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Abstract. This paper presents a model for plants subject to a disease, harvested by (insect) herbivores and it also

includes natural enemies of the latter. Basic results on boundedness, feasibility of equilibria, uniform persistence

and local and global stability issues are investigated.
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1. Introduction

In nature, plants interact in complex ways with herbivores and pathogens. Presently, 50%

of 6 million insects species are herbivorous [17]. Plant pathogenic microbes are not estimated

still they create major threats to plants [19]. Due to multiple attack, plants have developed so-

phisticated defence mechanism that allow them to identify herbivores or pathogens [13]. Two

types of defence mechanism are employed by plant namely physical and chemical. In case of

chemical defence, plant release volatile organic compounds (VOCs) that attract natural enemies
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of herbivores to reduce enemy pressure [6,16]. In fact, VOCs mainly attract predatory mites

and parasitic wasps. For example, lima bean and apple plants which release volatile that attract

predatory mites when damaged by spider mites [20]. Several plant species such as cucumber,

corn, cotton etc. release volatile when they are attacked by herbivores. This herbivore-induced

plant volatile (HIPV) can control pest and reduce the use of artificial pesticides. HIPVs are the

lipophilic liquids with high vapor pressures which are released from the different parts of the

plant body namely leaves, flowers fruits etc.[7]. Thus the induced plant can protect forestry

and agriculture. Though, VOCs can attract predatory arthropods and / or repel herbivores and

thus promote plant fitness [1,5,21]. Volatile of any kind confer protection for damaged plants

by attracting natural enemies of herbivores [15,16]. Studies either on plant-herbivore or plant-

pathogen interaction has received much attention to the researchers. But the role of VOCs in

mediating tritrophic interactions, when plants are attacked by herbivore and pathogen is still un-

known. Recently Liu et al.[11] investigated the model involving plants, herbivores and natural

enemies of herbivores in the form of tritrophic interactions without considering pathogenic ef-

fect on the plant population. They found that increase in attraction of strength of plant-induced

volatile to the natural enemy leads to high fluctuation amplitude of plant biomass and herbivore

population. It was observed that when the attack strength of natural enemies reaches a cer-

tain level, fluctuation amplitude of plant biomass and herbivore population decrease and plant

biomass approach to its environmental carrying capacity. Fergola and Wang [8] improved the

model of Liu et al. [11] and considered the effect of time delay. They established that for Volter-

ra type interaction, the threshold value for persistence of herbivore and carnivore populations

is not affected by the chemical attractions. It was remarked that presence of carnivores may

decrease the density of herbivores and increase the density of plants. The model exhibits the

fold bifurcation when the predation process follows Leslie type.

In view above discussion, we consider a system where pathogens co-occur with herbivory. The

novelty of our work is to demonstrate the situation when plants are attacked by herbivorous

insects and pathogens. Previous studies mainly focussed plant-insect and plant-pathogen inter-

actions largely independent from one another, although plant defence against both is regulated

by the same general mechanism.
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One of the main findings of this work is the condition under which the positive (endemic) e-

quilibrium is globally asymptotically stable. For this condition, the disease become endemic.

To control disease such condition should not be accepted. On the other hand, one may remove

infected plants to prevent disease. Local stability of boundary equilibria are derived. If these

conditions are satisfied then one of the subpopulation faces extinction. In that case, either in-

fected plants or herbivore population can be removed. To protect plant fitness, immigration rate

of natural enemies of herbivores and pathogens play a major role. For a four species system, one

critical condition demands that all boundary equilibria with one missing species can be invaded

by the missing species. These conditions are obtained in system parameters.

This paper is structured as follows. In Section 2, we present our model. Positivity and

boundedness of solutions of system are given in Section 3. Dynamical behavior of the system

are investigated in Section 4. Uniform persistence criterion is described in Section 5. We dis-

cuss global stability of the positive equilibrium point in Section 6. A brief discussion follows in

Section 7.

2. Model

Let S(t), I(t) be the number of susceptible and infected plant respectively. Y (t) and Z(t) be

the population sizes of herbivores and their natural enemies respectively. The model is described

by :

dS
dt

= S{r(1− S
k
)−β I− p1Y},

dI
dt

= I(βS−µ),

dY
dt

= Y (−d1 + c1 p1S− p2Z),

dZ
dt

=−d2Z + c2 p2Y Z +ωS

(2.1)

with initial conditions given by S(0) = S0 > 0, I(0) = I0 > 0,Y (0) =Y0 > 0 and Z(0) = Z0 > 0.

Here r is the intrinsic growth rate of plants. k is the environmental carrying capacity. β is the



4 DEBASIS MUKHERJEE

disease transmission rate. p1 and p2 are the predation rates for plant-herbivore and herbivore-

natural enemies respectively. c1 and c2 are the corresponding conversion rates. d1 is the death

rate of herbivores, and µ is the death rate of infected plant. The term ω is the immigration

rate of natural enemies of herbivores due to the attraction of defensive chemical from plants.

Biological justification of the above model can be found in [3]. For example, lima bean plants

(Phaseolus lunatus L. cv Sieva ) emit volatile when attacked by spider mites (Tetranychus ur-

ticae) and attract predatory mite (Phytoseiulus persimilis), a specialized natural enemy of spider

mites. Pod blight is caused to the lima bean plants by the fungus Diaporthe phaselorum.

All the model parameters are assumed to be positive.

3. Prelimineries

In this section, we shall first show positivity and boundedness of solutions of system (2.1).

For system (2.1) to be biologically meaningful and well posed, it is necessary to prove that all

solutions of system with positive initial data will remain positive for all times t > 0. This will

be established by the following lemma.

Lemma 3.1. All solutions (S(t), I(t),Y (t),Z(t)) of system (2.1) with initial value (S0, I0,Y0,Z0)∈

R4
+, remains positive for all t > 0.

Proof. The positivity of S(t), I(t) and Y (t) can be verified by the equations

S(t) = S0 exp{
∫ t

0[r(1−
S(u)

k )−β I(u)− p1Y (u)]du},

I(t) = I0 exp{
∫ t

0[βS(u)−µ]du},

Y (t) = Y0 exp{
∫ t

0[−d1 + c1 p1S(u)− p2Z(u)]du}

with S0, I0,Y0 > 0. The positivity of Z(t) can be easily deduced from the fourth equation of

system (2.1). We observe that
dZ
dt ≥ Z(−d2 + c2 p2Y )

⇒ Z(t)≥ Z0 exp{
∫ t

0[−d2 + c2 p2Y (u)]du}.

Also if S(0) = I0 > 0, then S(t) > 0 for all t > 0. The same argument is valid for component
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I(t),Y (t) and Z(t). Hence the interior of R4
+ is an invariant set of system (2.1).

In the theoretical eco-epidemiology, the boundedness of the system ensures that the system is

biologically valid and well behaved. Biological validity of the model is shown by the following

lemma.

Lemma 3.2. All the solutions of system (2.1) will lie in the region

B = {(S, I,Y,Z) ∈ R4
+ : 0 ≤ S+ I + 1

c1
Y + 1

c1c2
Z ≤ M

λ
} as t → ∞ for all positive initial values

(S(0), I(0),Y (0),Z(0)) ∈ R4
+ where λ = min{r,µ,d1,d2} and M = k

4r (2r+ ω

c1c2
)2.

Proof. Let us consider the function

W (t) = S+ I + 1
c1

Y + 1
c1c2

Z.

The time derivative along a solution of (2.1) is
dW (t)

dt = S{r(1− S
k )}−µI− d1

c1
Y − d2

c1c2
Z + ω

c1c2
S.

For each λ > 0 the following inequality is satisfied :

dW
dt

+λW ≤M+(λ − r)S+(λ −µ)I +
1
c1
(λ −d1)Y +

1
c1c2

(λ −d2)Z. (3.1)

Now choose λ such that 0 < λ = min{r,µ,d1,d2}. Then (3.1) can be written as
dW
dt +λW < M .

By using the Comparison Theorem [2] we obtain

0≤W (S(t), I(t),Y (t),Z(t))≤ M
λ
+W (S(0), I(0),Y (0),Z(0))/eλ t .

Taking limit when t→ ∞, we have, 0 <W (t)≤ M
λ

. Hence system (2.1) is bounded.

Since the total population is bounded, each subpopulation S, I,Y,Z is bounded as well for all

future times. From above Lemma 3.2, we have S(t)≤ k, I(t)≤M,Y (t)≤Mc1,Z(t)≤Mc1c2.

4. Dynamical behaviour

Evidently, system (2.1) has the following boundary equilibrium points : E0 =(0,0,0,0),E14 =

(k,0,0, ωk
d2
),E124 = (µ

β
, r(βk−µ)

kβ 2 ,0, ωµ

βd2
) and E134 = (S̃,0,Ỹ , Z̃) where S̃ is the positive root of the

equation
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rc1c2 p1 p2S2 +(c1 p1kd2− c1c2 p1 p2rk−d1c2 p2r− p2kω)S−d1k(d2− c2 p2r) = 0,

and Ỹ = r(1− S̃
k ), Z̃ = kω S̃

kd2−c2 p2(k−S̃)
. Clearly, E0 and E14 always exist. E124 is feasible if βk > µ

and E134 is feasible if S̃ < k and kd2 > c2 p2r(k− S̃).

The local stability of these equilibria is determined by the eigenvalues of the Jacobian matrix of

(2.1),

J(S, I,Y,Z) =


r− 2rS

k −β I− p1Y −βS −p1S 0

β I βS−µ 0 0

c1 p1Y 0 −d1 + c1 p1S− p2Z −p2Y

ω 0 c2 p2Z −d2 + c2 p2Y



Theorem 4.1.(i)E0 is always unstable.

(ii)E14 is locally stable if βk < µ and d1d2+p2kω

d2
< c1 p1k.

(iii)E124 is locally stable if c1 p1d2µ < βd1d2 + p2ωµ.

(iv)E134 is locally stable if β S̃ < µ.

Proof. It follows immediately by linearizing around the equilibria.

Next we interested about the existence of the interior equilibrium point of system (2.1) which

is given by E∗ = (S∗, I∗,Y ∗,Z∗) where

S∗ = µ

β
, I∗ = 1

β
{r(1− S∗

k )− p1Y ∗},

Y ∗ = d2(c1 p1µ−βd1)−ωµ p2
c1 p1µ−βd1

,Z∗ = c1 p1µ−βd1
d2β

.

E∗ is feasible if c1 p1µd2 > βd1d2 +ωµ p2 and r(1− S∗
k )− p1Y ∗ > 0.

The Jacobian matrix of (2.1) at E∗ is,

J(E∗) =


− rS∗

k −βS∗ −p1S∗ 0

β I∗ 0 0 0

c1 p1Y ∗ 0 0 −p2Y ∗

ω 0 c2 p2Z∗ −ωS∗
Z∗


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whose characteristic equation is

λ
4 +A1λ

3 +A2λ
2 +A3λ +A4 = 0 (4.1)

where

A1 = S∗( ω

Z∗ +
r
k),A2 = β 2S∗I∗+ c2 p2

2Y ∗Z∗+ ωrS∗2

kZ∗ + p2
1c1S∗Y ∗,

A3 =
β 2S∗2I∗ω

Z∗ +
c2 p2

2Y ∗Z∗S∗r
k + p1S∗Y ∗ωd1

Z∗ ,

A4 = β 2S∗I∗c2 p2
2Y ∗Z∗.

From the Routh-Huwitz criteria, all the real parts of roots for (4.1) are negative if and only if

A3(A1A2−A3)−A2
1A4 > 0

which is equivalent to

(
β 2S∗2I∗ω

Z∗
+

c2 p2
2Y ∗Z∗S∗r

k
+

p1S∗Y ∗ωd1

Z∗
){ωS∗

Z∗
(c2 p2

2Y ∗Z∗+
ωrS∗2

kZ∗
)+ p1 p2S∗Y ∗ω

+
rS∗

k
(β 2S∗I∗+

ωrS∗2

kZ∗
+ p2

1c1S∗Y ∗)}−S∗2(
ω

Z∗
+

r
k
)2

β
2S∗I∗c2 p2

2Y ∗Z∗ > 0.

(4.2)

If the inequality (4.2) holds then E∗ is locally asymptotically stable.

5. Uniform persistence

Biologically, uniform persistence of the system ensures the long term survival of all popula-

tions, none of them facing extinction. To establish uniform persistence of system (2.1) we use

Butler-McGehee lemma [10]. Now we state coexistence condition for all the populations.

Theorem 5.1. Suppose that

i)k > max{µ

β
, d1

c1 p1
},

ii)c1 p1d2µ > βd1d2 + p2ωµ,

(iii)β S̃ > µ,

(iv) the equilibrium points E124 and E134 are globally stable with respect to R+
SIZ and R+

SY Z
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respectively.

Then system (2.1) is uniformly persistent.

Proof. Suppose that x is a point in the positive octant and o(x) is the orbit through x and Ω is the

omega limit set of the orbit through x. Note that Ω(x) is bounded. We show that E0 /∈ Ω(x).If

E0 ∈Ω(x), then by Butler-McGehee lemma [10], there exists a point p in Ω(x)∩W s(E0) where

W s(E0) denotes the strong stable manifold of E0. Since o(p) lies in Ω(x) and W s(E0) is the

I−Y −Z plane and hence unbounded orbits lies in Ω(x) is unbounded, which is a contradic-

tion.

Next we show that E14 /∈ Ω(x). The condition k > max{µ

β
, d1

c1 p1
}, implies that E14 is a saddle

point. W s(E14) is the S−Z plane. Thus unbounded orbits lies in Ω(x) once more a contradic-

tion. The condition c1 p1d2µ > βd1d2 + p2ωµ implies that E124 is a saddle point and W s(E124)

is the S− I−Z plane. So one easily show that unbounded orbits lies in Ω(x) once more a con-

tradiction. Lastly, we can show that E134 /∈Ω(x) as β S̃ > µ . Thus , Ω(x) does not intersect any

of the coordinate planes and hence system (2.1) is persistent. Since (2.1) is bounded, by main

theorem in [4], this implies that the system is uniformly persistent.

6. Global stability of positive equilibrium point

If the inequality (4.2) holds then the positive equilibrium point E∗ is locally asymptotically

stable under certain restrictions. So natural question arises under what additional conditions it

becomes globally asymptotically stable. To derive global stability condition it is sometimes dif-

ficult to find out a Lyapunov function. There is an alternative approach to show global stability

due to Li and Muldowney [12]. Now we use a high-dimensional Bendixson’s criterion of Li

and Muldowney [12], which we briefly state next.

Let D⊂ Rn be an open set and F ∈C1. Consider a system of differential equations

dX
dt

= F(X). (6.1)

According to the theory developed in [12], it is sufficient to show that the second compound

equation
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dU
dt

=
∂F [2]

∂X
(X(t,X0))U(t) (6.2)

with respect to a solution X(t,X0) of system (6.1) is equi-uniformly asymptotically stable,

namely, for each X0 ∈ D, system (6.2) is uniformly asymptotically stable, and the exponential

decay rate is uniform for X0 in each compact subset of D, where D ⊂ Rn is an open connected

set. Here ∂F/∂X [2] is the second additive compound matrix of the Jacobian matrix ∂F [2]/∂X .

It is an

 n

2

×
 n

2

 matrix, and thus (6.2) is a linear system of dimension

 n

2

 (see

Fiedler [9] and Muldowney [14]). For a general 4×4 matrix

P =


p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44


its second compound matrix P[2] is

P[2] =



p11 + p22 p23 p24 −p13 −p14 0

p32 p11 + p33 p34 p12 0 −p14

p42 p43 p11 + p44 0 p12 p13

−p31 p21 0 p22 + p33 p34 −p24

−p41 0 p21 p43 p22 + p44 p23

0 −p41 p31 −p42 p32 p33 + p44


(6.3)

The equi-uniform asymptotic stability of (6.2) implies the exponential decay of the surface area

of any compact two-dimensional surface D. If D is simply connected, this prevents the oc-

currence of any invariant simple closed rectifiable curve in D, including periodic orbits.The

following result is proved in Li and Muldowney [12].

Proposition 6.1. Let D ⊂ Rn be a simply connected region. Assume that the family of linear

systems (6.2) is equi-uniformly asymptotically stable. Then

(i) D contains no simple closed invariant curves including periodic orbits, homoclinic orbits,
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heteroclinic cycles;

(ii) each semi-orbit in D converges to a single equilibrium.

In particular, if D is positively invariant and contains an unique equilibrium X̄ , then X̄ is globally

asymptotically stable in D.

One can show uniform asymptotic stability of system (6.2) by constructing a Lyapunov function.

For example, (6.2) is equi-uniformly asymptotically stable if there exists a positive definite

function V (U), such that dV (U)/dt|(6.2) is negative definite, and V and dV (U)/dt|(6.2) are both

independent of X0.

We now require the following assumptions to prove the global stability of positive equilibrium

point of system (2.1).

(A1) There exist positive numbers α,θ ,η ,ρ, and σ such that

max{c11 +
c14α

θ
,c22 + c23η + c24η

θ
, c32

η
+ c33 +

c35
ρ
+ c36

σ
, c41α

θ
+ c42θ

η
+ c44 +

c45θ

ρ
, c51ρ

α
+ c53ρ +

c54ρ

θ
+ c55,

c62σ

η
+ c63σ + c66}< 0 and

(A2) Assumption of Theorem 5.1 be hold.

Assumption (A2) implies that system (2.1) is uniformly persistent and hence there exists a time

T such that S(t), I(t),Y (t),Z(t)> k̃(0 < k̃ < k) for t > T .

We again denote X = (S, I,Y,Z)T and F(X) = (S{r(1− S
k )−β I− p1Y}, I(βS− µ),Y (−d1 +

c1 p1S− p2Z),−d2Z + c2 p2Y Z +ωS)T ,

We have ∂F
∂X = J(S, I,Y,Z) and by (6.3) and we assume that

∂F [2]

∂X
=



m11 m12 m13 m14 m15 m16

m21 m22 m23 m24 m25 m26

m31 m32 m33 m34 m35 m36

m41 m42 m43 m42 m43 m45

m51 m52 m53 m54 m55 m56

m61 m62 m63 m64 m65 m66


(6.4)

where

m11 = r− 2rS
k −β I− p1Y +βS,m12 = 0,m13 = 0,m14 = p1S,m15 = 0,m16 = 0,m21 = 0,m22 =

r(1− 2S
k )− β I− p1Y − d1 + c1 p1S− p2Z,m23 = −p2Y,m24 = −βS,m25 = 0,m26 = 0,m31 =

0,m32 = c2 p2Z,m33 = r− 2rS
k −β I− p1Y−d2+c2 p2Y,m34 = 0,m35 =−βS,m36 =−p1S,m41 =
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−c1 p1Y,m42 = β I,m43 = 0,m44 = βS− µ − d1 + c1 p1S− p2Z,m45 = −p2Y,m46 = 0,m51 =

−ω,m52 = 0,m53 = β I,m54 = c2 p2Z,m55 = βS− µ − d2 + c2 p2Y,m56 = 0,m61 = 0,m62 =

−ω,m63 = c1 p1Y,m64 = 0,m65 = 0,m66 =−d1 + c1 p1S− p2Z−d2 + c2 p2Y.

The second compound system



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6


=

∂F [2]

∂X



x1

x2

x3

x4

x5

x6


then becomes

ẋ1 = {r+(β − 2r
k
)S−β I− p1Y −µ}x1 + p1Sx4,

ẋ2 = {r−S(c1 p1−
2r
k
)−β I− p1Y −d1 p2Z}x2− p2Y x3−βSx4,

ẋ3 = c2 p2Zx2 +{r−
2rS
k
−β I +(c2 p2− p1)Y −d2}x3−βSx5− p1Sx6,

ẋ4 =−c1 p1Y x1 +β Ix2 +(βS−µ−d1 + c1 p1S− p2Z)x4− p2Y x5,

ẋ5 =−ωx1 +β Ix3 + c2 p2Zx4 +(βS−µ−d2 + c2 p2Y )x5,

ẋ6 =−ωx2 + c1 p1Y x3− (d1− c1 p1S+ p2Z +d2− c2 p2Y )x6

(6.5)

where X(t) = (S(t), I(t),Y (t),Z(t))T is arbitrary solution of system (2.1) with

X0(t) = (S0(t), I0(t),Y0(t),Z0(t))T ∈ R4
+. Set

W (Q) = max{α|x1|,η |x2|, |x3|,θ |x4|,ρ|x5|,σ |x6|}.

The direct calculations lead to the following inequalities :
d+

dt+ α|x1| ≤ c11α|x1|+ c14θ

θ
|x4|,

d+

dt+ η |x2| ≤ c22η |x2|+ c23η |x3|+ c24ηθ

θ
|x4|,

d+

dt+ |x3| ≤ c32η

η
|x2|+ c33|x3|+ c35ρ

ρ
|x5|+ c36σ

σ
|x6|,

d+

dt+ θ |x4| ≤ c41θα

α
|x1|+ c42θη

η
|x2|+ c44θ |x4|+ c45ρθ

ρ
|x5|,

d+

dt+ ρ|x5| ≤ c51ρα

α
|x1|+ c53ρ|x3|+ c54ρθ

θ
|x4|+ c55ρ|x5|,

d+

dt+ σ |x6| ≤ c62ση

η
|x2|+ c63σ |x3|+ c66σ |x6|
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where d+/dt denotes the right-hand derivative and

c11 = r+βk− (2r
k +β + p1)k̃,c14 = p1k,c22 = 3r− (c1 p1 +β + p2)k̃)−d1,

c23 =−p2k̃,c24 =−β k̃,c32 = c1c2
2 p2M,c33 = r−d2 + c1c2 p2M− (2r

k +β + p1)k̃,

c35 =−β k̃,c36 =−p1k̃,c41 =−c1 p1k̃2,c42 = βM,c44 = βk−µ−d1 + c1 p1k− p2k̃,

c45 =−p2k̃,c51 =−ω k̃,c53 = βM,c54 = c1c2
2 p2M,c55 = βk−µ−d2 + c1c2 p2M,

c62 =−ω k̃,c63 = c2
1 p1M,c66 =−d1 + c1 p1k− p2k̃−d2 + c1c2 p2M.

Therefore,
d+

dt W (Q(t))≤ ψW (Q(t))

with

ψ = max{c11 +
c14α

θ
,c22 + c23η + c24η

θ
, c32

η
+ c33 +

c35
ρ

+ c36
σ
, c41α

θ
+ c42θ

η
+ c44 +

c45θ

ρ
, c51ρ

α
+

c53ρ + c54ρ

θ
+c55,

c62σ

η
+c63σ +c66}. Thus, under assumptions (A1) and (A2) and by the bound-

edness of solutions of system (2.1), there exists a positive constant ξ such that ψ ≤−ξ < 0 and

thus

W (Q(t))≤W (Q(s))exp(−ξ (t− s)), t ≥ s > 0.

This proves the equi-uniform asymptotic stability of the second compound system (6.5), and

hence the positive equilibrium point E∗ of system (2.1) is globally stable due to Proposition

6.1.

From above analysis, we now state the sufficient conditions for the global asymptotic stability

of the positive equilibrium.

Theorem 6.1 If the assumptions (A1) and (A2) are satisfied then system (2.1) has no non-trivial

periodic solution. Furthermore, the positive equilibrium point E∗ is globally stable in R4
+.

7. Discussion

In natural environment, plants are attacked simultaneously by herbivorous insects and pathogen.

Though recent research work mainly focused on either plant-pathogen or plant-insect interac-

tions. In respond to multiple attack, plant emit VOCs that attract natural enemies of herbivores

which is important in planning crop plants with better protection against herbivores. Recently,
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it is observed that rapid usage of pesticides and fertilizers cause major damage on farmland.

So it is important to reduce the requirement for harmful pesticides for insect control. The role

of VOCs in mediating tritrophic interactions under multiple attack situation is still unexplored.

In this work, we have tried to investigate the dynamics of plant-herbivore system in the pres-

ence of pathogen through mathematical model. The model includes carnivores as an indirect

defence against herbivores. In our model, we assumed that herbivore preferentially feeds on

the susceptible plant. This induces that infected plant remains in the system due to less attack

by herbivore. Many herbivorous insects avoid infected plant [18] and such preferences may

allow infected plants to survive until killed by disease. We note that disease is more likely to

persist when the herbivores consume susceptible plant only. Our model is described by the

four ordinary differential equations. Then we studied the dynamical behavior of the system at

various equilibrium points and the stability of those equilibrium points. We obtain five equilib-

rium points of which E0 is the population free equilibrium point. The system cannot collapse

for any parametric values as the population free equilibrium point is never stable. The planar

equilibrium point E14 always exist which may be stable or unstable under certain restrictions on

the system parameters. When the disease transmission rate exceeds a certain threshold value,

herbivore free equilibrium point E124 appears and it becomes stable as long as herbivore con-

sumption rate remains below a certain threshold value. The disease free equilibrium point E134

can be stable for low disease transmission rate. Coexistence has shown to be possible in the

case disease affecting the plant population. Global stability aspect of the positive equilibrium is

developed. From biological point of view, this study gives the condition, written in terms of the

parameters of the system, under which the disease cannot be eliminated from the community.

Here, we employed the geometric approach developed by Li and Muldowney to global stability

for four dimensional system.
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