
∗)V ] =− r1v2w2

b1
6= 0.

Now

D2F(E1,β
∗)(V,V ) =


(−2b1−α−a1)v2

1−αv1v2−a1v1v3

−βv1v2− (β +2b2)v2
2

− 2a2
k+x−mv2

3


Therefore, W t [D2F(E1,β

∗)(V,V )] = b1k2

α
[β − (β +2b2)b1] 6= 0.

Thus according to Sotomayor’s theorem system (1.1) has a transcritical bifurcation at E1 when

the parameter β crosses the critical value β ∗. Furthermore, as the Jacobian matrix of E1 has

three linear factors, so no Hopf bifurcation can occurs.

5.1. Numerical example for trnascritical bifurcation

Choose r1 = 12,b1 = 10,α = 2,a1 = 2,m = 0.5,r2 = 6,β = 5,a2 = 2,b2 = 1,r3 = 1,k = 1.5

then system (1.1) admits a transcritical bifurcation at E1(1.2,0,0) with respect to β .(see Fig.

1.)
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Fig. 1. Transcritical bifurcation near E1

Remark 1: System (1.1) does not admits any local bifurcation (saddle-node, transcritical or
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Hopf-bifurcation) at E12 as the Jacobian matrix J(E12) has no zero eigenvalues due to the exis-

tence of E12.

Theorem 1.4. System (1.1) admits a transcritical bifurcation but no saddle-node bifurcation

around the equilibrium point E13 when r2 crosses the critical value r∗2 = β x̂.

Proof. Proof is similar to the proof of Theorem 1.3.

Remark 2: System (1) does not undergoes any Hopf-bifurcation around the interior equilib-

rium point E∗ as in equation (4), A1 > 0 and A1A2−A3 cannot be equal to zero.

Theorem 1.5. Suppose that 4b1b2a2
k+x∗−m >

{
(α+β )2a2
k+x∗−m + b2

(
(x∗−m)a1

x∗ +
r2

3
k+x∗−m

)}
and r2 > βx∗.

Then the interior equilibrium point E∗ is globally asymptotically stable.

Proof. First note that, E13 is unstable as r2 > βx∗ and other boundary equilibrium points are

always unstable whenever they exist.

Consider the following positive definite function about E∗

V (t) = (x− x∗− x∗ ln
x
x∗
)+(y− y∗− y∗ ln

y
y∗
)+(z− z∗− z∗ ln

z
z∗
)

Differentiating V with respect to t along the solution of system (1.1), we get

dV
dt = (x− x∗){r1−b1x−αy− a1(x−m)

x }+(y− y∗){r2−b2y−βx}+(z− z∗){r3− a2z
k+x−m}

= (x−x∗){−b1(x−x∗)−α(y−y∗)+ a1(x∗−m)
x∗ − a1(x−m)

x }+(y−y∗){−b2(y−y∗)−β (x−x∗)}+

(z− z∗){ a2z∗
K+x∗−m −

a2z
k+x−m}

≤−b1(x−x∗)2+(α+β )|(x−x∗)||(y−y∗)|−b2(y−y∗)2− a2(z−z∗)2

k+x∗−m +{ (x
∗−m)a1

x∗ + r3
k+x∗−m}|x−

x∗||z− z∗|
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We note that V̇ is negative definite if

b1b2a2

k+ x∗−m
>

1
4

[
(α +β )2a2

k+ x∗−m
+b2

{
(x∗−m)a1

x∗
+

r2
3

k+ x∗−m

}]
Thus the condition of Theorem 1.5 implies that V is a Lyapunov function and hence the theorem

follows.

6. Persistence

Biologically persistence means the long time survival of all population in a future time what-

ever may be the initial populations. By differential inequality argument we state some result

guaranteeing the persistence of all the populations of system (1.1).

Theorem 1.6. (i) If x(t) > m then limt→∞ supx(t) ≤ r1
b1

(ii) If x(t) ≤ m and r1b2 > αr2 then

limt→∞ infx(t)≥ r1b2−αr2
b1b2

Proof.(i) When x(t)> m, dx
dt ≤ (r1−b1x)x =⇒ limt→∞ supx(t)≤ r1

b1

(ii) When x(t)≤m, dx
dt ≥ (r1−b1x)x−αx r2

b2
= (r1− αr2

b2
−b1x)x =⇒ limt→∞ infx(t)≥ r1b2−αr2

b1b2

Theorem 1.7. (i) If x(t) > m and r2 > β r1
b1

then limt→∞ infy(t) ≥ b1r2−β r1
b1b2

(ii) If x(t) ≤ m

and r2 > βm then limt→∞ infy(t)≥ r2−βm
b2

Proof. when x(t) > m, limt→∞ supx(t) ≤ r1
b1

then from the second equation of (1) we have
dy
dt ≥ (r2− β r1

b1
−b2y)y =⇒ limt→∞ infy(t)≥ b1r2−β r1

b1b2
.

(ii) If x(t)≤ m, then dy
dt ≥ (r2−βm−b2y)y.

As, r2 > βm, this implies that limt→∞ infy(t)≥ r2−βm
b2
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Theorem 1.8. If k > m then limt→∞ infz(t)≥ r3(k−m)
a2

.

Proof. Since k > m then k+ x−m > k−m and hence − 1
k+x−m >− 1

k−m .

From third equation of (1.1), we have dz
dt ≥ z(r3− a2z

k−m) =⇒ limt→∞ infz(t)≥ r3(k−m)
a2

.

7. Influence of prey refuge

In the following we shall discuss the influence of prey refuge on each population when the

coexistence equilibrium point E∗ is exists and is stable. It is easy to see that x∗,y∗,z∗ are all

continuous differential functions of parameter m.

Now let α be any positive root of equation (4.2).

Then α = −B±
√

B2−4AC
2A where

A= b1a2b2−αβa2+r3b2a1,B=−{r1a2b2−αr2a2−r3b2a1(k−2m)},C =−r3b2a1m(k−m).

Now dα

dm =− dB
dm + 1

2
2B dB

dm−4A dC
dm√

B2−4AC
> 0 provided,

a2

a1
>

r3

b1
and min

{
αβa2

a1r3
,
r2a2

r1a1

}
< b2 <

αβ

b1
. (7.1)

Again dy∗
dm =− β

b2
dx∗
dm < 0 and dz∗

dm = r3
a2
(dx∗

dm −1).

Clearly x∗ is strictly increasing function of parameter m whenever (7.1) holds and increasing the

amount of prey refuge leads to the increasing density of the prey species. y∗ is strictly decreas-

ing function of parameter m and increasing the amount of prey refuge leads to the decreasing

density of the competitor prey species. The presence of negative term in the third equation in-

dicates that increasing the amount of prey refuge may decrease the predator density as long as
dx∗
dm < 1.
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7.1 Numerical example for influence of prey refuge

Here we choose a set of parameters r1 = 12,b1 = 10,α = 2,a1 = 2,m = 0.5,r2 = 6,β =

5.5,a2 = 2,b2 = 1,r3 = 1,k = 1.5 and in this case interior equilibrium point E∗ is locally asymp-

totically stable. Influence of prey refuge on susceptible and infected prey population is given in

Fig. 2. and Fig. 3.
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Fig. 2. Influence of prey refuge on (a) susceptible prey population and (b) infected prey popu-

lation
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Fig. 3. Influence of prey refuge on predator population

8. Numerical Simulation

Dynamical behaviour of Leslie-Gower predator-prey model is not affected by refuge. If

interspecific competition is allowed into the system, oscillation can emerge. Keeping this in

mind, we have taken the rate of interspecific competition low and high. We select r1 = 12,b1 =

10,α = 2,a1 = 2,m = 0.5,r2 = 6,β = 5.5,a2 = 2,b2 = 1,r3 = 1,k = 1.5. Our numerical result

shows that system (1) converges to this point E∗(1,0.5,1)(see Fig. 4.).
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Fig. 4. The figure shows that system (1.1) is locally stable
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Further we considered r1 = 4,b1 = 1,α = 1.2,a1 = 2,m = 0.5,r2 = 6,β = 5,a2 = 1.5,b2 =

1,r3 = 2,k = 0.25, the system oscillates near this equilibrium point E∗(5
7 ,

17
7 ,

13
21). Also some

chaotic type oscillation is observed (see Fig. 5.).
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Fig. 5. The system (1.1) is unstable and chaotic type oscillation observed

In the first case αβ = 11 and b1b2 = 10 that indicates interspecific competition is low. In

the second case αβ = 6 and b1b2 = 1 that implies interspecific competition is high i.e all the

equilibrium points are unstable in nature. That causes chaotic type motion.

9. Discussion

In this paper we have considered a prey-predator system where prey has a competitor. Due to

predation pressure prey population uses refuge mechanism. The model is formulated according

to Leslie-Gower. This type of model usually exhibits stable behaviour with or without refuge.

But the dynamics of the model may be changed if the interspecific competition is allowed. We

have throughly investigated bifurcation analysis around the equilibria. We note that certain pa-

rameters of the system are very sensitive to give transcritical bifurcation. We further observe

that Hopf-bifurcation cannot occur around the equilibria which is either interior or boundary.
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Thus our system is either stable or unstable around the coexistence equilibrium point. We have

found five possible equilibria, namely trivial equilibrium point E0, axial equilibrium point E1,

predator free equilibrium point E12, competition free equilibrium point E13 and coexistence

equilibrium point E∗. Here the boundary equilibrium points E0,E1,E12 are always unstable in

nature where as E13 may be stable when the intrinsic growth rate of competitor remains below

certain threshold value (r2 < β x̂). Local stability at the coexistence equilibrium point can be

checked from the condition of Theorem 1.2. We observed that from the numerical simulation

that chaotic motion can arrise if the condition of Theorem 1.2 is violated. Further we have de-

rived a sufficient condition for global stability condition of the coexistence equilibrium point.

By using differential inequality argument we found persistence condition of the population.

The novelty of our paper is the occurrence of transcritical bifurcation but no Hopf-bifurcation

around the equilibria. Though Mukherjee [14, 16] showed Hopf-bifurcation in his system and

did not carried out local bifurcation analysis.
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