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1. Introduction

The vector-borne diseases are responsible for more than 17% of infectious diseases, and

causes over one million deaths each year [18]. Mathematical models help to better understand

and propose solutions to reduce the negative impact of these disease in society, and several

studies have already been made on diseases such as malaria, leishmaniasis, trypanosomiasis

just to name a few (see [15, 6, 19, 16, 1, 2, 10, 11]). We realise that the behavior of these

diseases can be modeled by a generic model. Thus in this first work, we propose a model of one

population that can translate the dynamics of several vector-borne diseases.

We take a different approach in modeling vectors, drawing on the work Ngwa, Ngonghala

[8, 4, 5] which integrates the three phases of the gonotrophic cycle. We assume as in [13] that

rest and laying occur in the same place ie we have a questing phase and another phase resting.

In addition to the consideration of the gonotriphic cycle, we integrate the management of the

sporogonic cycle, that is to say that we consider the fact that after the first meal infecting the

vector can transmit the disease only after a certain number of meals (This number depends on

the species). In the population of host we introduce the two parameters u,v ∈ {0,1} opposite

to [12] where u,v ∈ ]0,1[ thereby controlling the presence or absence of the compartments E

of exposed and R of immune. This allows us to place ourselves in one of SIS, SIRS, SEIS or

SEIRS dynamics, we study the existence and stability of equilibrium and the bifurcation.

2. Model description and mathematical specification

In our model, we consider two populations, namely a population of host which may be hu-

mans or animals and a vector population that can be specified according to the disease that one

wishes to model.

2.1. Host population structure and dynamics

The host population is subdivided in four compartments: susceptible, infected, infectious

and immune as shown in the graph above. The parameters u,v ∈ {0;1} are used to choose
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the dynamics in the host population. Thus according to the values of u and v we can have the

dynamics SIS, SIRS, SEIS or SEIRS.

FIGURE 1. Dynamics in the host population

2.2. Mosquito population structure and dynamics

In the vector population we adopt the questing-resting as described in [13], but to simplify

the calculations we consider the questing-resting phase number equal to 1. The figure below

illustrates the dynamics in Population of vectors.

FIGURE 2. Mosquito population dynamics

The variables, parameters and ranges of the values of the model are presented in the following

table.
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TABLE 1. Variable of model

Variable Description

humans

Sh Number of susceptible humans in the population

Eh Number of infected humans in the population

Ih Number of infectious humans in the population

Rh Number of immune humans in the population

mosquitoes

Sq Number of questing susceptible mosquitoes

E i
q Number of questing infected mosquitoes in step i

E i
r Number of resting infected mosquitoes in step i

Iq Number of questing infectious mosquitoes

Ir Number of resting infectious mosquitoes

TABLE 2. fundamental model parameter

Parameter Description Unity

human

Λh immigration in the host population h× j−1

γ rate of lost of immunity in the host population j−1

λ rate of transition for infected to infectious in the host population j−1

ξ rate of recovery in the host population j−1

µ death rate in the host population j−1

d disease-induced death rate in the host population j−1

a number of bites on humans by a single female mosquito per unit time

m Infectivity coefficient of hosts due to bite of infectious vector variable

Mosquitoes

Λv imigration of vectors m× j−1

χ Rate at which resting vectors move to the questing state j−1

β Rate at which quessting vectors move to the resting state j−1

κ death rate of resting vectors j−1

κ
′

death rate of questing vectors j−1

c Infectivity coefficient of vector due to bite of infectious host . variable

c̃ Infectivity coefficient of vector due to bite of removed host group. variable
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TABLE 3. Derived model parameters

Param. Formula Description

α
amIQ

Nh
incidence rate of susceptible human

ϕ
acIh

Nh
+

avc̃Rh

Nh
incidence rate of susceptible mosquitoes

2.3. Model equation

The diagrams (1) and (2) allow us to have the following system of equations:

(1)



Ṡh = Λh + vγRh + ṽξ Ih− (µ +α)Sh ṽ = 1− v

Ėh = u [αSh− (µ +λ )Eh]

İh = uλEh + ũαSh− [µ̂ +ξ ]Ih µ̂ = µ +d; ũ = 1−u

Ṙh = v [ξ Ih− (µ + γ)Rh]

Ṡq = Λv− (κ
′
+ϕ)Sq

Ė0
r = ϕSq− (κ +χ)E0

r

Ė1
q = χE0

r − (κ
′
+β )E1

q

Ė1
r = βE1

q − (κ +χ)E1
r

İq = χE1
r − (κ

′
+β )Iq +χIr

İr = β Iq− (κ +χ)Ir
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3. Well-posedness, dissipativity

In this section we demonstrate well-posedness of the model by demonstrating invariance

of the set of non-negative states, as well as boundedness properties of the solution. We also

calculate the equilibria of the system.

3.1. Positive invariance of the non-negative cone in state space

The system (1) can be rewritten in the matrix form as

(2) ẋ = A(x)x+b(x)⇐⇒

 ẋS = AS(x).xS +ASI(x)xI +bS

ẋI = AI(x).xI

Equation (2) is defined for values of the state variable x = (xS;xI) lying in the non-negative

cone of R10
+ . Here xS =

(
Sh;Sq

)
represents the naive component and

xI =
(
Eh;E0

r ;E1
q ;E1

r ; Ir; Iq; Ih;Rh
)

represents the infected and infectious components of the

state of the system.

The matrix AS(x), ASI(x) and AI(x) are define as

AS(x) =

 −(α +µ) 0

0 −(ϕ +κ
′
)



ASI(x) =


0 0 0 0 0 0 ṽξ v1γ1

0 0 0 0 0 0 0 0


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and

(3)

AI(x)=



−u(λ +µ) 0 0 0 0
amu
Nh

Sh 0 0

0 −(χ +κ) 0 0 0 0
ac
Nh

Sq
avc̃
Nh

Sq

0 χ −(β +κ
′
) 0 0 0 0 0

0 0 β −(χ +κ
′
) 0 0 0 0

0 0 0 0 −(χ +κ) β 0 0

0 0 0 χ χ −(β +κ
′
) 0 0

uλ 0 0 0 0
amũ
Nh

Sh −(ξ + µ̂) 0

0 0 0 0 0 0 vξ −v(γ +µ)



For a given x∈R11
+ , the matrices A(x), AS(x) and AI(x) are Metzler matrices. The following

proposition establishes that system (1) is epidemiologically well posed.

Proposition 3.1 The non-negative cone R10
+ is positive invariant for the system (1).

3.2. Boundedness and dissipativity of the trajectories

Let N∗h =
Λh

µ
, N∗v =

Λv

κ
, N#

h =
Λh

µ̂
, N#

v =
Λv

κ
′ (κ

′
= κ +d

′
) .

proposition 3.2. The set G defined by

G =
{(

Sh;Sq;Eh;E0
r ;E1

q ;E1
r ; Ir; Iq; Ih;Rh

)
∈ R10

+ | N#
h ≤ Nh ≤ N∗h ,N

#
v ≤ Nv ≤ N∗v

}
is GAS for

the dynamical system (1) defined on R10
+ .

4. Equilibria of the system and Computation of the threshold condition

4.1. Disease free equilibrium

We obtain the disease free equilibrium DFE after solve the system A(x)×
(
x?S,0

)T
= 0

Proposition 4.1 The disease free equilibrium of the system (1) is given by:

x? = (x?S,x
?
I ) = (x?S,0) =

(
Λh

µ
;
Λv

κ
′ ;0
)

with
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where fq =
β

β +κ
′ and fr =

χ

χ +κ
are respectively the questing and the resting frequencies of

mosquitoes.

4.2. Basic reproduction number R0

Unlike the method proposed in [17] we will use the one given in [14] which is more appro-

priate for systems like what we describe

Proposition 4.1. The basic reproduction number is given by:

(4) R0 = Rv
0×Rh

0 =
aΛv

(
fq fr
)2

κ
′
β (1− fq fr)

× amµ [λ +µ(1−u)] [vξ c̃+(µ + γ)c]
Λh(µ̂ +ξ )(µ + γ)(µ +λ )

Proof: The matrix of the infected AI(x?) can be written in the form

(5) AI(x?) =

 AIE (x?) AIE,I(x?)

AII,E (x?) AII(x?)


with

AIE (x
?) =


−(λ +µ)u 0 0 0

0 −(χ +κ) 0 0

0 χ −(β +κ
′
) 0

0 0 β −(χ +κ)



AIE,I(x
?) =


0 S?hamu

N?
h

0 0

0 0
S?qac
N?

h

S?qac̃v
N?

h

0 0 0 0

0 0 0 0



AII,E (x
?) =


0 0 0 0

0 0 0 χ

λu 0 0 0

0 0 0 0


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AII(x)
? =


−(χ +κ) β 0 0

χ −(β +κ
′
) 0 0

0 S?ham(1−u)
N?

h
−(ξ + µ̂) 0

0 0 vξ −(γ +µ)v


We apply the algorithm given in the proposition to the matrix AI(x?) we have : AI(x?) is

metzler stable if and only if AIE (x?) and AII(x?)−AII,E A−1
IE
(x?)AIE,I(x?) are Metzler stable.

The matrix AIE (x?) is always a Metzler stable matrix. The condition of being a Metzler stable

matrix of AI(x?) must be deported on the matrix AII(x?)−AII,E A−1
IE
(x?)AIE,I(x?).

We denote by N(x?) = AII(x?)−AII,E A−1
IE
(x?)AIE,I(x?)

N(x?) it is a 6×6 square matrix that can be decomposed in the following block matrix form

:

N(x?) =

 N11(x?) N12(x?)

N21(x?) N22(x?)


N11(x?) is a 2×2 square matrix given by

N11(x?) =

 −(χ +κ) β

χ −(β +κ
′
)


N12(x?) is a 2×2 matrix given by

N12(x?) =

 0 0
S?qaβcχ2

N?
h(β+κ

′)(χ+κ)2
S?qaβ c̃χ2v

N?
h(β+κ

′)(χ+κ)2


N21(x?) is a 2×2 matrix given by

N21(x?) =

 0 S?haλmu
N?

h (λ+µ) +
S?ham(1−u)

N?
h

0 0


N22(x?) is a 2×2 square matrix given by:

N22(x?) =

 −(ξ + µ̂) 0

vξ −(γ +µ)v


We make another iteration of the algorithm given by the proposition
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We denote by L(x?) = N22(x?)−N21(x?)N−1
11 (x

?)N12(x?)

L(x?) =

 −(κ +χ) β

χ
fq f 2

r S?q
N?2

a2mS?h [λ +µ ũ] [vξic̃+(µ + γ)c]
(µ +λ )(µ̂ +ξ )(µ + γ)

− (κ
′
+β )



The last iteration of the algorithm, since N22(x?) is negative coefficient leads to the consid-

eration of the matrix L(x?) and thus L(x?) of being Meztler stable on the unique condition

L22(x?)−L21(x?)L−1
11 (x

?)L12(x?)≤ 0

fq f 2
r S?q

N?2
a2mS?h [λ +µ ũ] [vξic̃+(µ + γ)c]

(µ +λ )(µ̂ +ξ )(µ + γ)
− (κ

′
+β

?)+
β χ

(κ +χ)
≤ 0

A simple calculation shows that

Λv
(

fq fr
)2

κ
′
β (1− fq fr)

a2mµ [λ +µ(1−u)] [vξ c̃+(µ + γ)c]
Λh(µ̂ +ξ )(µ + γ)(µ +λ )

≤ 1

4.3. Endemic equilibrium

The system (1) admit two equilibriums, one named Disease Free Equilibrium (DFE) defined

in the previous subsection and the other named Endemic Equilibrium (EE).

To determine the endemic equilibrium (EE) we must solve equation A(x)× (x∗)T = 0.

Theorem 4.3.

The model (1) has:

(a) if R0 > 1, the system has a unique endemic equilibrium

(b) if R0 = 1 and Rc < 1, the system has a unique endemic equilibrium,

(c) if Rc < R0 < 1 and
(
R0 = R1

0 or R0 = R2
0
)

, the system has a unique endemic equi-

librium,

(d) If Rc < R0 < min(1,R1
0) or min(Rc,R2

0) < R0 < 1 , the system has two endemic

equilibrium,

(e) No endemic equilibrium elsewhere.

The proof is given in the appendix A.

5. Global asymptotic stability of the Disease Free Equilibrium (DFE)
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In this section we analyze the stability of the system equilibria given in Proposition .

We have the following results for the global asymptotic stability of the disease free equilibrium:

Theorem 5.1 Let ζ = µ

µ+d , and G̃ = {x∈G : x 6= 0} a positively invariant space. When R0≤ ζ ,

then the DFE for system (1) is GAS in the sub–domain {x ∈ G̃ : xI = 0}.

Proof: Our proof is based on Theorem 4.3 of Kamgang & Sallet [14] , which establishes

global asymptotic stability for epidemiological systems that can be expressed in the matrix

form (2). We need only establish for the system (1) that the five conditions (h1–h5) required in

Theorem 4.3 of Kamgang & Sallet [14] are satisfied when R0 ≤ ζ .

(h1) The system (1) is defined on a positively invariant set R10
+ of the non-negative orthant. The

system is dissipative on G̃ .

(h2) The sub-system ẋS = AS(xS,0)(x− x∗S) is express like:


Ṡh = Λh−µSh

Ṡq = Λv−κ
′
Sq

is the linear

system which is GAS at the DFE
(

Λh

µ
;
Λv

κ
′ ;0
)

. The DFE, satisfying the hypotheses H2.

(h3) The matrix AI(x) given by (4) is Metzler. The graph shown in the figure below, whose

nodes represent the various infected disease states is strongly connected, which shows

that the matrix AI is irreductible. In this case, the two properties required for condition

(h3) follow immediately: off-diagonal terms of the matrix AI(x) are non–positive; and

Figure (3) shows the associated direct graph G(AI(x)), which is evidently connected, thus

establishing irreducibility.

FIGURE 3. graph associated to the matrix AI(x)
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(h4) Knowing that
1

N#
h
>

1
Nh

, S∗h > Sh and S∗v > Sv, we obtain the upper bound ĀI of AI(x)

given by:

ĀI =

 M N

P Q


with

M =


−(λ +µ)u 0 0 0

0 −(χ +κ) 0 0

0 χ −(β +κ
′
) 0

0 0 β −(χ +κ)



N =



0 S?hamu
N#

h
0 0

0 0
S?qac
N#

h

S?qac̃v
N#

h

0 0 0 0

0 0 0 0



P =


0 0 0 0

0 0 0 χ

λu 0 0 0

0 0 0 0



Q =


−(χ +κ) β 0 0

χ −(β +κ
′
) 0 0

0 S?ham(1−u)
N#

h
−(ξ + µ̂) 0

0 0 vξ −(γ +µ)v


AI(x)< ĀI for all x ∈ G and AI(x∗) = ĀI for all x ∈ G̃ condition (h4) is satisfied.

(h5) α(ĀI)< 0⇐⇒ α(Q−PM−1N)< 0

After tree iterations, we have

T =

 −(κ +χ) β

χ
fq f 2

r S?q
N#2

a2mS?h [λ +µ ũ] [vξic̃+(µ + γ)c]
(µ +λ )(µ̂ +ξ )(µ + γ)

− (κ
′
+β )


The last iteration gives
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α(ĀI)< 0⇐⇒R0 <
µ

µ +d
Since the five conditions for Theorem 4.3 of Kamgang & Sallet [14] are satisfied, the

DFE is GAS when R0 <
µ

µ +d
.

Corollary 5.1 If the disease-induced death rate is 0 (d = 0) then, when R0 ≤ 1, then the DFE

for system (1) is GAS in the sub–domain {x ∈ G̃ : xI = 0}.

6. Bifurcation analysis

To explore the possibility of bifurcation in our system at critical points, we use the centre

manifold theory [3]. A bifurcation parameter m? is chosen, by solving R0 = 1, we have

m? =
Λhκ

′
β (1− fq fr)(ξ + µ̂)(λ +µ)(γ +µ)

a2µΛv( fq fr)2(λ + ũµ)[c(γ +µ)+ cc̃ξ ]
Jm? is the Jacobian matrix of of system (1) evaluated at the DFE and for m = m?

Jm? =



−µ 0 0 0 0 0 0 −am? ṽξ vγ

0 −κ
′

0 0 0 0 0 0
−acS?q

N?

−avc̃S?q
N?

0 0 −u(λ +µ) 0 0 0 0 uam? 0 0

0 0 0 −(χ +κ) 0 0 0 0
acS?q
N?

avc̃S?q
N?

0 0 0 χ −(β +κ
′
) 0 0 0 0 0

0 0 0 0 β −(χ +κ) 0 0 0 0

0 0 0 0 0 0 −(χ +κ
′
) β 0 0

0 0 0 0 0 χ χ −(β +κ
′
) 0 0

0 0 uλ 0 0 0 0 ũam? −(ξ + µ̂) 0

0 0 0 0 0 0 0 0 vξ −v(γ +µ)



Jm? =

 J1
m? J3

m?

0 J2
m?



The eigenvalues of this matrix are the eigenvalues of the sub-matrix

J1
m? =

 −µ 0

0 −κ
′


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J2
m? =



−u(λ +µ) 0 0 0 0 uam? 0 0

0 −(χ +κ) 0 0 0 0
acS?q
N?

avc̃S?q
N?

0 χ −(β +κ
′
) 0 0 0 0 0

0 0 β −(χ +κ) 0 0 0 0

0 0 0 0 −(χ +κ
′
) β 0 0

0 0 0 χ χ −(β +κ
′
) 0 0

uλ 0 0 0 0 ũam? −(ξ + µ̂) 0

0 0 0 0 0 0 vξ −v(γ +µ)


The caracteristic polynom of the matrix J2

m? is given by:

P(x) = x8 + p7x7 + p6x6 + p5x5 + p4x4 + p3x3 + p2x2 + p1x+ p0

Let η = µ̂ +ξ , l1 = χ +κ , l2 = β +κ
′
, b1 = v(γ +µ) and b2 = u(λ +µ)

p7 = b1 +b2 +η +3l1 +3l2

p6 =−β χ +b1b2 +(b1 +b2)(η +3l1 +2l2)+3l1(η + l1)+ l2(2η +6l1 + l2)

p5 = −β χ(η +b1 +b2 +2l1)+b1b2η +3l1(b2 +η)(b1 + l1 +2l2)+ l2(b1 +b2)(6l1 + l2)

+l3
1 −β χl2 +2l2(b1b2 +η(b1 +b2))+3l1b2(η + l1)+ l2(6l2

1 + l2(η +3l1))

p4 = (b1 +b2 +d)(−β χ(2l1 + l2)+ l1(l2
1 +3l2(l2 +2l1)))+(b1b2 +η(b1 +b2))(−β χ + l2(l2 +6l1))

+3b1b2(l1(l1 +η)+η l2)+ l2
1(3(b1 +b2)+2l1l2)−β χl1(l1 +2l2)

p3 = −β χ

[
S?qa2cmũ

N
+ l2

1 l2 +2b1l1(b2 +η)+b2η(b1 +2l1)+(b1 +b2 +η)(l2
1 +2l1l2)+ l2(b1b2 +b1η +b2η)

]
+b2η l2

1(3b1 + l1)+b1l2
1(b2 +η)+b1b2η l2

2 + l1l2
[
6b1b2(η + l1)+6η l1(b1 +b2)+(b1 +b2 +η)(2l2

1 +3l1l2)

+ 3l2(b1b2 +b1η +b2η)+ l2
1
]

p2 = −
S?qa2β χ2m

N?
(c̃v2ωξ + cλu2 + cω(b1 + l1 + c))−β χ(b1b2η(2l1 + l2)+(b2 +η)(b1l2

1 +2b1l1l2 + l2
1 l2)

+l1(b2η l1 +2b2η l2 +b1l1l2))+3b1b2η l1l2(2l1 + l2)+ l2
1(b1 +b2 +η)(2b1l1l2 + l2

2)+3l2
1 l2

2(b1b2 +b1η +b2η)

p1 = l2
1 l2(b1b2(η(2+3l2)+ l2)+η l2(b1 +b2))−β χl1(b1b2(η l1 +2η l2 + l1l2)+ l1l2η(b1 +b2))

−Sq?a2β χ2m
N?

[
c̃v2ξ (λu2 + ũ(b2 + l1))+ cu2λ (b1 + l1)+ cũ(b1b2 + l1(b1 +b2))

]
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p0 =
uvβ χ(β +κ

′
)(χ +κ)2(µ̂ +ξ )(λ +µ)(γ +µ)(1− fq fr)

fq fr
[1−R0]

When R0 = 1, 0 is a eigenvalue of the matrix Jm?

The components of the left eigenvector of J(x?,m?) are given by v = (v1,v2, ...,v11), where

v1 = v2 = v3 = 0; v6 =
1
fr

v5; v7 = v8 =
1

fq fr
v5; v9 =

1
fq( fr)2

v11 =
S?qac̃

N?
h (γ +µ)

v5; v10 =
1

ξ + µ̂

[
acS?q
N?

h
v5 + vξ v11

]
; v4 =

λu
λ +µ

v10; v5 > 0

A non-zero components correspond to the infected states.

Similarly, the component of the right eigenvector w are given by

w6 =
χ

β
fqw5; w7 = fq frw6; w8 =

fq

1− fq fr
w7; w9 =

χ

β
frw8; w4 =

am
λ +µ

w9; w10 =
amũw9 +λuw4

ξ + µ̂

w11 =
ξ

γ +µ
w10; w1 =

γvw11−amw9 +χ ṽw10

µ
; w2 =

aSq fr

N?
h (1− fq fr)

[cw10 + c̃vw11] ; w3 =
χ

β
fqw2; w5 > 0

(6) A =
11

∑
k,i, j=1

vkwiw j
∂ 2 fk

∂xi∂x j
(x?,m?), B =

11

∑
k,i=1

vkwi
∂ 2 fk

∂xi∂m
(x?,m?)

A =v4

11

∑
i, j=1

wiw j
∂ f4(x?,m?)

∂xi∂x j
+ v5

11

∑
i, j=1

wiw j
∂ f5(x?,m?)

∂xi∂x j
+ v10

11

∑
i, j=1

wiw j
∂ f10(x?,m?)

∂xi∂x j

=−2v4w9
uam?

S?q
(w4 +w10 +w11)−2v10w9

ũam?

S?q
(w4 +w10 +w11)+2v5w3

a
S?q

(cw10 + vc̃w11)

=2v5w3
a
S?q

(cw10 + vc̃w11)−2w9
am?

S?q
(w4 +w10 +w11) [uv4 + ũv10]

=π1−π2

(7)

(8) B = aw9 (v4 + ũv10)> 0

Theorem 6.1 The model (1) exhibits a backward bifurcation at R0 = 1 whenever A > 0

(i.e.,π1 > π2). If the reversed inequality holds, then the bifurcation at R0 = 1 is forward.

The proof of the previous theorem is based on Theorem 4.1 in [9],

7. Local sensibility analysis
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We have an explicit expression for R0, we can evaluate the sensitivity index of different

parameters intervening in this expression. In addition to the various parameters involved in

the model, we also evaluate the sensitivity index for fq and fr which are calculated parameters

derived from the parameters β and χ .

The formula below proposed in [7] gives us the expression of the index of sensitivity of a

parameter q to R0.

ϒ
R0
q =

∂R0

∂q
× q

R0

Using this expression, and those values Λh =
1000

50×365
; c = 0.83; c̃ = 0.083; ξ =

0.017; γ = 1.4×10−3; µ =
1

50×365
; d = 4×10−4; m = 0.27; a = 0.56; u = 1; v =

1; λ = 0.2; Λv =
10000

21
; β =

2
3

; χ =
1
5

; κ =
1

21
; κ

′
=

2
21

. we calculated for each of

the parameters of the model its sensitivity index. The summary table is given below.

Parameter Sensitivity index

1 fq 4.4098

2 fr 4.4028

3 a 2

4 Λv 1

5 m 1

6 Λh −1

7 µ −0.9758

8 c 0.4611

9 ξ −0.4345

10 c̃ 0.5388

11 γ −0.1887

12 d −0.02291

13 λ 0.0003

TABLE 4. Sensitivity indices of R0 to parameters for the model
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By analyzing the table above we can say that if we do not take into account fq and fr the most

sensitive parameter of our model is number of bites on humans by a single female mosquito per

unit time a As in most works of the literature. On the other hand, by integrating fq and fr, these

become the most sensitive parameters, ie their modifications can play a large role in reducing

the level of infection. In other words, the consideration of the dynamics is questing-resting is

important and it is necessary to increase the time from the state questing to the state resting

and vis versa. This increase can be made by use of the methods already proposed such as the

distance of the gites from the places of dwellings, notably by making cleanliness around the

dwellings

8. Numerical Simulation

We performed simulations for the particular case of malaria and for SEIRS i.e u = 1 and

v = 1 dynamics in humans. All the results of stability, existence of endemic equilibrium and

bifurcation established above are illustrated by graphs.
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FIGURE 4. Those graphics presents the backward bifurcation for model system

(1) curve of I∗h and I∗q as a function of R0 for values of the bifurcation parameter

m ranging from 0.0004 to 0.0014 . It illustrates for R0 < 1 the existence of two

endemic equilibria of which, one unstable represented in red and the other stable

represented in blue.
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FIGURE 5. Solutions of model (1) of the number of infectious humans, Ih , and the

number of infectious vectors, Iv , for R0 = 0.8789171 and ζ = 0.05194 (ζ < R0 <

1) with the parameter Λh =
1000

50×365
; c = 0.28; c̃ = 0.028; ξ = 0.0035; γ =

1.4 × 10−3; µ =
1

50×365
; d = 0.001; m = 0.007; a = 0.36; u = 1; v =

1; λ = 0.01; Λv =
10000

21
; β =

2
3

; χ =
1
5

; κ =
1
21

; κ
′
=

2
21

. The solu-

tion for initial condition X1 = [1000,100,200,10,1250,150,300,200,500,200] approaches

the locally asymptotically stable DFE point, while the solution for initial condition X2 =

[400,50,150,20,1200,250,50,30,140,130] and X3 = [10,2,4,1,100,80,40,50,200,150] ap-

proaches the locally asymptotically stable endemic equilibrium
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FIGURE 6. Solutions of model (1) of the number of infectious humans, Ih , and

the number of infectious vectors, Iv , for R0 = 0.58576 and ζ = 0.84566 (R0 < ζ <

1) with the parameter Λh =
1000

50×365
; c = 0.28; c̃ = 0.028; ξ = 0.0035; γ =

1.4 × 10−3; µ =
1

50×365
; d = 0.0001; m = 0.007; a = 0.26; u = 1; v =

1; λ = 0.01; Λv =
10000

21
; β =

2
3

; χ =
1
5

; κ =
1
21

; κ
′
=

2
21

. The so-

lution for initial condition X1 = [1000,100,200,10,1250,150,300,200,500,200], X2 =

[400,50,150,20,1200,250,50,30,140,130] and X3 = [10,2,4,1,100,80,40,50,200,150] ap-

proaches the global asymptotically stable DFE point
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FIGURE 7. Solutions of model (1) of the number of infectious humans, Ih , and

the number of infectious vectors, Iv , for R0 = 7.32798126 with the parameter

Λh =
1000

50×365
; c = 0.53; c̃ = 0.053; ξ = 0.0035; γ = 1.4× 10−3; µ =

1
50×365

; d = 0.0009; m = 0.03; a = 0.36; u = 1; v = 1; λ =

0.2; Λv =
10000

21
; β =

2
3

; χ =
1
5

; κ =
1
21

; κ
′
=

2
21

. The solution for

initial condition X1 = [1000,100,200,10,1250,150,300,200,500,200],

X2 = [400,50,150,20,1200,250,50,30,140,130] and X3 =

[10,2,4,1,100,800,400,150,400,50] approaches the unique stable endemic

equilibrium
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Conclusion

At the end of this work, we studied a generic model of vector-borne diseases incorporating

questing-resting dynamics in vectors. We determined the basic reproduction rate and showed

that the DFE is GAS when R0 < ζ . We have also shown that there exist two endemic equilibria

when R0 < 1, for R0 > 1 the system admits a unique endemic equilibrium and that for R0 = 1

the system admits a backward bifurcation. We also have at the end of a sensitivity analysis show

that the rate of transition from the questing state to the resting fq state and the transition from

the resting state to the questing fr state are the parameters More sensitive, which reflects the

importance of considering this dynamic.

Appendix

Appendix A. To facilate writing, let D =
(λ +µ)(ξ + µ̂)

λ + ũµ
, F =

vγξ

γ +µ
+ ξ ṽ, C =

ξ +µ

λ + ũµ
, M =

ξ

γ +µ
, P =

γ +µ

c̃vξ + c(γ +µ)

I∗h =
α∗Λh

α∗(D−F)+Dµ
R∗h = MI∗h E∗h =CI∗h S∗h =

DI∗h
α∗

S∗q =
Λv

κ
′
+ϕ∗

E0∗
r =

ϕ∗S∗q
κ +χ

E1∗
q =

χE0∗
r

κ
′
+β

E1∗
r =

βE1∗
q

κ +χ
I∗q =

fqχE1∗
r

β (1− fq fr)
I∗r =

β

χ
frI∗q

where

ϕ
∗ =

a(cI∗h + c̃R∗h)
N

=
aα∗(Mc̃v+ c)

α∗(Cu+Mv+1)+D

and

α
∗ =

amI∗q
N

=
((D−F)α∗+Dµ)DPβ χ2 fqκ

′
ϕ∗R0

a((Cu+Mv+1)α∗+D)( fq fr)2(κ +χ)2(κ
′
+β )(κ

′
+ϕ∗)µ

Substituting ϕ∗ in α∗, we obtain

(9) α
∗[A2(α

∗)2 +A1α
∗+A0] = 0⇔ α

∗ = 0 or A2(α
∗)2 +A1α

∗+A0 = 0
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α∗ = 0 Corresponds to DFE, so we look the solution of

(10) A2(α
∗)2 +A1α

∗+A0 = 0

(11) A2 = µ( fq fr)
2(κ +χ)2(κ

′
+β )

[
a(Mc̃v+ c)+κ

′
(Cu+Mv+1)

]
(Cu+Mv+1)> 0

(12) A1 =−Dβ fqχ
2Pcκ

′
(D−F)(Mv+1) [R0−Rc] =−A

′
1 [R0−Rc]

where Rc =
( fq fr)

2(κ +χ)2(κ
′
+β )µ

[
a(Mc̃v+ c)+2κ

′
(Cu+Mv+1)

]
β fqχ2cκ

′P(D−F)(Mv+1)

(13) A0 =
D2µκ

′

Pβ χ2 fq(Mc̃v+ c)
(1−R0) = A

′
0 (1−R0)

If R0 > 1 (A0 < 0) then the discriminant of the equation (10) is positive, if s is the sum of

the solutions and p the product of these solutions then: s = −A1

A2
And p =

A0

A2
< 0 therefore

the equation has only one positive solution from which the system admits a unique endemic

equilibrium.

If R0 = 1, then the equation (10) has a unique solution −A1

A2
which is positive if A1 < 0 ie

Rc < 1.

If R0 = 1 (A0 = 0), then the equation has a unique solution which is α∗ = −A1

A2
, or A2 > 0

so this solution is positive if A1 < 0 ie if Rc < R0 = 1

If R0 < 1 (A0 > 0), the discriminant of (10) is given by:

(14) ∆ = A2
1−4A0A2 = A

′2
1 R2

0 +
(

4A2A
′
0−2A

′
1Rc

)
R0−

[
(A
′
1Rc)

2 +4A2A
′
0

]
∆ is a second degree equation in R0 and his discriminant ∆r is define by:

∆r =
[
4A2A

′
0−2A

′
1Rc

]2
+4A

′2
1

[
(A
′
1Rc)

2 +4A2A
′
0

]
> 0

So ∆ = 0 admits two distinct solutions R1
0 and R2

0

If R0 = R1
0 or R0 = R2

0 alors ∆ = 0 and equation (10) has a unique solution α∗ = − A1

2A2
which is positive if A1 < 0 ie if Rc < R0
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If R0 ∈ [0;R1
0 [∪]R1

0 ;+∞[ then ∆ > 0 Hence the equation has two solutions, so the sum and

the product are given by s =−A1

A2
and p =

A0

A2
> 0. These two solutions are positive if s > 0 ie

A1 < 0 (R0 < Rc).
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