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Abstract. In this paper, local dynamics of a three-dimensional host parasite model as a discrete dynamical system

has been studied. The existence of fixed points and stability behaviour near these points are investigated. By use

of centre manifold theorem we describe the stability of non-hyperbolic fixed points. Some numerical simulations

explain our theoretical results in better way.
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1. Introduction

The behavior of population in nature and the interaction between species have been a subject

of interest over many years. In recent years, many researchers paid more attention to popula-

tion models as a discrete dynamical systems [2,3,8]. Discrete-time models are actually more

reasonable than the continuous time models when populations have non-overlapping genera-

tions. Also, by development in mathematical softwares, more accurate numerical results can be

obtained from the discrete model, related to the continuous one, since numerical simulation of
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continuous models are obtained by discretization [5,14,16]. A host-parasite model describes the

dynamics of two insects: parasitoid and its host. This model is named after the two researcher-

s, Nicholson and Bailey, who developed the model [1]. In this model, parasitoids randomly

search for hosts population that grows exponentially in the absence of parasitoids. Moreover,

both parasitoids and hosts are supposed to be distributed in a non-contiguous method in the en-

vironment [15]. After Nicholson-Bailey model, many models have been introduced to describe

the relationship between host and parasitoid. Citing some examples: Nicholson and Bailey [15]

introduced discrete host- parasitoid model of the form

Hn+1 = rHne−γPn,

Pn+1 = sHn(1− e−γPn).

Beddington et al. [6] improved the Nicholson-Bailey model by adding the effect of carrying

capacity

Hn+1 = Hner(1−Hn
K )−γPn,

Pn+1 = sHn(1− e−γPn).

Khan and Qureshi [11] assumed that the host has bounded dynamics in the absence of parasitoid

and they studied dynamics of their system. Atabaigi and Akrami [3] investigated stability and

bifurcations of host-parasite model

Hn+1 = rHn(1−Hn)e−γPn,

Pn+1 = Hn(1− e−γPn).

Interested readers can go through the references [1,2,4,8,12] for more details.

However, most of the papers in this fields investigated two dimensional models, i.e. a popu-

lation model with two species. But higher dimensional models are less considered in literature.

Moreover, the host species may be attacked in different developmental stages by a range of

parasitoids. For example, Hassell and Waage discussed a winter moth that is parasitized by

egg, larval, and pupal parasitoids [10]. Zwölfer [18] modelled the interaction of two species of

eurytomid parasitoids, Eurytoma serratulae and E. Robusta, attacking a common host species,

the knapweed gall fly (Urophora cardui), on creeping thistle (Cirsium arvense).
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Motivated by the above discussion, in this paper, we extend the Nicholson- Bailey host-

parasitoid model including one host and two parasitoid:

Hn+1 = rHne−aPn−bQn,

Pn+1 = Hn(1− e−aPn),

Qn+1 = Hne−aPn(1− e−bQn),

(1.1)

where Hn is host population and Pn,Qn are the two parasitoid populations at n-th generation

respectively, r is the intrinsic growth rate of host and a,b are the searching efficiency of the

parasitoids. The underlying biological assumptions in this model are as follows:

• There is one host and two parasitoids which parasitize the same host.

• Suppose the parasitoid P acts first, followed by Q that acts on the surviving hosts.

Our paper is organized as follows: in the next section we prepare some analytical tools needed

in the sequence. Section 3 is devoted to the local dynamic of the model. In this section we

introduce our system as a three-dimensional host-parasite model. Then, we focus to determine

the fixed points and corresponding stability nature. In the rest, some discussions are presented

to check whether a fixed point is stable, asymptotically stable or unstable under some parameter

conditions. In the last Section, some numerical simulation are presented to explain our work in

better way

2. Local dynamics of 3 dimensional maps

In this section, we provide a brief review of the local stability of fixed points in three dimen-

sional discrete dynamical systems. Here, consider nonlinear system

x 7→ f1(x,y,z),

y 7→ f2(x,y,z),

z 7→ f3(x,y,z).

(2.1)

For simplicity, let us write this system as x 7→ F(x), where x= (x,y,z) and F= ( f1, f2, f3). First,

we obtain fixed points of (2.1), i.e. x∗ = F(x∗). We can determined the local stability of fixed

point x∗ by linearization of system (2.1) near x∗. In this way, the Jacobian matrix of system
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(2.1) calculated by

JF(x) =


∂ f1
∂x

∂ f1
∂y

∂ f1
∂ z

∂ f2
∂x

∂ f2
∂y

∂ f2
∂ z

∂ f3
∂x

∂ f3
∂y

∂ f3
∂ z

∣∣∣x=x∗

.

The fixed point x∗of F is locally asymptotically stable if all the eigenvalues of the Jacobian,

JF(x∗) lie inside the unit disk and if at least one of the eigenvalue lies out of unit disk, the

fixed point is unstable. These conditions can be expressed in terms of the roots of characteristic

polynomials of JF(x∗). Following lemma can be useful in the proof of the local stability of x∗.

Lemma 2.1. [13, appendix A.1.2] Let the equation be

c0λ
3 + c1λ

2 + c2λ + c3 = 0, (2.2)

where ci ∈ R, i = 0,1,2,3. The roots λ1,λ2,λ3 of equation (2.2) satisfy that |λi| < 1 for i =

1,2,3, if and only if the following conditions are fulfilled.

c0 + c1 + c2 + c3 > 0,

c0− c1 + c2− c3 > 0,

c0 + c3 > 0,

c0− c3 > 0,

c0(c0 + c2)− c3(c1 + c3)> 0,

c0(c0− c2)+ c3(c1− c3)> 0.

(2.3)

Note that, if some of the eigenvalues of JF(x∗) lie on the unit disk, then the above lemma is

failed. In this case, x∗ is called non-hyperbolic fixed point. For determining the stability of non-

hyperbolic fixed points we can use the center manifold theory. By suitable change of variable,

one can transfer the x∗ on the origin and without loss of generality, system (2.1) can be written

as

y 7→ Ay+ f (y,z),

z 7→ Bz+g(y,z),
(2.4)

where (y,z) ∈ Rt ×Rs, t + s = 3, and all eigenvalues of A lie on the unit disk and all of the

eigenvalues of B are off the unit disk.
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The following theorem asserts the existence of a centre manifold, on which the dynamics of

system (2.4) is given by the map on the centre manifold [17].

Theorem 2.2. [17] There is a Cr-center manifold for system (2.4) that can be represented

locally as

Mc = {(y,z) ∈ Rt×Rs z = h(y), |y|< δ ,h(0) = 0,Dh(0) = 0},

for a sufficiently small δ . Furthermore, the dynamics restricted to Mc are given locally by the

map

y 7→ Ay+ f (y,h(y)). (2.5)

The next theorem states that the dynamics on the center manifold Mc deter- mines completely

the dynamics of system (2.4).

Theorem 2.3. [17] If the fixed point y∗ = 0 of Equation (2.5) is stable, asymptotically stable, or

unstable, then the fixed point (0,0) of System (2.4) is stable, asymptotically stable, or unstable,

respectively.

3. Local dynamics of the model

Consider the following host-parasite model

xn+1 = rxne−ayn−bzn,

yn+1 = xn(1− e−ayn),

zn+1 = xne−ayn(1− e−bzn),

(3.1)

where r,a,b > 0. Here, we investigate fixed points of the model and theirs stabilities. In the

following, we provide the boundary fixed points of the three-dimensional map (3.1).

3.1. Boundary fixed points
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There are three boundary fixed points (0,0,0), ( r lnr
a(r−1) ,

lnr
a ,0) and ( r lnr

b(r−1) ,0,
lnr
b ). The Jaco-

bian matrix associated with (3.1) is given by

J|(x,y,z) =


re−ay−bz −rxae−ay−bz −rxbe−ay−bz

1− e−ay xae−ay 0

e−ay (1− e−bz) −xae−ay (1− e−bz) xe−aybe−bz

 . (3.2)

At (0,0,0) we have

J|(0,0,0) =


r 0 0

0 0 0

0 0 0

 . (3.3)

We observe that from (3.3), λ1 = r and λ2 = λ3 = 0. Therefore, the origin is asymptotically

stable if 0 < r < 1 and unstable if r > 1. According to Lemma 2.1, for determining the local

stability of nontrivial fixed points we can state the following proposition.

Proposition 3.1. Fixed point ( r lnr
a(r−1) ,

lnr
a ,0) is stable if and only if the following conditions are

fulfilled.

b
a
<

(r−1)2

r(lnr)2 ,

lnr
r−1

>
a

a+b

(
b3

a3 +2
b4

a4 −1
)
,

ln3 r
(r−1)3 >

(
a
b
+

b4

a4

)(
a2

b(a+b)

)
.

Proof. At ( r lnr
a(r−1) ,

lnr
a ,0) we have

J|( r lnr
a(r−1) ,

lnr
a ,0

) =


1 − r lnr
r−1 − br lnr

a(r−1)
r−1

r
lnr
r−1 0

0 0 b lnr
a(r−1)

 . (3.4)

The characteristic polynomial of (3.4) is

p(λ ) = λ
3− (a+b) lnr+a(r−1)

a(r−1)
λ

2 +
(b(r−1)+b lnr+ar(r−1)) lnr

a(r−1)2 λ − (lnr)2 br

a(r−1)2 .
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Now, its suffice to apply conditions of Lemma 2.1 to p(λ ). Since r > 1 we have

c0 + c1 + c2 + c3 =
(a(r−1)−b ln(r)) ln(r)

a(r−1)
=⇒ b

a
<

r−1
lnr

. (3.5)

c0− c1 + c2− c3 =

(
2(r−1)+(r+1) lnr

)(
b lnr+a(r−1)

)
a(r−1)2 > 0.

c0 + c3 =
a(r−1)2−br ln2 r

a(r−1)2 =⇒ b
a
<

(r−1)2

r(lnr)2 . (3.6)

Note that condition (3.6) implies condition (3.5).

c0(c0 + c2)− c3(c1 + c3) =1+
lnr(ar+b−b lnr)

a(r−1)
− b(a+b)r(lnr)3

a2(r−1)3 − b2r2(lnr)4

a2(r−1)4 . (3.7)

Now by using (3.5) and (3.6) in (3.7) we obtain

c0(c0 + c2)− c3(c1 + c3)> 1+
lnr

r−1

(
a+b

a

)
− b3(a+b)

a4 − b4

a4 .

Therefore, c0(c0 + c2)− c3(c1 + c3)> 0 iff

lnr
r−1

>
a

a+b

(
b3

a3 +2
b4

a4 −1
)
. (3.8)

Finally,

c0(c0− c2)+ c3(c1− c3) =1− lnr(ar+b−br lnr)
a(r−1)

+
b(a+b)r(lnr)3

a2(r−1)3 − b2r2(lnr)4

a2(r−1)4 . (3.9)

Similarly, by using (3.5) and (3.6) in (3.9) we have c0(c0− c2)+ c3(c1− c3)> 0 iff

ln3 r
(r−1)3 >

(
a
b
+

b4

a4

)(
a2

b(a+b)

)
.

This completes the proof.

Proposition 3.2. Fixed point ( r lnr
b(r−1) ,0,

lnr
b ) is stable if and only if the following conditions are

fulfilled.
a
b
<(

r−1
r lnr

)2,

r lnr
r−1

>
b2

a
+

b
a2 (b−a),

r2 lnr)3

(r−1)3 >

(
a
b
+

b2

a2

)(
b2

a(a+b)

)
.

Proof.
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At ( r lnr
b(r−1) ,0,

lnr
b ) we have

J|( r lnr
b(r−1) ,0,

lnr
b

) =


1 − ar lnr

b(r−1) − r lnr
r−1

0 ar lnr
b(r−1) 0

r−1
r −a lnr

b
lnr
r−1

 . (3.10)

The characteristic polynomial of (3.10) is

p∗(λ ) = λ
3− (b+ar) lnr+b(r−1)

b(r−1)
λ

2 +
(b+a)(r−1)r lnr+ar(lnr)2

b(r−1)2 λ − a(r lnr)2

b(r−1)2 .

Similar to the previous proposition, its suffice to apply conditions of Lemma 2.1 to p∗(λ ). So,

c0 + c1 + c2 + c3 =
(b(r−1)−ar ln(r)) ln(r)

b(r−1)
=⇒ a

b
<

r−1
r lnr

. (3.11)

c0− c1 + c2− c3 =

(
2(r−1)+(r+1) lnr

)(
ar lnr+b(r−1)

)
b(r−1)2 > 0.

c0 + c3 =
b(r−1)2−ar2 ln2 r

b(r−1)2 =⇒ a
b
<

(r−1)2

(r lnr)2 . (3.12)

Note that condition (3.12) implies condition (3.11).

c0(c0 + c2)− c3(c1 + c3) = 1+
r lnr(b+a− lnr)

b(r−1)
− ar2(lnr)3(ar+b)

b2(r−1)3 − a2r4(lnr)4

b2(r−1)4 . (3.13)

by using (3.11) and (3.12) in (3.13) we obtain

c0(c0 + c2)− c3(c1 + c3)> 1+
r lnr
r−1

(
a+b

b

)
−b
(

a+b
a

)
− b2

a2 .

Hence, c0(c0 + c2)− c3(c1 + c3)> 0 iff

r lnr
r−1

>
b2

a
+

b
a2 (b−a).

For the last condition we obtain

c0(c0− c2)+ c3(c1− c3) =1− r lnr(b+a− lnr)
b(r−1)

,

+
ar2(lnr)3(ar+b)

b2(r−1)3 − a2r4(lnr)4

b2(r−1)4 ,

>1− b+a− lnr
a

+
ar2(lnr)3(ar+b)

b2(r−1)3 − b2

a2 ,

>
r2 lnr)3

(r−1)3
a(a+b)

b2 − b2

a2 .
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Hence, c0(c0− c2)+ c3(c1− c3)> 0 iff

r2 lnr)3

(r−1)3 >

(
a
b
+

b2

a2

)(
b2

a(a+b)

)
.

This completes the proof.

3.2. Positive fixed points

In this subsection, we search for positive fixed point(s). So, we suppose that xyz 6= 0, and have

to solve the following system

1 = re−ay−bz,

y = x(1− e−ay),

z = xe−ay(1− e−bz).

By solving the above system we obtain

z∗ =
lnr−ay∗

b
, x∗ =

y∗

1− e−ay∗ ,

and y∗ is the positive solution

lnr−ay∗

b
=

y∗

1− e−ay∗

(
e−ay∗− 1

r

)
, 0 < y∗ ≤ lnr

a
.

Let

f1(y) =
lnr−ay

b
, f2(y) =

y
1− e−ay

(
e−ay− 1

r

)
, 0 < y≤ lnr

a
.

Then, the positive fixed point is the positive intersection point(s) of the functions f1 and f2.

Moreover, we have f1(0) = lnr
b and limy→0+ f2(y) = r−1

ar .

By simple calculation we have

f ′2(y) =
ay+ r+1−ary− re−ay− eay

reay(1− e−ay)2 :=
h(y)

reay(1− e−ay)2 .

It is clear that h(0) = 0 and

h′(y) = ae−ay(eay + r)(1− eay)< 0,

therefore f ′2(y)< 0 for y2 ∈ (0, lnr
a ]. We also have

f ′′2 (y) =
a(r−1)(aye−ay +ay+2e−ay−2)

r(1− e−ay)3 .
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yln r
a

r−1
ar

f2(y)

ln r
b

f1(y)

(a)
yln r

a

f2(y)

f1(y)

(b)

r−1
ar = ln r

b

yln r
a

f2(y)

f1(y)

ln r
b

r−1
ar

(c)
y∗

FIGURE 1. Graph of functions f1(y) and f2(y) for: (a) a > b(r−1)
r lnr , the system

has no positive fixed point, (b) a = b(r−1)
r lnr , the system has no positive fixed point

and (c) a < b(r−1)
r lnr , the system has a unique positive fixed point.

By similar argument we can show that f ′′2 (y)> 0 for y ∈ (0, lnr
a ]. It is easy to see that functions

f1 and f2 connect to each other at the terminal point of the interval, i.e. f1(
lnr
a ) = f2(

lnr
a ) = 0.

Therefore, with this information we consider three cases:

(1) If a > b(r−1)
r lnr the function f1 lies above f2 for y ∈ [0, lnr

a ), so the system has no positive

fixed point (Figure 1 (a)).

(2) If a = b(r−1)
r lnr the function f1 lies above f2 for y ∈ (0, lnr

a ), and two functions reach to

each other at the endpoints. So, the system has no positive fixed point (Figure 1 (b)).

(3) If a < b(r−1)
r lnr two functions have a unique positive intersection at y∗. So, the system has

a unique positive fixed point (Figure 1 (c)).

Hence, we summarize the above discussion in the following proposition.

Proposition 3.3. If a < b(r−1)
r lnr the system (3.1) has a unique positive fixed point p∗= (x∗,y∗,z∗),

where

x∗ =
y∗

1− e−ay∗ , z∗ =
lnr−ay∗

b
,

and y∗ is a unique positive solution of

lnr−ay∗

b
=

y∗

1− e−ay∗

(
e−ay∗− 1

r

)
, 0 < y∗ <

lnr
a

.
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Now, we need to determine the stability of the positive fixed point. The Jacobian matrix at p∗

is

J∗ =


1 −ax∗ −bx∗

y∗
x∗ a(x∗− y∗) 0
z∗
x∗ −az∗ bx∗

r

 ,

the characteristic polynomial of J∗ is

p(λ )= λ
3− (bx∗+ r+arx∗−ary∗)

r
λ

2+
brz∗+bx∗+abx∗

2−abx∗y∗+arx∗

r
λ− abx∗(x∗+ rz∗)

r
.

Now, we can apply Lemma 1 to prove the following proposition:

Proposition 3.4. The fixed point p∗ in Proposition 3.3 is stable if and only if the following

conditions are fulfilled.

1)ay∗(r−bx∗)+brz∗(1−ax∗)> 0 or r lnr(1−ax∗)+ax∗y∗(ar−b)> 0,

2)
abx∗(x∗+ rz∗)

r
< 1,

3)1+
r lnr− ray∗+bx∗+abx∗

2−abx∗y∗+arx∗

r
− (

abx∗
2
+arx∗ lnr−a2rx∗y∗

r
)

× (
bx∗+ r+arx∗−ary∗

r
+

abx∗
2
+arx∗ lnr−a2rx∗y∗

r
)> 0,

4)1− r lnr− ray∗+bx∗+abx∗
2−abx∗y∗+arx∗

r
− (

abx∗
2
+arx∗ lnr−a2rx∗y∗

r
)

× (−bx∗+ r+arx∗−ary∗

r
+

abx∗
2
+arx∗ lnr−a2rx∗y∗

r
)> 0.

Remark. Since the positive fixed point coordinates are not explicitly obtained and there are

many parameters in Proposition 3.4, it’s not easy to have an analyti- cally proof for it. By

numerically computing for a set of different parameters, we obtain that the positive fixed point

is unstable. In the other hand, by Gauses competitive exclusion principle [9], one of the parasite

may be excluded from the system. So, we expected the positive fixed point to be an unstable fixed

point.

3.3. Non-hyperbolic cases

In this subsection, we state some conditions that the system (3.1) has the non- hyperbolic fixed

point. • Case (1):
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If b = a(r−1)
lnr , then p∗1 = ( r lnr

a(r−1) ,
lnr
a ,0) is a non-hyperbolic fixed point. First, we bring the fixed

point p∗1 to the origin by linear transformation, i.e. we have


x̃

ỹ

z̃

 7→


1− r lnr
r−1 − r
r−1

r
lnr
r−1 0

0 0 1




x̃

ỹ

z̃

+


ar lnr

2(r−1) ỹ
2 + r(r−1)2

2lnr z̃2−ax̃ỹ− a(r−1)
lnr x̃z̃+O(3)

a
r x̃ỹ− a lnr

2(r−1) ỹ
2 +O(3)

− r−1
2lnr z̃2−az̃ỹ+ a(r−1)

r lnr x̃z̃+O(3)

 .

(3.14)

The eigenvalues of linear part of system (3.14), are λ1 = 1 and λ2,3 = α± iβ , where

∆ = (lnr+ r−1)2−4r(r−1) lnr, α =
lnr+ r−1

2(r−1)
, β =

√
−∆

2(r−1)
.

Let

σ1 =
r(lnr− r+1)
(r−1) lnr

, σ2 =

√
−∆

2r lnr
, σ3 =

r−1− lnr
2r lnr

,

then by using linear transformation


x̃

ỹ

z̃

=


σ1 1 σ2

− r−1
lnr σ3 0

1 0 0




u

v

w

 , (3.15)

we can write this system in Jordan form as:


u

v

w

 7→


1 0 0

0 α −β

0 β α




u

v

w

+


ψ1(u,v,w)

ψ2(u,v,w)

ψ3(u,v,w)

 , (3.16)
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where,

ψ1(u,v,w) =
r(r−1)(1−a)

2lnr
u2 +

(
aσ2

3 r lnr
2(r−1)

−aσ3

)
v2−aσ1σ3uv

−aσ2σ3vw+O(3),

ψ2(u,v,w) =−
a(r−1)
2r lnr

(r+2σ1)u2 +

(
aσ3

r
− aσ2

3 lnr
2(r−1)

)
v2 +

aσ2σ3

r
vw

+
1
r
(arσ3−

a(r−1)
lnr

+aσ1σ3)uv+−aσ2(r−1)
r lnr

uw+O(3),

ψ3(u,v,w) =
r−1
lnr

(
a− 1

2
+

aσ1

r

)
u2 +

(
a(r−1)

r lnr
−aσ3

)
uv

+
aσ2(r−1)

r lnr
uw+O(3).

We will apply center manifold theory to this problem. The center manifold can locally be

represented as follows

Mc = {(u,v,w) ∈ R3|v = h1(u),w = h2(u),hi(0) = 0,Dhi(0) = 0, i = 1,2},

for sufficiently small u. We assume a center manifold of the form

h(u) =
(

h1(u)
h2(u)

)
=

(
a2u2 +a3u3 +O(u4)

b2u2 +b3u3 +O(u4)

)
.

By some calculation, the center manifold is given by the graph of h(u), where

h1(u) =
βk2 +(α−1)k1

−β 2 +(α−1)2 u2 +o(u3),

h2(u) =
βk1 +(α−1)k2

β 2− (α−1)2 u2 +o(u3),

and k1 =−a(r−1)
2r lnr (r+2σ1), k2 =

r−1
lnr

(
a− 1

2 +
aσ1

r

)
. The map on the center manifold is given by

u 7→ u+
r(r−1)(1−a)

2lnr
u2− (aσ1σ3

βk2 +(α−1)k1

−β 2 +(α−1)2 )u
3 +o(u4). (3.17)

Hence, we can summarize above discussion in the following proposition.

Proposition 3.5. Suppose b = a(r−1)
lnr , then p∗1 = ( r lnr

a(r−1) ,
lnr
a ,0) is a non-hyperbolic fixed point.

If a 6= 1, then p∗1 is stable, else if 6aσ1σ3
βk2+(α−1)k1
−β 2+(α−1)2 < 0 then p∗1 is unstable and if

6aσ1σ3
βk2+(α−1)k1
−β 2+(α−1)2 > 0 then p∗1 is asymptotically stable.
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• Case (2):

If b = ar lnr
(r−1) , then p∗2 = ( r lnr

b(r−1) ,0,
lnr
b ) is a non-hyperbolic fixed point. First, we bring the fixed

point p∗1 to the origin by linear transformation, i.e. we have
x̂

ŷ

ẑ

 7→


1 −1 − r lnr
r−1

0 1 0
r−1

r − r−1
r

lnr
r−1




x̂

ŷ

ẑ



+


1
2aŷ2 + ar2 lnr

2(r−1)2 ẑ2−ax̂ŷ− ar lnr
r−1 ẑ(x̂− ŷ)+O(3)

ax̂ŷ− 1
2aŷ2 +O(3)

ar lnr

2(r−1)2 ẑ2 + a(r−1)
2r ŷ2 + a lnr

r−1 ẑ(x̂− ŷ)− a(r−1)
r x̂ŷ+O(3)

 .

(3.18)

The eigenvalues of linear part of system (3.18), are λ1 = 1 and λ2,3 = α± iβ , where

∆ = (lnr+ r−1)2−4r(r−1) lnr, α =
lnr+ r−1

2(r−1)
, β =

√
−∆

2(r−1)
.

Let

σ1 =
r(lnr− r+1)
(r−1) lnr

, σ2 =

√
−∆

2r lnr
, σ3 =

r−1− lnr
2r lnr

,

then using linear transformation
x̂

ŷ

ẑ

=


δ1 1 0

δ2 0 0

1 δ3 δ4




u

v

w

 , (3.19)

where

δ1 =−
r(lnr− r+1)

(r−1)2 , δ2 =−
r lnr
r−1

,

δ3 =
r−1− lnr

2r lnr
, δ4 =−

√
−∆

2r lnr
,

we can write this system in the Jordan form as follow.
u

v

w

 7→


1 0 0

0 α −β

0 β α




u

v

w

+


φ1(u,v,w)

φ2(u,v,w)

φ3(u,v,w)

 , (3.20)
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where,

φ1(u,v,w) =
(
−aδ1 lnr

r−1
− a(r+1) ln2 r

2(r−1)
−aδ1δ2

)
u2 +

ar2δ 2
4 ln2 r

2(r−1)2 w2

+

(
ar2δ 2

3 ln2 r
2(r−1)2 −

arδ3 lnr
r−1

)
v2 +

(
ar2δ3δ4 ln2 r
(r−1)2 − arδ4 lnr

r−1

)
vw

− arδ1δ4

r−1
uw−

(
aδ2 +

ar(δ1δ3 +1) lnr
r−1

)
uv+O(3),

φ2(u,v,w) =(aδ1−
1
2

δ
2
2 )u

2
δ2uv+O(3),

φ3(u,v,w) =
(

ar ln2 r
2(r−1)2 +

aδ1 lnr
r−1

+aδ1 lnr+
ar ln2 r

2(r−1)

)
u2− ar2δ 2

4 ln2 r
2(r−1)2 w2

+

(
aδ3 lnr
r−1

− aδ3r ln2 r
2(r−1)2

)
v2 +

(
a lnr+

a(δ1δ3 +1)
r−1

)
uv

+

(
aδ4 lnr
r−1

− arδ3δ4 ln2 r
(r−1)

)
vw+

aδ1δ4 lnr
r−1

uw+O(3).

Similar to Case (1), we will apply center manifold theory to this problem. So, the center

manifold can locally be represented as follows

Mc = {(u,v,w) ∈ R3|v = h1(u),w = h2(u),hi(0) = 0,Dhi(0) = 0, i = 1,2},

for sufficiently small u. We consider a center manifold of the form

h(u) =
(

h1(u)
h2(u)

)
=

(
a2u2 +a3u3 +O(u4)

b2u2 +b3u3 +O(u4)

)
By some calculation, the center manifold is given by the graph of h(u), where

h1(u) =
βk+(α−1)(1

2δ 2
2 −aδ1)

β 2 +(α−1)2 u2 +o(u3),

h2(u) =−
β (1

2δ 2
2 −aδ1)+(α−1)k
β 2 +(α−1)2 u2 +o(u3),

where, k = ar ln2 r
2(r−1)2 +

aδ1 lnr
r−1 +aδ1 lnr+ ar ln2 r

2(r−1) . The map on the center manifold is given by

u 7→ u+
(
−aδ1 lnr

r−1
− a(r+1) ln2 r

2(r−1)
−aδ1δ2

)
u2 +o(u3).

Proposition 3.6. suppose b = ar lnr
(r−1) , then p∗2 = ( r lnr

b(r−1) ,0,
lnr
b ) is a non-hyperbolic fixed point.

If
(
−aδ1 lnr

r−1 −
a(r+1) ln2 r

2(r−1) −aδ1δ2

)
6= 0, then this fixed point is unstable.
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FIGURE 2. Some simulations of model (3.1): (left) r = 0.5,a = 0.05,b = 0.01

and (x0,y0,z0)= (40,19,50). (right) r = 2.5,a= 0.05,b= 0.01 and (x0,y0,z0)=

(10,9,70).

4. Numerical simulation

In this section, we present some phase portrait of model (3.1) to explain the above theoretical

analysis.

Figure 2 illustrates the dynamics of model (3.1) for some values of r. When r < 1, three

populations get very close to zero. In the other words, the origin is asymptotically stable. When

r > 1, the host population increase in amplitude. In this case, two parasite populations y(t) and

z(t) extinct but the host population x(t) goes to infinity.

Let r = 2.5, a = 0.05 and b = 0.01. In this case, there are three fixed points p∗0 = (0,0,0),

p∗1 ' (30.54302440,18.32581464,0) and p∗2 ' (152.7151220,0,91.62907319). By simple cal-

culation, one can see that fixed points p∗1 and p∗2 are unstable. We choose an initial value close

to fixed points and consider the behaviour of three populations. Figure 3, shows that orbits left

the neighbourhood of the fixed points.

Let r = 2.5, a = 0.05 and b = a(r−1)
ln(r) , then there are fixed points p∗0 = (0,0,0),

p∗1 ' (30.54302440,18.32581464,0) and p∗2 ' (46.64381697,0,27.98629018). In this case, p∗1

is a nonhyperbolic fixed point which is unstable (Figure 4-left).

Let r = 2.5, a = 0.05 and b = ar lnr
r−1 , then there are fixed points p∗0 = (0,0,0), p∗2 = (20,0,12)

and p∗1 ' (30.54302440,18.32581464,0). In this case, p∗2 is a nonhyperbolic fixed point which
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FIGURE 3. Some simulations of model (3.1) when r = 0.5,a = 0.05,b = 0.01

and (left) (x0,y0,z0) = (30,18,0.5). (right) (x0,y0,z0) = (152,0.5,91).

FIGURE 4. Some simulations of model (3.1) when r = 0.5,a = 0.05 and (left)

b = a(r−1)
ln(r) , (x0,y0,z0) = (30,18,0.5). (right) b = ar lnr

r−1 , (x0,y0,z0) =

(19.5, .5,11).

is unstable (Figure 4-right). Moreover, we proved that if a< b(r−1)
r ln(r) , then the model has a unique

positive fixed point. Now, we take r = 3,b = 0.01 and a = 0.005968261510, so the model has

a unstable positive fixed point p∗ = (183.4678407,30.88162833,91.43026553) (Figure 5-left).

But if we change a to 0.01606826151, then the model has no positive fixed point (Figure 5-

right).
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FIGURE 5. Some phase portrait of the model (left) a < b(r−1)
r ln(r) , (x0,y0,z0) =

(183,30,91). The model has a unique positive fixed point and the solution-

s are far from the unstable positive fixed point p∗ = (183 : 4678407;30 :

88162833;91 : 43026553). (right) a > b(r−1)
r ln(r)

ar lnr
r−1 , (x0,y0,z0) = (183,30,91).

The model not any positive fixed point.
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