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Abstract. In this work, we propose a delayed SEIR epidemic model with pulse vaccination and restricting the infected disper-

sal. By the stroboscopic map of the discrete dynamical system, we obtain infection-free boundary periodic solution. Further, we

prove that the infection-free boundary periodic solution is globally attractive. By the theory on the delay and impulsive differ-

ential equation, we prove that the investigated system is permanent. Our results indicate that the time delay, pulse vaccination

and impulsive dispersal have influence to the dynamical behaviors of the investigated system.
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1. Introduction

The mathematical epidemiologists[1−8] have recently been attracted by epidemic models. An SVEIR

epidemic model was studied by Wang et al.[9]. Sun and Shi [10] considered the global stability of an SEIR
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model with nonlinear removal functions between compartments. To understand the effect of transport-

related infection on disease spread, Cui et al. [11] investigated the spreading disease with transport-

related infection. Takeuchi et al. [12] proposed an SIS models with transport-related infection. Liu et

al. [13] considered the global stability of an SEIR epidemic model with age-dependent latency and re-

lapse. Bai and Zhou [14] investigated the global dynamics of an SEIRS epidemic model with periodic

vaccination and seasonal contact rate Quarantine and isolation measures [15−21] have been widely used

to control the spread of diseases such as yellow fever, smallpox, measles, ebola, pandemic influenza,

diphtheria, plague, cholera, and, more recently, severe acute respiratory syndrome (SARS). Xie et al.[22]

simultaneously use two kinds of measures: expand the treatment ranges of suspected case and limit pop-

ulation flows freely to suppress the diffusion of SARS effectively. Gong et al. [23] showed that the SARS

may fluctuate with import of SARS infectiousness from outside Beijing, weakenness of quarantine, more

social activities and so on.

Different types of vaccination policies and strategies combining pulse vaccination policy, treatment,

pre-outbreak vaccination or isolation have already been introduced by many referees [24−29]. The pulse

vaccination strategy [24−26] consists of repeated application of vaccine at discrete time with equal inter-

val in a population in contrast to the traditional constant vaccination. Nokes and Swinton [27] discussed

the control of childhood viral infections by pulse vaccination strategy. Stone et al. [28] presented a

theoretical examination of the pulse vaccination strategy in the SIR epidemic model. d’Onofrio [29]

investigated the application of the pulse vaccination policy to eradicate infectious disease for SIR and

SEIR epidemic models.

The dispersal is a ubiquitous phenomenon in the natural world. It is important for us to understand

the ecological and evolutionary dynamics of populations mirrored by the large number of mathematical

models devoting to it in the scientific literatures [30−38]. If the population dynamics with the effects of

spatial heterogeneity is modeled by a diffusion process, most previous papers focused on the population

dynamical system modeled by the ordinary differential equations. But in practice, it is often the case

that diffusion occurs in regular pulse. For example, when winter comes, birds will migrate between

patches in search for a better environment,whereas they do not diffuse in other seasons, and the excursion

of foliage seeds occurs at fixed period of time every year. Thus impulsive diffusion provides a more

natural description. Lately theories of impulsive differential equations [31] has been introduced into

population dynamics. Impulsive differential equations are found in almost domain of applied science

[31−32,36−37,39−41].
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The organization of this paper is as follows. In the next section, we introduce the model and back-

ground concepts. In Section 3, some important lemmas are presented. In Section 4, we give the condi-

tions of global attractivity and permanence for system (2.4). In Section 5, A brief discussion is given in

the last section to conclude this work.

2. The model

Gao et al.[42] investigated an SEIR model with time delay and pulse vaccination

(1)



dS(t)
dt

=−βS(t)I(t)−µ(1−S(t)),

dE(t)
dt

= βS(t)I(t)−βe−µτ1 S(t− τ1)I(t− τ1)−µE(t),

dI(t)
dt

= βe−µτ1 S(t− τ1)I(t− τ1)− (r+µ)I(t),

dR(t)
dt

= rI(t)−µR(t),


t 6= nτ,

4S(t) =−θS(t),

4E(t) = 0,

4I(t) = 0,

4R(t) = θS(t),


t = nτ,n = 1,2 · ··,

where S(t), I(t) and R(t) represent the number of susceptible, infected, recovered individuals respec-

tively. The meanings of parameters in system (2.2) can be seen in reference [42].

Wang and Chen [38] considered the following model

(2)



dN1(t)
dt

= r1N1(t) ln
k1

N1(t)
,

dN2(t)
dt

= r2N2(t) ln
k2

N2(t)
,

 t 6= nτ,

4N1(t) = d1(N2(t)−N1(t)),

4N2(t) = d2(N1(t)−N2(t)),

 t = nτ,n = 1,2 · ··,

where we suppose that the system is composed of two patches connected by diffusion; Ni(i = 1,2) is

the density of species in the ith patch. Intrinsic rate of natural increase of population in the ith habitat is

denoted by ri(i = 1,2); ki(i = 1,2) denotes the carrying capacity in the ith patch, di(i = 1,2) is dispersal

rate in the ith patch. It is assumed here that the net exchange from the jth patch to ith patch is proportional

to the difference N j−Ni of population densities. The pulse diffusion occurs every τ period (τ is a positive

constant), the system evolves from its initial state without being further affected by diffusion until the

next pulse appears; 4Ni = Ni(nτ+)−Ni(nτ), and Ni(nτ+) represents the density of population in the

ith patch immediately after the nth diffusion pulse at time t = nτ , while Ni(nτ) represents the density
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of population in the ith patch before the nth diffusion pulse at time t = nτ,n = 0,1,2, · · ·; ri,ki and

di(i = 1,2) are positive constants.

Inspired by the above discussion, we establish a delayed SEIR epidemic model with pulse vaccination

and restricting the infected dispersal.

(3)



dS1(t)
dt

= λ1−d1S1(t)−β1S1(t)I1(t),

dE1(t)
dt

= β1S1(t)I1(t)−β1e−d1τ1 S1(t− τ1)I1(t− τ1)−d1E1(t),

dI1(t)
dt

= β1e−d1τ1 S1(t− τ1)I1(t− τ1)− (r1 +d1 +b1)I1(t),

dR1(t)
dt

= r1I1(t)−d1R1(t),

dS2(t)
dt

= λ2−d2S2(t)−β2S2(t)I2(t),

dE2(t)
dt

= β2S2(t)I2(t)−β2e−d2τ2 S2(t− τ2)I2(t− τ2)−d2E2(t),

dI2(t)
dt

= β2e−d2τ2 S2(t− τ2)I2(t− τ2)− (r2 +d2 +b2)I2(t),

dR2(t)
dt

= r2I2(t)−d2R2(t),



t 6= (n+ l)τ, t 6= (n+1)τ,

4S1(t) = D(S2(t)−S1(t)),

4E1(t) = D(E2(t)−E1(t)),

4I1(t) = 0,

4R1(t) = D(R2(t)−R1(t)),

4S2(t) = D(S1(t)−S2(t)),

4E2(t) = D(E1(t)−E2(t)),

4I2(t) = 0,

4R2(t) = D(R1(t)−R2(t)),



t = (n+ l)τ,n ∈ Z+,

4S1(t) =−µ1S1(t),

4E1(t) = 0,

4I1(t) = 0,

4R1(t) = µ1S1(t),

4S2(t) =−µ2S2(t),

4E2(t) = 0,

4I2(t) = 0,

4R2(t) = µ2S2(t),



t = (n+1)τ,n ∈ Z+,

with initial condition
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(ϕ1(ζ ),ϕ2(ζ ),ϕ3(ζ ),ϕ4(ζ ),ϕ5(ζ ),ϕ6(ζ ),ϕ7(ζ ),ϕ8(ζ )) ∈C+ =C([−τ1,0],R8
+),

and

ϕi(0)> 0, i = 1,2,3,4,5,6,7,8.

where system (3) is constructed of two cities or regions. Si(t), Ei(t), Ii(t) and Ri(t) represent the

number of susceptible, exposed, infected, recovered individuals in city or region i(i = 1,2) at time t. It is

assumed that we adopt the fixed number of offspring, denoted by λi(i = 1,2), joins into the susceptible

class per unit time in city or region i(i = 1,2). The natural death rate is assumed as the same constant

di(i = 1,2) for the susceptible, exposed, infected, recovered individuals in city i(i = 1,2). Disease is

transmitted with the incidence rate, that is , the number of new cases of infection per unit time βiSiIi with

city or regions i(i = 1,2). The transmission rate with city i is a constant βi(i = 1,2). The time delay τi

is the latent period of the disease in city or region i(i = 1,2). The infected individuals in city or regions

i(i = 1,2) suffer an extra disease-related death with constant rate bi(i = 1,2). ri(i = 1,2) is the recovery

rate of the infected individuals in city or regions i(i = 1,2). By boarding transports, the susceptible and

recovered individuals of city or regions i leave to city or regions j(i 6= j, i, j = 1,2) with a dispersal rate

D(0 < D < 1) at moment t = (n+ l)τ,n ∈ Z+. The susceptible is successfully vaccinated with µi in city

or regions i(i = 1,2) at moment t = (n+1)τ,n ∈ Z+.

Because Ei(t)(i= 1,2) and Ri(t)(i= 1,2) do not affect the other equations of (3), we can simplify system

(3) and restrict our attention to the following system

(4)



dS1(t)
dt

= λ1−d1S1(t)−β1S1(t)I1(t),

dI1(t)
dt

= β1e−d1τ1 S1(t− τ1)I1(t− τ1)− (r1 +d1 +b1)I1(t),

dS2(t)
dt

= λ2−d2S2(t)−β2S2(t)I2(t),

dI2(t)
dt

= β2e−d2τ2 S2(t− τ2)I2(t− τ2)− (r2 +d2 +b2)I2(t),


t 6= (n+ l)τ, t 6= (n+1)τ,

4S1(t) = D(S2(t)−S1(t)),

4I1(t) = 0,

4S2(t) = D(S1(t)−S2(t)),

4I2(t) = 0,


t = (n+ l)τ,n ∈ Z+,

4S1(t) =−µ1S1(t),

4I1(t) = 0,

4S2(t) =−µ2S2(t),

4I2(t) = 0,


t = (n+1)τ,n ∈ Z+,

with initial condition

(ϕ1(ζ ),ϕ3(ζ ),ϕ5(ζ ),ϕ7(ζ )) ∈C+ =C([−τ1,0],R4
+),
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and

ϕi(0)> 0, i = 1,3,5,7.

3. The lemmas

The solution of (3), denote by X(t) = (S1(t),E1(t), I1(t),R1(t),S2(t),E2(t), I2(t), R2(t))T , is a piece-

wise continuous function X : R+→ R8
+, X(t) is continuous on (nτ,(n+ l)τ], ((n+ l)τ,(n+1)τ], n ∈ Z+

and X(nτ+) = limt→nτ+ X(t), X((n+ l)τ+) = limt→(n+l)τ+ X(t) exist. Obviously the global existence

and uniqueness of solutions of (3) are guaranteed by the smoothness properties of f , which denotes the

mapping defined by right-side of system (3) (see Lakshmikantham,[27]). Before we have the the main

results. we need give some lemmas which will be used in the next.

According to the biological meanings, it is assumed that Si(t) ≥ 0,Ei(t) ≥ 0, Ii(t) ≥ 0, and Ri(t) ≥

0(i = 1,2).

Let V : R+×R8
+→ R+, then V is said to belong to class V0, if

i) V is continuous in (nτ,(n + l)τ]× R8
+ and ((n + l)τ,(n + 1)τ]× R8

+, for each z ∈ R8
+,n ∈ Z+,

V (nτ+,z) = lim(t,y)→(nτ+,z)V (t,y), V ((n+ l)τ+,z) = lim(t,y)→((n+l)τ+,y)V (t,y) exist.

ii) V is locally Lipschitzian in z.

Definition 3.1. V ∈ V0, then, for (t,z) ∈ (nτ,(n+ l)τ]×R6
+ and ((n+ l)τ,(n+ 1)τ]×R6

+, the upper

right derivative of V (t,z) with respect to the impulsive differential system (3) is defined as

D+V (t,z) = limsup
h→0

1
h
[V (t +h,z+h f (t,z))−V (t,z)].

Lemma 3.2. [31] Let the functionm ∈ PC′[R+,R]satisfies the inequalities

(5)



m′(t)≤ p(t)m(t)+q(t),

t ≥ t0, t 6= tk,k = 1,2, · · ·,

m(t+k )≤ dkm(tk))+bk, t = tk,

where p,q ∈ PC[R+,R] and dk ≥ 0,bk are constants ,then

m(t)≤ m(t0) ∏
t0<tk<t

dkexp(
∫ t

t0
p(s)ds)

+ ∑
t0<tk<t

( ∏
tk<t j<t

d jexp(
∫ t

t0
p(s)ds))bk
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+
∫ t

t0
∏

s<tk<t
dkexp(

∫ t

s
p(σ)dσ)q(s)ds, t ≥ t0.

Now, we show that all solutions of (3) are uniformly ultimately bounded.

Lemma 3.3. There exists a constant M > 0 such that Si(t) ≤M,Ei(t) ≤M, Ii(t) ≤M,Ri(t) ≤M(i =

1,2) for each solution (S1(t),E1(t), I1(t),R1(t),S2(t),E2(t), I2(t),R2(t)) of (3) with all t large enough.

Proof. Define

V (t) =
2

∑
i=1

[Si(t)+Ei(t)+ Ii(t)+Ri(t)],

and d = min{d1,d2}, then t 6= nτ, t 6= (n+ l)τ, we have

D+V (t)+dV (t) = λ1 +λ2−
2

∑
i=1

[(di−d)Si(t)+(di−d)Ii(t)+(di−d)Ri(t)]−
2

∑
i=1

biIi(t)

≤ λ1 +λ2.

When t = nτ,

V (nτ
+) =

2

∑
i=1

[Si(nτ
+)+ Ii(nτ

+)+Ri(nτ
+)]

=
2

∑
i=1

[Si(nτ)+Ei(nτ)+ Ii(nτ)+Ri(nτ)] =V (nτ).

When t = (n+ l)τ,

V ((n+ l)τ+) =
2

∑
i=1

[Si((n+ l)τ+)+Ei((n+ l)τ+)+ Ii((n+ l)τ+)+Ri((n+ l)τ+)]

=
2

∑
i=1

[Si((n+ l)τ)+Ei((n+ l)τ)+ Ii((n+ l)τ)+Ri((n+ l)τ)] =V ((n+ l)τ).

By lemma 3.2, for t ∈ (nτ,(n+1)τ], we have

V (t)≤V (0)exp(−dt)+
∫ t

0
(λ1 +λ2)exp(−d(t− s))ds

=V (0)exp(−dt)+
λ1 +λ2

d
(1− exp(−dt))

→ λ1 +λ2

d
, as t→ ∞.

So V (t) is uniformly ultimately bounded. Hence, by the definition of V (t), we have there exists a constant

M > 0 such that Si(t) ≤ M,Ei(t) ≤ M, Ii(t) ≤ M,Ri(t) ≤ M(i = 1,2) for t large enough. The proof is

complete.
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If Ii(t) = 0(i = 1,2), we have the following subsystem of (4)

(6)



dS1(t)
dt

= λ1−d1S1(t),

dS2(t)
dt

= λ2−d2S2(t),

 t 6= (n+ l)τ, t 6= (n+1)τ,

4S1(t) = D(S2(t)−S1(t)),

4S2(t) = D(S1(t)−S2(t)),

 t = (n+ l)τ,

4S1(t) =−µ1S1(t),

4S2(t) =−µ2S2(t),

 t = (n+1)τ,n = 1,2 · · · .

We can easily obtain the analytic solution of (6) between pulses as following

(7)



S1(t) =


1
d1

[λ1− (λ1−d1S1(nτ
+))e−d1(t−nτ)], t ∈ [nτ,(n+ l)τ),

1
d1

[λ1− (λ1−d1S1((n+ l)τ+))e−d1(t−(n+l)τ)], t ∈ [(n+ l)τ,(n+1)τ),

S2(t) =


1
d2

[λ2− (λ2−d2S2(nτ
+))e−d2(t−nτ)], t ∈ [nτ,(n+ l)τ).

1
d2

[λ2− (λ2−d2S2((n+ l)τ+))e−d2(t−(n+l)τ)], t ∈ [(n+ l)τ,(n+1)τ).

Considering the third and fourth equations of (6), we have

(8)



S1((n+ l)τ+) =
1−D

d1
[λ1− (λ1−d1S1(nτ

+))e−d1lτ)]

+
D
d2

[λ2− (λ2−d2S2(nτ
+))e−d2lτ)],

S2((n+ l)τ+) =
D
d1

[λ1− (λ1−d1S1(nτ
+))e−d1lτ)]

+
1−D

d2
[λ2− (λ2−d2S2(nτ

+))e−d2lτ)].

Considering the fifth and sixth equations of (6), we also have

(9)


S1((n+1)τ+) =

1−µ1

d1
[λ1− (λ1−d1S1((n+ l)τ+))e−d1(1−l)τ)],

S2((n+1)τ+) =
1−µ2

d2
[λ2− (λ2−d2S2((n+ l)τ+))e−d2(1−l)τ)].

Substituting (8) into (7), we have the stroboscopic map of (6)

(10)



S1((n+1)τ+) = (1−µ1)(1−D)e−d1τS1(nτ
+)+(1−µ1)De−[d1(1−l)+d2l]τS2(nτ

+)

+(1−µ1)× [
λ1(1− e−d1lτ)(1− (1−D)e−d1(1−l)τ)

d1
+

Dλ2(1− e−d2lτ)e−d1(1−l)τ

d2
],

S2((n+1)τ+) = (1−µ2)De−[d1l+d2(1−l)]τS1(nτ
+)+(1−µ2)(1−D)e−d2τS2(nτ

+)

+(1−µ2)× [
Dλ1(1− e−d1lτ)e−d2(1−l)τ

d1
+

λ2(1− e−d2lτ)(1− (1−D)e−d2(1−l)τ)

d2
].
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(10) has one fixed point as

(11)


S∗1 =

(1−A1)B−AA2

(1−A1)(1−B2)−A2B1
> 0,

S∗2 =
B1B−A(1−B2)

(1−A1)(1−B2)−A2B1
> 0,

where

A1 = (1−µ1)(1−D)e−d1τ(0 < A1 < 1),

B1 = (1−µ1)De−[d1(1−l)+d2l]τ(0 < B1 < 1),

A2 = (1−µ2)De−[d1l+d2(1−l)]τ(0 < A2 < 1),

B2 = (1−µ2)(1−D)e−d2τ(0 < B2 < 1),

A = (1−µ1)× [
λ1(1− e−d1lτ)(1− (1−D)e−d1(1−l)τ)

d1
+

Dλ2(1− e−d2lτ)e−d1(1−l)τ

d2
]> 0,

B = (1−µ2)× [
Dλ1(1− e−d1lτ)e−d2(1−l)τ

d1
+

λ2(1− e−d2lτ)(1− (1−D)e−d2(1−l)τ)

d2
]> 0.

Lemma 3.4. The unique fixed point (S∗1,S
∗
2) of (10) is globally asymptotically stable.

Proof. For convenience, we make a notation as (Sn
1,S

n
2) = (S1(nτ+),S2(nτ+)). The linear form of

(10) can be written as

(12)

 Sn+1
1

Sn+1
2

= M

 Sn
1

Sn
2

 .

Obviously, the near dynamics of (S∗1,S
∗
2) is determined by linear system (10). The stabilities of (S∗1,S

∗
2)

is determined by the eigenvalue of M less than 1. If M satisfies the Jury criteria[43], we can know the

eigenvalue of M less than 1,

(13) 1− trM+detM > 0.

We can easily know that (S∗1,S
∗
2) is unique fixed point of (10), and

(14) M =

 A1 B1

A2 B2

 .

For

1− trM+detM = 1− (A1 +B2)+(A1B2−A2B1)

= (1−A1)(1−B2)−A2B1

= [(1− (1−µ1)e−d1τ)+(1−µ1)De−d1τ ][(1− (1−µ2)e−d2τ)
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+(1−µ2)De−d2τ ]− (1−µ1)(1−µ2)D2e−(d1+d2)τ

= [1− (1−µ1)e−d1τ ][1− (1−µ2)e−d2τ ]

+[1− (1−µ1)e−d1τ ](1−µ2)De−d2τ +[1− (1−µ2)e−d2τ ](1−µ1)De−d1τ

> 0.

From Jury criteria, (S∗1,S
∗
2) is locally stable. Because the fixed point (S∗1,S

∗
2) of (10) is unique, then, it is

globally asymptotically stable. This completes the proof.

Lemma 3.5. The periodic solution (S̃1(t), S̃2(t)) of System (6) is globally asymptotically stable,

where

(15)



S̃1(t) =


1
d1

[λ1− (λ1−d1S∗1)e
−d1(t−nτ)], t ∈ [nτ,(n+ l)τ),

1
d1

[λ1− (λ1−d1S∗∗1 )e−d1(t−(n+l)τ)], t ∈ [(n+ l)τ,(n+1)τ),

S̃2(t) =


1
d2

[λ2− (λ2−d2S∗2)e
−d2(t−nτ)], t ∈ [nτ,(n+ l)τ).

1
d2

[λ2− (λ2−d2S∗∗2 )e−d2(t−(n+l)τ)], t ∈ [(n+ l)τ,(n+1)τ),

here S∗1 and S∗2 are determined as (11), S∗∗1 and S∗∗2 are defined as

(16)



S∗∗1 =
1−D

d1
[λ1− (λ1−d1S∗1)e

−d1lτ)]

+
D
d2

[λ2− (λ2−d2S∗2)e
−d2lτ)],

S∗∗2 =
D
d1

[λ1− (λ1−d1S∗1)e
−d1lτ)]

+
1−D

d2
[λ2− (λ2−d2S∗2)e

−d2lτ)].

Lemma 3.6.[42] Consider the following equation

dx(t)
dt

= a1x(t−ω)−a2x(t),

where a1,a2,ω > 0; x(t)> 0 for −ω ≤ t ≤ 0, we have

(i) if a1 < a2, then, limt→∞ x(t) = 0,

(ii) if a1 > a2, then, limt→∞ x(t) = +∞.

4. The dynamics

From the above discussion, we know there exists a infection-free boundary periodic solution (S̃1(t),0, S̃2(t),0)

of system (4). In this section, we will prove that the infection-free boundary periodic solution (S̃1(t),0, S̃2(t),0)

of system (4) is globally attractive.
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Theorem 4.1. If

(17) max
i=1,2
{βie−diτi [

2λi

di
+(S∗i +S∗∗i )]− (ri +di +bi)}< 0(i = 1,2),

holds, the infection-free boundary periodic solution (S̃1(t),0, S̃2(t),0) of (4) is globally attractive, where

S∗i (i = 1,2) is determined as (11), S∗∗i (i = 1,2) is defined as (16).

Proof. From (17), we can obtain

(18) βie−diτi [
2λi

di
+(S∗i +S∗∗i )]< (ri +di +bi)(i = 1,2).

Then, we can choose ε0 sufficiently small such that

(19) βie−diτi{[2λi

di
+(S∗i +S∗∗i )]+ ε0}< (ri +di +bi)(i = 1,2).

From the first and third equations of system (4), we obtain that dSi(t)
dt ≤ λi− d1Si(t)(i = 1,2). So we

consider the following comparison impulsive differential system

(20)



dx1(t)
dt

= λ1−d1x1(t),

dx2(t)
dt

= λ2−d2x2(t),

 t 6= (n+ l)τ, t 6= (n+1)τ,

4x1(t) = D(x2(t)− x1(t)),

4x2(t) = D(x1(t)− x2(t)),

 t = (n+ l)τ,

4x1(t) =−µ1x1(t),

4x2(t) =−µ2x2(t),

 t = (n+1)τ,n = 1,2 · · · .

In view of lemma 3.4. and (15), we obtain that the boundary periodic solution of system (20)

(21)



x̃1(t) =


1
d1

[λ1− (λ1−d1S∗1)e
−d1(t−nτ)], t ∈ [nτ,(n+ l)τ),

1
d1

[λ1− (λ1−d1S∗∗1 )e−d1(t−(n+l)τ)], t ∈ [(n+ l)τ,(n+1)τ),

x̃2(t) =


1
d2

[λ2− (λ2−d2S∗2)e
−d2(t−nτ)], t ∈ [nτ,(n+ l)τ).

1
d2

[λ2− (λ2−d2S∗∗2 )e−d2(t−(n+l)τ)], t ∈ [(n+ l)τ,(n+1)τ),

is globally asymptotically stable, where S∗1 and S∗2 are determined as (11), S∗∗1 and S∗∗2 are defined as

(16).
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From lemma 3.5. and comparison theorem of impulsive equation [2], we have Si(t) ≤ xi(t)(i = 1,2)

and xi(t)→ S̃i(t) as t→ ∞. Then there exists an integer k2 > k1, t > k2 such that

Si(t)≤ xi(t)≤ S̃i(t)+ ε0(i = 1,2),nτ < t ≤ (n+1)τ,n > k2,

that is

Si(t)< S̃i(t)+ ε0 ≤ [
2λi

di
+(S∗i +S∗∗i )]+ ε0

∆
= ρ(i = 1,2),nτ < t ≤ (n+1)τ,n > k2.

From (4), we get

(22)
dIi(t)

dt
≤ βie−diτiρIi(t− τ1)− (ri +di +bi)Ii(t)(i = 1,2)), t > nτ + τ1,n > k2,

Consider the following comparison differential system referring to (20)

(23)
dyi(t)

dt
= βie−diτiρyi(t− τ1)− (ri +di +bi)yi(t)(i = 1,2)), t > nτ + τ1,n > k2,

From (19) and Lemma 3.6., we have limt→∞ yi(t) = 0.

Let (S1(t), I1(t),S2(t), I2(t)) be the solution of system (20) with initial conditions and I1(ζ )=ϕ3(ζ )(ζ ∈

[−τ1,0]),I2(ζ ) = ϕ7(ζ )(ζ ∈ [−τ1,0]). yi(t)(i = 1,2) is the solution of system (23) with initial conditions

y1(ζ ) = ϕ3(ζ )(ζ ∈ [−τ1,0]), y2(ζ ) = ϕ7(ζ )(ζ ∈ [−τ1,0]). By the comparison theorem, we have

lim
t→∞

Ii(t)< lim
t→∞

yi(t) = 0.

Incorporating into the positivity of Ii(t), we know that limt→∞ II(t) = 0, Therefore, for any ε1 > 0 (suffi-

ciently small), there exists an integer k3(k3τ > k2τ + τ1) such that Ii(t)< ε1(i = 1,2) for all t > k3τ.

For system (4), we have

(24) λi− (di +βiε1)Si(t)≤
dSi(t)

dt
≤ λi−diSi(t),
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Then we have zi(t) ≤ Si(t) ≤ z′i(t) and zi(t)→ z̃i(t),z′i(t)→ S̃i(t) as t → ∞. While (z1(t),z2(t)) and

(z′1(t),z
′
2(t) are the solutions of

(25)



dz1(t)
dt

= λ1− (d1 +β1ε1)z1(t),

dz2(t)
dt

= λ2− (d2 +β2ε1)z2(t),

 t 6= (n+ l)τ, t 6= (n+1)τ,

4z1(t) = D(z2(t)− z1(t)),

4z2(t) = D(z1(t)− z2(t)),

 t = (n+ l)τ,

4z1(t) =−µ1z1(t),

4z2(t) =−µ2z2(t),

 t = (n+1)τ,n = 1,2 · · · .

and

(26)



dz′1(t)
dt

= λ1−d1z′1(t),

dz′2(t)
dt

= λ2−d2z′2(t),

 t 6= (n+ l)τ, t 6= (n+1)τ,

4z′1(t) = D(z′2(t)− z′1(t)),

4z′2(t) = D(z′1(t)− z′2(t)),

 t = (n+ l)τ,

4z′1(t) =−µ1z′1(t),

4z′2(t) =−µ2z′2(t),

 t = (n+1)τ,n = 1,2 · · · .

respectively. Where

(27)

z̃1(t) =


1

(d1 +β1ε1)
[λ1− (λ1− (d1 +β1ε1)z∗1)e

−(d1+β1ε1)(t−nτ)], t ∈ [nτ,(n+ l)τ),

1
(d1 +β1ε1)

[λ1− (λ1− (d1 +β1ε1)z∗∗1 )e−(d1+β1ε1)(t−(n+l)τ)], t ∈ [(n+ l)τ,(n+1)τ),

z̃2(t) =


1

(d2 +β2ε1)
[λ2− (λ2− (d2 +β2ε1)z∗2)e

−(d2+β2ε1)(t−nτ)], t ∈ [nτ,(n+ l)τ).

1
(d2 +β2ε1)

[λ2− (λ2− (d2 +β2ε1)z∗∗2 )e−(d2+β2ε1)(t−(n+l)τ)], t ∈ [(n+ l)τ,(n+1)τ),

here

(28)


z∗1 =

(1−A′1)B
′−A′A′2

(1−A′1)(1−B′2)−A′2B′1
> 0,

z∗2 =
B′1B′−A′(1−B′2)

(1−A′1)(1−B′2)−A′2B′1
> 0,



14 JIANJUN JIAO, SHAOHONG CAI, LIMEI LI

and

(29)



z∗∗1 =
1−D

(d1 +β1ε1)
[λ1− (λ1− (d1 +β1ε1)z∗1)e

−(d1+β1ε1)lτ)]

+
D

(d2 +β2ε1)
[λ2− (λ2− (d2 +β2ε1)z∗2)e

−(d2+β2ε1)lτ)],

z∗∗2 =
D

(d1 +β1ε1)
[λ1− (λ1− (d1 +β1ε1)z∗1)e

−(d1+β1ε1)lτ)]

+
1−D

(d2 +β2ε1)
[λ2− (λ2− (d2 +β2ε1)z∗2)e

−(d2+β2ε1)lτ)].

and

A′1 = (1−µ1)(1−D)e−(d1+β1ε1)τ(0 < A′1 < 1),

B′1 = (1−µ1)De−[(d1+β1ε1)(1−l)+(d2+β2ε1)l]τ(0 < B′1 < 1),

A′2 = (1−µ2)De−[(d1+β1ε1)l+(d2+β2ε1)(1−l)]τ(0 < A′2 < 1),

B′2 = (1−µ2)(1−D)e−(d2+β2ε1)τ(0 < B′2 < 1),

A′ = (1−µ1)× [
λ1(1− e−(d1+β1ε1)lτ)(1− (1−D)e−(d1+β1ε1)(1−l)τ)

(d1 +β1ε1)

+
Dλ2(1− e−(d2+β2ε1)lτ)e−(d1+β1ε1)(1−l)τ

(d2 +β2ε1)
]> 0,

B′ = (1−µ2)× [
Dλ1(1− e−(d1+β1ε1)lτ)e−(d2+β2ε1)(1−l)τ

(d1 +β1ε1)

+
λ2(1− e−(d2+β2ε1)lτ)(1− (1−D)e−(d2+β2ε1)(1−l)τ)

(d2 +β2ε1)
]> 0.

Therefore, for any ε2 > 0. there exists a integer k4,n> k4 such that z̃i(t)−ε2 < Si(t)< z̃′i(t)+ε2(i= 1,2).

Let ε1 → 0, so we have S̃i(t)− ε2 < Si(t) < S̃i(t) + ε2(i = 1,2), for t large enough. Which implies

Si(t)→ S̃i(t)(i = 1,2) as t→ ∞. This completes the proof.

The next work is to investigate the permanence of the system(3). Before starting our theorem, we give

the following definition.

Definition 4.2. System (4) is said to be permanent if there are constants m,M > 0 (independent of

initial value) and a finite time T0 such that for all solutions (S1(t), I1(t),S2(t), I2(t)) with all initial values

S1(0+) > 0, I1(0+) > 0,S2(0+) > 0, I2(0+) > 0, m ≤ S1(t) ≤ M,m ≤ I1(t) ≤ M,m ≤ S2(t) ≤ M,m ≤

I2(t)≤M holds for all t ≥ T0. Here T0 may depend on the initial values (S1(0+), I1(0+),S2(0+), I2(0+)).

Theorem 4.3. If

min
i=1,2
{βie−diτi [v∗i e−(di+βiI∗i )lτ + v∗∗i e−(di+βiI∗i )(1−l)τ ]− (ri +di +bi)}> 0,
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there is a positive constant q such that each positive solution (S1(t), I1(t),S2(t), I2(t)) of (2.4) satisfies

Ii(t)≥ q, for t large enough, where I∗i (i = 1,2) is decided by

βie−diτi [v∗i e−(di+βiI∗i )lτ + v∗∗i e−(di+βiI∗i )(1−l)τ ] = (ri +di +bi)(i = 1,2),

here v∗i (i = 1,2) and v∗∗i (i = 1,2) are defined as (35) and (36) respectively.

Proof. The second and fourth equations of (4) can be rewritten as

(30)

dIi(t)
dt

= [βie−diτiSi(t)− (ri +di +bi]Ii(t)

−βie−diτi
d
dt

∫ t

t−τi

Si(u)Ii(u)du(i = 1,2).

According to(30), Qi(t)(i = 1,2) is defined as

Qi(t) = Ii(t)+βie−diτi

∫ t

t−τ1

Si(u)Ii(u)du(i = 1,2).

We calculate the derivative of Qi(t)(i = 1,2) along the solution of (4)

(31)
dQi(t)

dt
= [βie−diτiSi(t)− (ri +di +bi]Ii(t)(i = 1,2).

Since

βie−diτi [v∗i e−(di+βiI∗i )lτ + v∗∗i e−(di+βiI∗i )(1−l)τ ]> ri +di +bi(i = 1,2),

we can easily know that there exists sufficiently small ε > 0 such that

βie−diτi{[v∗i e−(di+βiI∗i )lτ + v∗∗i e−(di+βiI∗i )(1−l)τ ]− ε}> ri +di +bi(i = 1,2),

We claim that for any t0 > 0, it is impossible that Ii(t)< I∗i (i = 1,2) for all t > t0. Suppose that the claim

is not valid. Then there is a t0 > 0 such that Ii(t)< I∗i (i = 1,2) for all t > t0. It follows from the first and

third equations of (4) that for all t > t0

(32)
dSi(t)

dt
> λi− (di +βiI∗i )Si(t)(i = 1,2).
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Consider the following comparison impulsive system for all t > t0

(33)



dv1(t)
dt

= λ1− (d1 +β1I∗1 )v1(t),

dv2(t)
dt

= λ2− (d2 +β2I∗2 )v2(t),

 t 6= (n+ l)τ, t 6= (n+1)τ,

4v1(t) = D(v2(t)− v1(t)),

4v2(t) = D(v1(t)− v2(t)),

 t = (n+ l)τ,

4v1(t) =−µ1v1(t),

4v2(t) =−µ2v2(t),

 t = (n+1)τ,n = 1,2 · · · .

By lemma 3.5., we obtain

(34)

ṽ1(t) =


1

(d1 +β1I∗1 )
[λ1− (λ1− (d1 +β1I∗1 )v

∗
1)e
−(d1+β1I∗1 )(t−nτ)], t ∈ [nτ,(n+ l)τ),

1
(d1 +β1I∗1 )

[λ1− (λ1− (d1 +β1I∗1 )v
∗∗
1 )e−(d1+β1I∗1 )(t−(n+l)τ)], t ∈ [(n+ l)τ,(n+1)τ),

ṽ2(t) =


1

(d2 +β2I∗2 )
[λ2− (λ2− (d2 +β2I∗2 )v

∗
2)e
−(d2+β2I∗2 )(t−nτ)], t ∈ [nτ,(n+ l)τ).

1
(d2 +β2I∗2 )

[λ2− (λ2− (d2 +β2I∗2 )v
∗∗
2 )e−(d2+β2I∗2 )(t−(n+l)τ)], t ∈ [(n+ l)τ,(n+1)τ),

is the unique positive periodic solution of (34). Here

(35)


v∗1 =

(1−A′′1)B
′′−A′′A′′2

(1−A′′1)(1−B′′2)−A′′2B′′1
> 0,

v∗2 =
B′′1B′′−A′′(1−B′′2)

(1−A′′1)(1−B′′2)−A′′2B′′1
> 0,

and

(36)



v∗∗1 =
1−D

(d1 +β1I∗1 )
[λ1− (λ1− (d1 +β1I∗1 )v

∗
1)e
−(d1+β1I∗1 )lτ)]

+
D

(d2 +β2I∗2 )
[λ2− (λ2− (d2 +β2I∗2 )v

∗
2)e
−(d2+β2I∗2 )lτ)],

v∗∗2 =
D

(d1 +β1I∗1 )
[λ1− (λ1− (d1 +β1I∗1 )v

∗
1)e
−(d1+β1I∗1 )lτ)]

+
1−D

(d2 +β2I∗2 )
[λ2− (λ2− (d2 +β2I∗2 )v

∗
2)e
−(d2+β2I∗2 )lτ)].

and

A′′1 = (1−µ1)(1−D)e−(d1+β1I∗1 )τ(0 < A′′1 < 1),

B′′1 = (1−µ1)De−[(d1+β1I∗1 )(1−l)+(d2+β2I∗2 )l]τ(0 < B′′1 < 1),

A′′2 = (1−µ2)De−[(d1+β1I∗1 )l+(d2+β2I∗1 )(1−l)]τ(0 < A′′2 < 1),
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B′′2 = (1−µ2)(1−D)e−(d2+β2I∗1 )τ(0 < B′′2 < 1),

A′′ = (1−µ1)× [
λ1(1− e−(d1+β1I∗1 )lτ)(1− (1−D)e−(d1+β1I∗1 )(1−l)τ)

(d1 +β1I∗1 )

+
Dλ2(1− e−(d2+β2I∗2 )lτ)e−(d1+β1I∗1 )(1−l)τ

(d2 +β2I∗2 )
]> 0,

B′′ = (1−µ2)× [
Dλ1(1− e−(d1+β1I∗1 )lτ)e−(d2+β2I∗1 )(1−l)τ

(d1 +β1I∗1 )

+
λ2(1− e−(d2+β2I∗2 )lτ)(1− (1−D)e−(d2+β2I∗2 )(1−l)τ)

(d2 +β2I∗2 )
]> 0.

By the comparison theorem for impulsive differential equation [28], we know that there exists sufficient

small ε > 0 and t1(> t0 + τ1) such that the inequality Si(t) ≥ ṽi(t)− ε(i = 1,2) holds for t ≥ t1, thus

Si(t)≥ [v∗i e−(di+βiI∗i )lτ +v∗∗i e−(di+βiI∗i )(1−l)τ ]−ε for all t ≥ t1. We make notation as σi
∆
= [v∗i e−(di+βiI∗i )lτ +

v∗∗i e−(di+βiI∗i )(1−l)τ ]− ε(i = 1,2)) for convenience. So we have

βie−diτiσ > ri +di +bi(i = 1,2),

then we have

Q′i(t)> y2(t)[βie−diτiσ − (ri +di +bi)](i = 1,2),

for all t > t1. Set Im
i = mint∈[t1,t1+τ1] Ii(t), we will show that Ii(t) ≥ Im

i for all t ≥ t1. Suppose the

contrary, then there is a T0 > 0 such that Ii(t) ≥ Im
i for t1 ≤ t ≤ t1 + τ1 + T0, Ii(t1 + τ1 + T0) = Im

i and

I′i (t1 + τ1 +T0)< 0. Hence, the second and fourth equations of system (4) imply that

I′i (t1 + τ1 +T0) = βie−diτiSi(t1 + τ1 +T0)Ii(t1 + τ1 +T0)− (ri +di +bi)Ii(t1 + τ1 +T0),

≥ [βie−diτiσ − (ri +di +bi)]Im
i > 0,

This is a contradiction. Thus, Ii(t) ≥ Im
i for all t > t1. As a consequence, Then Q′i(t) > Im

i (βie−diτiσ −

(ri + di + bi) > 0 for all t > t1. This implies that as t → ∞, Qi(t)→ ∞. It is a contradiction to Qi(t) ≤

M(1+ τ1βie−diτiM). Hence, the claim is complete.

By the claim, we are left to consider two case. First, Ii(t)≥ I∗i (i = 1,2) for all t large enough. Second,

Ii(t)(i = 1,2) oscillates about I∗i (i = 1,2) for t large enough.

Define

(37) q = min{ I∗1
2
,
I∗2
2
,q1,q2},

where qi = I∗i e−(ri+di+bi)τi(i = 1,2). We hope to show that Ii(t)≥ q(i = 1,2) for all t large enough. The

conclusion is evident in first case. For the second case, let t∗ > 0 and ξ > 0 satisfy Ii(t∗) = Ii(t∗+

ξ ) = I∗i (i = 1,2) and Ii(t) < I∗i (i = 1,2) for all t∗ < t < t∗+ ξ where t∗ is sufficiently large such that
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Ii(t) > σ(i = 1,2) for t∗ < t < t∗+ ξ , Ii(t)(i = 1,2) is uniformly continuous. The positive solutions of

(4) are ultimately bounded and Ii(t)(i = 1,2) is not affected by impulses. Hence, there is a T (0 < t < τ1

and T is dependent of the choice of t∗ such that Ii(t∗)>
I∗i
2 (i = 1,2) for t∗ < t < t∗+T . If ξ < T , there

is nothing to prove. Let us consider the case T < ξ < τ1. Since I′i (t)>−(ri +di +bi)Ii(t)(i = 1,2) and

Ii(t∗) = I∗i (i = 1,2), it is clear that Ii(t) ≥ qi(i = 1,2) for t ∈ [t∗, t∗+ τ1]. Then, proceeding exactly as

the proof for the above claim. We see that Ii(t)≥ qi for t ∈ [t∗+ τ1, t∗+ξ ]. Because the kind of interval

t ∈ [t∗, t∗+ξ ] is chosen in an arbitrary way ( we only need t∗ to be large). We concluded Ii(t)≥ q for all

large t. In the second case. In view of our above discussion, the choice of q is independent of the positive

solution, and we proved that any positive solution of (4) satisfies Ii(t)≥ q for all sufficiently large t. This

completes the proof of the theorem.

From theorem 4.3., we can easily obtain the following two corollaries.

Corollary 4.4. If

min
i=1,2
{βie−diτiv∗i e−(di+βiI∗i )lτ − (ri +di +bi)}> 0,

there is a positive constant q such that each positive solution (S1(t), I1(t),S2(t), I2(t)) of (4) satisfies

Ii(t)≥ q, for t large enough, where I∗i (i = 1,2) is decided by

βie−diτi [v∗i e−(di+βiI∗i )lτ + v∗∗i e−(di+βiI∗i )(1−l)τ ] = (ri +di +bi)(i = 1,2),

here v∗i (i = 1,2) is defined as (35).

Corollary 4.5. If

min
i=1,2
{βie−diτiv∗∗i e−(di+βiI∗i )(1−l)τ − (ri +di +bi)}> 0,

there is a positive constant q such that each positive solution (S1(t), I1(t),S2(t), I2(t)) of (4) satisfies

Ii(t)≥ q, for t large enough, where I∗i (i = 1,2) is decided by

βie−diτiv∗∗i e−(di+βiI∗i )(1−l)τ = (ri +di +bi)(i = 1,2),

here v∗∗i (i = 1,2) is defined as (36).

Theorem 4.6. If

min
i=1,2
{βie−diτi [v∗i e−(di+βiI∗i )lτ + v∗∗i e−(di+βiI∗i )(1−l)τ ]− (ri +di +bi)}> 0,

system (4) is permanent.
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Proof. Denote (S1(t), I1(t),S2(t), I2(t)) be any solution of system (4). From system (4) and lemma

3.3., we can easily obtain

(38)
dSi(t)

dt
> λi− (di +βiM)Si(t)(i = 1,2).

Consider the following comparison impulsive system for all t > t0

(39)



du1(t)
dt

= λ1− (d1 +β1M)u1(t),

du2(t)
dt

= λ2− (d2 +β2M)u2(t),

 t 6= (n+ l)τ, t 6= (n+1)τ,

4u1(t) = D(u2(t)−u1(t)),

4u2(t) = D(u1(t)−u2(t)),

 t = (n+ l)τ,

4u1(t) =−µ1u1(t),

4u2(t) =−µ2u2(t),

 t = (n+1)τ,n = 1,2 · · · .

By lemma 3.5., we obtain

(40)

ũ1(t) =


1

(d1 +β1M)
[λ1− (λ1− (d1 +β1M)u∗1)e

−(d1+β1M)(t−nτ)], t ∈ [nτ,(n+ l)τ),

1
(d1 +β1M)

[λ1− (λ1− (d1 +β1M)u∗∗1 )e−(d1+β1M)(t−(n+l)τ)], t ∈ [(n+ l)τ,(n+1)τ),

ũ2(t) =


1

(d2 +β2M)
[λ2− (λ2− (d2 +β2M)u∗2)e

−(d2+β2M)(t−nτ)], t ∈ [nτ,(n+ l)τ).

1
(d2 +β2M)

[λ2− (λ2− (d2 +β2M)u∗∗2 )e−(d2+β2M)(t−(n+l)τ)], t ∈ [(n+ l)τ,(n+1)τ),

is the unique positive periodic solution of (39). Here

(41)


u∗1 =

(1−A′′′1 )B
′′′−A′′′A′′′2

(1−A′′′1 )(1−B′′′2 )−A′′′2 B′′′1
> 0,

u∗2 =
B′′′1 B′′′−A′′′(1−B′′′2 )

(1−A′′′1 )(1−B′′′2 )−A′′′2 B′′′1
> 0,

and

(42)



u∗∗1 =
1−D

(d1 +β1M)
[λ1− (λ1− (d1 +β1M)u∗1)e

−(d1+β1M)lτ)]

+
D

(d2 +β2M)
[λ2− (λ2− (d2 +β2M)u∗2)e

−(d2+β2M)lτ)],

u∗∗2 =
D

(d1 +β1M)
[λ1− (λ1− (d1 +β1M)u∗1)e

−(d1+β1M)lτ)]

+
1−D

(d2 +β2M)
[λ2− (λ2− (d2 +β2M)u∗2)e

−(d2+β2M)lτ)].
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and

A′′′1 = (1−µ1)(1−D)e−(d1+β1M)τ(0 < A′′′1 < 1),

B′′′1 = (1−µ1)De−[(d1+β1M)(1−l)+(d2+β2M)l]τ(0 < B′′′1 < 1),

A′′′2 = (1−µ2)De−[(d1+β1M)l+(d2+β2M)(1−l)]τ(0 < A′′′2 < 1),

B′′′2 = (1−µ2)(1−D)e−(d2+β2M)τ(0 < B′′′2 < 1),

A′′′ = (1−µ1)× [
λ1(1− e−(d1+β1M)lτ)(1− (1−D)e−(d1+β1M)(1−l)τ)

(d1 +β1M)

+
Dλ2(1− e−(d2+β2M)lτ)e−(d1+β1M)(1−l)τ

(d2 +β2M)
]> 0,

B′′′ = (1−µ2)× [
Dλ1(1− e−(d1+β1M)lτ)e−(d2+β2M)(1−l)τ

(d1 +β1M)

+
λ2(1− e−(d2+β2M)lτ)(1− (1−D)e−(d2+β2M)(1−l)τ)

(d2 +β2M)
]> 0.

By the comparison theorem for impulsive differential equation [28], we know that there exists sufficient

small ε > 0 and t1(> t0 + τ1) such that the inequality Si(t) ≥ ũi(t)− ε(i = 1,2) holds for t ≥ t1, thus

Si(t)≥ [u∗i e−(di+βiM)lτ +u∗∗i e−(di+βiM)(1−l)τ ]− ε
∆
= pi for all t ≥ t1. By theorem 4.3. and lemma3.3. and

the above discussion, system (4) is permanent. The proof of theorem 4.6. is complete.

From theorem 4.6., we can also easily obtain the following two corollaries.

Corollary 4.7. If

min
i=1,2
{βie−diτiv∗i e−(di+βiI∗i )lτ − (ri +di +bi)}> 0,

system (4) is permanent.

Corollary 4.8. If

min
i=1,2
{βie−diτiv∗∗i e−(di+βiI∗i )(1−l)τ − (ri +di +bi)}> 0,

system (4) is permanent.

5. Discussion

In this paper, we investigate a delayed SEIR epidemic model with pulse vaccination and restricting the

infected dispersal. We analyze that the infection-free boundary periodic solution of system (4) is globally

attractive, and we also obtain the permanent condition of system (4). From theorem 4.1. and theorem

4.6., we can easily guess that there must exist a threshold µ∗. If µ > τ∗, the infection-free boundary pe-

riodic solution (S̃1(t),0, S̃2(t),0) of (4) is globally attractive. If µ < µ∗, system (4) is permanent. From

theorem 4.1. and theorem 4.6., we can also easily guess that there must exist a threshold D∗(0 <D∗ < 1).
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If D < D∗, the infection-free boundary periodic solution (S̃1(t),0, S̃2(t),0) of (4) is globally attractive.

If D > D∗, system (4) is permanent. This indicates that restricting the pulse vaccination and dispersal

amount of population can affect the eliminating disease. That is to say, pulse vaccination and restricting

the dispersal amount of population play important roles for eliminating disease of system (4). The pa-

rameters as τi(i = 1,2) and τ can also be discussed, its change also affect the dynamical system of (4).

The results of this paper provide tactical basis for eliminating disease.
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