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Abstract. In this paper, we study the dynamics of the stochastic SI epidemic model for pest management con-

cerning spraying pesticide and releasing natural enemies. Existence of a unique global positive solution is proved

firstly. And we show that the positive solution to the stochastic system is stochastically bounded. Third, by using

Khasminshii’s method and Lyapunov function, we derive the sufficient conditions for the existence of the nontriv-

ial stochastically positive T -periodic solution. Then, by comparison theorem for stochastic differential equation,

the sufficient conditions for existence and global attraction of the boundary periodic solution are obtained. Finally,

Numerical simulations are carried out to substantiate the analytical results.
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1. Introduction

Since the beginning of recorded history, outbreaks of pests have plagued humanity, coming

in direct competition with people for life-sustaining food. Reportedly, an estimated 67,000
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different pest species attack agricultural crops, and about 35% of the yearly agricultural crop

production is lost to pests worldwide [1]. That problem is one of how to control or suppress

damaging populations of pests over widespread areas. As we know, the most effective strategy

for controlling pests may be to combine methods in an approach known as integrated pest

management (IPM) that emphasizes preventing pest damage. In IPM, information about pests

and available pest-control methods (including biological and chemical) is used to manage pest

damage by the most economical means and with the least possible hazard to people, property,

and environment [1,2].

Chemical control is the approach of controlling pests through the spraying pesticide which is

liable to reduce the pest populations considerably and which is indispensable when there are not

enough natural enemies to decrease pest populations. In most cropping systems, insecticides are

still the principal means of controlling pests once the economic threshold (ET) has been reached.

They are easy to apply, fast-acting, and in most instances can be relied on to control the pests [3].

However, excessive use of chemicals has led to environmental contamination, created pesticide

residues and acts on non-targets especially on soil microorganisms. It is reported that there are

about 545 million kg of pesticides are applied to US crops each year: 20% insecticides; 68%

herbicides; and 12% fungicides for pest control. Despite this heavy and costly application of

pesticides, pests destroy an estimated 37% of all US crops [4]. On the other hand, the chemical

pesticide kills not only pests but also their natural enemies. Therefore, insect pests are rampant

again. Furthermore, several studies have estimated that less than 0.3% of the pesticide reaches

its target pest; the remaining 99.7% is released to the environment, representing a potential

hazard for non-target organisms including humans [5].

Biological control is defined as the reduction of pest populations by natural enemies. This

method not only reduces the cost of pest control but also protects the environment. There are

many examples of successful classical biological control programs. One of the earliest suc-

cesses was with the cottony cushion scale, a pest that was devastating the California citrus

industry in the late 1800s [6]. A small wasp, Trichogramma ostriniae, introduced from China

to help control the European corn borer, is a recent example of a long history of classical bio-

logical control efforts for this major pest [7]. Biological control is not a quick fix for most pest
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problems. Natural enemies usually take longer to suppress a pest population than other forms

of pest-control, and farmers often regard this as a disadvantage.

One of the most important questions in IPM is how many natural enemies should be released

and what fraction of the pest population should be killed to avoid economic damage and reduce

the pesticide applications when the pest population reaches or exceeds the ET level. In many

cases, the most effective release rate or spraying rate has not been identified as it will vary de-

pending on crop type and target host density. To reduce the pesticide applications, the pesticide

is sprayed only when it is necessary, i.e. when the pest population density reaches the ET. With

this in mind and inspired by Liu’s [9] pollutant emission model, we will establish a kind of

integrated pest management SI model with impulse control in this paper.

In fact, population dynamics is inevitably affected by environmental fluctuations which is an

important component in an ecosystem. However, the parameters in the deterministic model are

assumed all deterministic irrespective environmental fluctuations. Hence they have some limi-

tations in mathematical modelling of ecological systems, in addition to, they are quite difficult

to fitting data entirely and to predict the future dynamics of the system accurately [10]. Sto-

chastic differential equation play an important role in many kinds of applied sciences, including

in the management of pests, since they can provide an additional degree of realism in compar-

ison with their deterministic system. May [11] also pointed out that the birth rates, carrying

capacity, competition coefficients and other parameters involved in the system can be affect by

random fluctuation. Therefore, a number of authors introduce stochastic perturbation into de-

terministic models to reveal the effect of environmental variability on the population dynamics

in mathematical ecology [8,12,13,18,22]. In the real world, insecticides is inevitably affected

by environmental fluctuations owing to pesticides are directly sprayed in the environment, such

as volatilization, photosynthesis and so on.

In addition, due to the seasonal variation, weather changes, food supplies, and mating habits

and so on, the birth rate, the death rate of the population and other parameters will not remain

constant, but exhibit a periodicity. Therefore, the periodic solution problem of non-autonomous
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systems as a new research direction of biomathematics become one of the topics of current pop-

ular. And to our knowledge, only a few authors [8,12,15,17] studied the existence of periodic

solution of a non-autonomous systems with stochastic disturbance.

The rest of the paper is organized as follows. In Section 2, we formulate our model. In

Section 3, we give some notations, definitions and lemmas which are useful for our main results.

In Section 4, our main results and their proofs are given respectively. Finally, the conclusions

are given and numerical simulations are carried out to substantiate the analytical results.

2. Model Formulation

Motivated by the above discussion, we assume that the prey is a pest with a prevalence of

infectious disease, and that the predator is introduced to suppress its density. We also assume

that natural enemies only predate susceptible pests and the effects of random interference will

manifest on the insecticide function of susceptible pests, infected pests and natural enemies.

Then, the following stochastic SI epidemic model for pest management concerning spraying

pesticide and releasing natural enemies are considered:

dS(t) = S(t)[r1−a1S(t)− b1I(t)
S(t)+I(t) −

α1y(t)
γ+αS(t)+βy(t) − c1g1(t)]dt +σ1g1(t)S(t)dB1(t),

dI(t) = I(t)[−d2 +
b1S(t)

S(t)+I(t) − c2g2(t)]dt +σ2g2(t)I(t)dB2(t),

dy(t) = y(t)[r0− α3y(t)
k3+S(t) − c3g3(t)]dt +σ3g3(t)y(t)dB3(t),

 t 6= tk

∆S(t) = 0,

∆I(t) = 0,

∆y(t) = δky(t),

 t = tk

(2.1)

where S(t), I(t), y(t) are the densities of susceptible pest, infected pest and natural enemy at

time t, respectively. All parameters involved with the model are positive. The parameters have

the following biological meanings: r1,r0 are the intrinsic growth rates of the susceptible pest

and natural enemy, respectively. a1 denotes the density-dependent coefficient of the susceptible

pest. α1 is the maximum value at which per capita reduction rate of susceptible pest can attain;

α3 has the similar meaning as α1; α denotes the effect of handling time for natural enemy; β

measures the magnitude of interference among natural enemy. γ measures the extent to which
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environment provides protection to susceptible; d2 denotes the death rates of infected pest;

k3 measures the extent to which the environment provides protection to natural enemy; b1SI
S+I

the transmission of the infection or the incidence rate [19]; B1(t), B2(t), B3(t) are mutually

independent Brownian motions defined on the complete probability space (Ω,F ,{Ft}t≥0,P)

with a filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is right continuous and F0

contains all P-null sets); σ2
1 , σ2

2 , σ2
3 represent the intensities of the white noise; δk(δk > 0) is the

proportion of released natural enemy; in addition, 0< t1 < t2 < ... < tk < ... and lim
k→∞

tk =+∞, we

assume there exists a positive integer q such that tk+q = tk +T , k ∈ Z; ci(i = 1,2,3) represent

the decreasing rate of the intrinsic growth rate associated with the uptake of the pesticide in

the organism for the susceptible pest, infected pest and natural enemy, respectively; g1,g2,g3

represent the concentration of pesticide in the organism for the susceptible pest, infected pest

and natural enemy at time t, respectively, where gi(t)(i = 1,2,3) satisfy the following model
dgi = [lice(t)−migi(t)−nigi(t)]dt,

dce(t) =−pce(t)dt,

 t 6= nT

∆ce(t) = µ. t = nT

(2.2)

where ce(t) represent the concentration of pesticide in the environment at time t. All parameters

involved with the model are positive. lice(t) represents the organism’s net uptake of pesticide

from the environment; and −migi(t) and −nigi(t) represent the egestion and depuration rates

of the pesticide in the organism, respectively; −pce(t) represents the pesticide loss from the

environment itself by volatilization and so on; µ is the pesticide input amount at every time and

n ∈ Z+.

Lemma 2.1.([9]) System (2.2) has a unique positive T-periodic solution (g∗i (t),c
∗
e(t)) which is

globally asymptotically stable, where

g∗i (t) = g∗i (0)e
−(mi+ni)(t−nT )+

liµ(e−(mi+ni)(t−nT )− e−p(t−nT ))

(p−mi−ni)(1− e−pT )
, c∗e(t) =

µe−p(t−nT )

1− e−pT

and

g∗i (0) =
liµ(e−(mi+ni)T − e−pT )

(p−mi−ni)(1− e−(mi+ni)T )(1− e−pT )
, c∗e(0) =

µ

1− e−pT ,

for t ∈ [nT,(n+1)T ).
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By the system (2.1) and (2.2), we can obtain the limitation system (2.3)

dS(t) = S(t)[r1−a1S(t)− b1I(t)
S(t)+I(t) −

α1y(t)
γ+αS(t)+βy(t) − c1g∗1(t)]dt +σ1g∗1(t)S(t)dB1(t),

dI(t) = I(t)[−d2 +
b1S(t)

S(t)+I(t) − c2g∗2(t)]dt +σ2g∗2(t)I(t)dB2(t),

dy(t) = y(t)[r0− α3y(t)
k3+S(t) − c3g∗3(t)]dt +σ3g∗3(t)y(t)dB3(t),

 t 6= tk

∆S(t) = 0,

∆I(t) = 0,

∆y(t) = δky(t).

 t = tk

(2.3)

Moreover, due to the individual lifecycle and seasonal variation and so on, the birth rate,

the death rate and the carrying capacity of the species and other parameters all exhibit cycle

changes. In the article, we also consider the corresponding periodic system of (2.4):

dS(t) = S(t)[r1(t)−a1(t)S(t)− b1(t)I(t)
S(t)+I(t) −

α1(t)y(t)
γ(t)+α(t)S(t)+β (t)y(t) − c1(t)g∗1(t)]dt

+σ1(t)g∗1(t)S(t)dB1(t),

dI(t) = I(t)[−d2(t)+
b1(t)S(t)
S(t)+I(t) − c2(t)g∗2(t)]dt +σ2(t)g∗2(t)I(t)dB2(t),

dy(t) = y(t)[r0(t)− α3(t)y(t)
k3(t)+S(t) − c3(t)g∗3(t)]dt +σ3(t)g∗3(t)y(t)dB3(t),


t 6= tk

∆S(t) = 0,

∆I(t) = 0,

∆y(t) = δky(t),

 t = tk

(2.4)

where r1(t), r0(t), a1(t), b1(t), α1(t), α(t), β (t), γ(t), d2(t),α3(t), k3(t), c1(t), c2(t), c3(t),

σ1(t), σ2(t), σ3(t) are all positive T -periodic continuous functions, we will obtain the existence

of the periodic Markov process of the system (2.4) by the method of Khasminskii[16].

Now we consider the non-impulsive system
dx1 = x1(r1−a1x1− b1x2

x1+x2
− α1A(t)x3

γ+αx1+βA(t)x3
− c1g∗1)dt +σ1g∗1x1dB1,

dx2 = x2(−d2 +
b1x1

x1+x2
− c2g∗2)dt +σ2g∗2x2dB2,

dx3 = x3(
ln

p
∏
j=1

(1+δ j)

T + r0− α3A(t)x3
k3+x1

− c3g∗3)dt +σ3g∗3x3dB3.

(2.5)

where

A(t) =
( q

∏
j=1

(1+δ j)
)− t

T ∏
0≤tk<t

(1+δk).
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By the [12], we can obtain that A(t) is positive T -periodic continuous functions.

By the method of [13] the following result were obtained.

Lemma 2.2.

(1) If (x1,x2,x3) is a solution of system (2.5), then (x1,x2,Ax3) is a solution of system (2.3).

(2) If (S, I,y) is a solution of system (2.3), then (S, I,A−1y) is a solution of system (2.5).

Analogously, for the non-impulsive system
dx1 = x1

(
r1(t)−a1(t)x1− b1(t)x2

x1+x2
− α1(t)A(t)x3

γ(t)+α(t)x1+β (t)A(t)x3
− c1(t)g∗1(t)

)
dt +σ1(t)g∗1(t)x1dB1,

dx2 = x2
(
−d2(t)+

b1(t)x1
x1+x2

− c2(t)g∗2(t)
)
dt +σ2(t)g∗2(t)x2dB2,

dx3 = x3
( ln

p
∏
j=1

(1+δ j)

T + r0(t)− α3(t)A(t)x3
k3(t)+x1

− c3(t)g∗3(t)
)
dt +σ3(t)g∗3(t)x3dB3.

(2.6)

Lemma 2.3.

(1) If (x1,x2,x3) is a solution of system (2.6), then (x1,x2,Ax3) is a solution of system (2.4).

(2) If (S, I,y) is a solution of system (2.4), then (S, I,A−1y) is a solution of system (2.6).

3. Preliminaries

For convenience, we introduce several notations and recall some basic definitions.

Let Rn
+= {X(t)= (x1,x2...xn)∈Rn : xi > 0, ∀ 1≤ i≤ n} and |X(t)|=

√
n
∑

i=1
x2

i . For a bounded

function f (t) on [0,∞), define f u = sup
t∈[0,∞)

f (t), f l = inf
t∈[0,∞)

f (t), 〈 f (t)〉T = 1
T
∫ T

0 f (t)dt. In

addition, we assumed r3 =
ln

p
∏
j=1

(1+δ j)

T + r0.

Definition 3.1.([15]) The solution X(t)= (x1,x2,x3) of equation (2.5) is said to be stochastically

ultimately bounded, if for any ε ∈ (0,1) there is a positive constant δ = δ (ε), such that for any

initial value X(0) ∈ R3
+, the solution X(t) to (2.5) has the property that

limsup
t→∞

P{|X(t)|> δ}< ε.

Definition 3.2.([16]) A stochastic process ξ (t) = ξ (t,ω)(−∞ < t < +∞) is said to be T -

periodic if for every finite sequence of numbers t1, t2, · · ·, tn, the joint distribution of random

variables ξ (t1 +h),ξ (t2 +h), · · ·,ξ (tn +h) is independent of h, where h = kT,(k = 1,2, · · ·).
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Now, we consider the integral equation

X(t) = X(t0)+
∫ t

t0
b
(
s,X(s)

)
ds+

k

∑
r=1

∫ t

t0
σr
(
s,X(s)

)
dξr(s). (3.1)

where b(s,x),σi(s,x)(i = 1,2, · · ·,k)(s∈ [t0,T ],x∈ Rl) are continuous functions of (s,x) and for

some constant B, the following conditions hold.

|b(s,x)−b(s,y)|+∑
k
r=1 |σr(s,x),σr(s,y)| ≤ B|x− y|,

|b(s,x)|+∑
k
r=1 |σr(s,x)| ≤ B(1+ |x|).

. (3.2)

Lemma 3.1.([16]) Suppose that the coefficients of (3.1) are T -periodic in t and satisfy the

conditions (3.2) in every cylinder I×U, and assume further there exists a function V (t,x)∈C2,

which is T -periodic in t and satisfies,

(Q1) inf|x|>RV (t,x)→ ∞,

(Q2) LV (t,x) ≤ −1 outside some compact set. Then the system (3.1) exists at least a T -

periodic Markov process.

To further our study, we consider one dimensional stochastic differential equation

dN(t) = N(t)[a(t)−b(t)N(t)]dt +σ(t)N(t)dB(t), (3.3)

on t ≥ 0 with initial value N(0) = N0, and a(t),b(t),σ(t) are nonnegative, continuous functions.

B(t) is a Brownian motion defined on (Ω,F ,{Ft}t≥0,P).

Lemma 3.2.([17]) Assume

(H1) There exist constants σ1, σ2, a1, a2, b1 > 0, b2 > 0 and continuous bounded function

h(t)≥ 0 such that σ1h(t)≤ σ2(t)≤ σ2h(t), a1h(t)≤ a(t)≤ a2h(t), b1h(t)≤ b(t)≤ b2h(t).

(H2) B =
∫ T

0 [a(s)− 1
2σ2(s)]ds > 0 hold. Then equation (3.3) has a positive T -periodic

solution. Moreover, if

(H3) inf
t≥0

∫ t+ε

t h(s)ds > 0, for any ε > 0 hold. Then equation (3.3) has a positive T -periodic

solution, which attracts all other positive solutions of equation (3.3).

Next, consider the following stochastic equation
dz(t) = z(t)

(
r3−

α3A(t)z(t)
k3

− c3g∗3(t)
)
dt +σ3g∗3(t)z(t)dB3(t),

z(0) = x3(0),
(3.4)

where z(t)> 0,x3(0)> 0 and r3,α3,A(t),k3,c3,g∗3(t),σ3,B3(t) are given in model (2.5).
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Remark 3.1. If
∫ T

0 r3−c3g∗3(s)−
1
2σ2

3 (g
∗
3(s))

2ds > 0, then equation (3.4) has a unique positive

T -periodic solutions zT (t) and lim
t→∞
|z(t)− zT (t)|= 0 a.s., where z(t) is any positive solution of

equation (3.4).

4. Main results

The first result is concerned with the existence and uniqueness of positive solution, which is

a prerequisite for analyzing the long-term behavior of model (2.5).

Theorem 4.1. Let (x1(t),x2(t),x3(t)) be a solution of (2.5) with positive initial value

(x1(0),x2(0),x3(0)) ∈ R3
+. Then there exists a unique global positive solution to equation (2.5),

i.e.
(
x1(t),x2(t),x3(t)

)
exists on R3

+ for all t ≥ 0 with probability 1.

Proof. First consider system


du(t) = [r1−a1eu(t)− b1ev(t)

eu(t)+ev(t) −
α1Aeew(t)

γ+αeu(t)+βAew(t) − c1g∗1−
1
2σ2

1 (g
∗
1)

2]dt +σ1g∗1dB1(t),

dv(t) = [−d2 +
b1eu(t)

eu(t)+ev(t) − c2g∗2−
1
2σ2

2 (g
∗
2)

2]dt +σ2g∗2dB2(t),

dw(t) = [r3− α3Aew

k3+eu − c3g∗3−
1
2σ2

3 (g
∗
3)

2]dt +σ3g∗3dB3(t),
(4.1)

with initial value u(0) = lnx1(0), v(0) = lnx2(0), w(0) = lnx3(0). Since the coefficients of

system (4.1) satisfy the local Lipschitz condition, then system (4.1) has a unique local solution(
u(t),v(t),w(t)

)
on t ∈ [0,τe) where τe is the explosion time. Therefore, by Itô’s formula, it

is easy to see (eu(t),ev(t),ew(t)) is the unique positive local solution to system (2.5) with initial

value
(
x1(0),x2(0),x3(0)

)
∈ R3

+.

Next, we will prove that this solution is global, i.e. τe =+∞ a.s.. To this end, we will use the

similar approach to Theorem 2.1 of Mao et al. [15]. The key step is to construct a nonnegative

C2-function V (x1,x2,x3) : R3
+→ R+ such that

liminf
k→∞, (x1,x2,x3)∈R3

+\Dk

V (x1,x2,x3) = +∞ and LV (x1,x2,x3)≤M,

where Dk = (1
k ,k)× (1

k ,k)× (1
k ,k) and M is some positive constant. Now we define

V = x1 + x2 + x3− (lnx1 + lnx2 + lnx3)+(x1 + k3)x2
3 :=V1 +V2 +V3,
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where

V1 = x1 + x2 + x3, V2 = lnx1 + lnx2 + lnx3, V3 = (x1 + k3)x2
3.

An application of Itô’s formula to V1,V2,V3 respectively, yields

dV1 =[x1(r1−a1x1−
b1x2

x1 + x2
− α1Ax3

γ +αx1 +βAx3
− c1g∗1)+ x2(−d2 +

b1x1

x1 + x2
− c2g∗2)

+ x3(r3−
α3Ax3

k3 + x1
− c3g∗3)]dt +σ1g∗1x1dB1 +σ2g∗2x2dB2 +σ3g∗3x3dB3,

dV2 =
(
r1−a1x1−

b1x2

x1 + x2
− α1Ax3

γ +αx1 +βAx3
− c1g∗1−

1
2

σ
2
1 (g
∗
1)

2)dt

+
(
−d2 +

b1x1

x1 + x2
− c2g∗2−

1
2

σ
2
2 (g
∗
2)

2)dt +σ1g∗1dB1 +σ2g∗2dB2

+
(
r3−

α3Ax3

k3 + x1
− c3g∗3−

1
2

σ
2
3 (g
∗
3)

2)dt +σ3g∗3dB3

=
(
r1−a1x1−

b1x2

x1 + x2
− α1Ax3

γ +αx1 +βAx3
− c1g∗1−d2 +

b1x1

x1 + x2
− c2g∗2 + r3−

α3Ax3

k3 + x1

− c3g∗3−
1
2

σ
2
1 (g
∗
1)

2− 1
2

σ
2
2 (g
∗
2)

2− 1
2

σ
2
3 (g
∗
3)

2)dt +σ1g∗1dB1 +σ2g∗2dB2 +σ3g∗3dB3,

dV3 =x1x2
3(r1−a1x1−

b1x2

x1 + x2
− α1Ax3

γ +αx1 +βAx3
− c1g∗1)dt +σ1g∗1x1x2

3dB1

+[2(k3 + x1)x2
3(r3− c3g∗3−

α3Ax3

k3 + x1
)+(x1 + k3)σ

2
3 (g
∗
3)

2x2
3]dt +2σ3g∗3(k3 + x1)x2

3dB3.

Hence

LV1 :=[x1(r1−a1x1−
b1x2

x1 + x2
− α1Ax3

γ +αx1 +βAx3
− c1g∗1)+ x2(−d2 +

b1x1

x1 + x2
− c2g∗2)

+ x3(r3−
α3Ax3

k3 + x1
− c3g∗3)]

≤−a1x2
1 +(r1− c1g∗1)x1− (d2 + c2g∗2)x2 +(r3− c3g∗3)x3,

−LV2 :=− [r1−a1x1−
b1x2

x1 + x2
− α1Ax3

γ +αx1 +βAx3
− c1g∗1−d2 +

b1x1

x1 + x2
− c2g∗2

+ r3−
α3Ax3

k3 + x1
− c3g∗3−

1
2
(σ2

1 (g
∗
1)

2 +σ
2
2 (g
∗
2)

2 +σ
2
3 (g
∗
3)

2)]

≤− r1 +a1x1 +b1 +
α1

β
+ c1g∗1 +d2 + c2g∗2− r3 +

α3A
k3

x3 + c3g∗3

+
1
2
(σ2

1 (g
∗
1)

2 +σ
2
2 (g
∗
2)

2 +σ
2
3 (g
∗
3)

2)]

≤a1x1 +
α3A
k3

x3 +M1,
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where −r1 + b1 +
α1
β
+ c1g∗1 + d2 + c2g∗2− r3 + c3g∗3 +

1
2(σ

2
1 (g
∗
1)

2 +σ2
2 (g
∗
2)

2 +σ2
3 (g
∗
3)

2) ≤M1.

and

LV3 :=x1x2
3(r1−a1x1−

b1x2

x1 + x2
− α1Ax3

γ +αx1 +βAx3
− c1g∗1)

+ [2(k3 + x1)x2
3(r3− c3g∗3−

α3Ax3

k3 + x1
)+(x1 + k3)σ

2
3 (g
∗
3)

2x2
3]

≤−2α3Ax3
3−a1x2

1x2
3 +(r1− c1g∗1)x1x2

3 +2k3(r3− c3g∗3)x
2
3

+2(r3− c3g∗3)x1x2
3 + k3σ

2
3 (g
∗
3)

2x2
3 +σ

2
3 (g
∗
3)

2x1x2
3

=−2α3Ax3
3−a1x2

1x2
3 +(r1− c1g∗1 +2r3−2c3g∗3 +σ

2
3 (g
∗
3)

2)x1x2
3

+(2k3(r3− c3g∗3)+ k3σ
2
3 (g
∗
3)

2)x2
3.

Therefore, one can see that

LV =LV1−LV2 +LV3

≤−a1x2
1 +(r1− c1g∗1)x1− (d2 + c2g∗2)x2 +(r3− c3g∗3)x3 +a1x1 +

α3A
k3

x3 +M1

−2α3Ax3
3−a1x2

1x2
3 +(r1− c1g∗1 +2r3−2c3g∗3 +σ

2
3 (g
∗
3)

2)x1x2
3

+(2k3(r3− c3g∗3)+ k3σ
2
3 (g
∗
3)

2)x2
3

≤M.

(4.2)

In fact, if x1 ≥ r1
a1

, then −a1x2
1−2α3Ax3

3−a1x2
1x2

3 + r1x1x2
3 =−a1x2

1−2α3Ax3
3− x2

1x2
3(a1x1−

r1) ≤ 0, else x1 <
r1
a1

, then −a1x2
1− 2α3Ax3

3− a1x2
1x2

3 + r1x1x2
3 ≤ −a1x2

1− 2α3Ax3
3 +

r2
1

a1
x2

3 have

supper bound.

Hence, one can see that−a1x2
1−2α3Ax3

3−a1x2
1x2

3+ r1x1x2
3 have supper bound. Similarly, we

derive LV also have supper bound M(i.e. LV ≤M).

The rest of the proof is very similar to Theorem 2.1 of Mao et al. [15], and is omitted here.

Theorem 4.2. The solutions X(t) = (x1(t),x2(t),x3(t)) of system (2.5) are stochastically ulti-

mately bounded for any initial value X(0) = (x1(0),x2(0),x3(0)) ∈ R3
+.

Proof. Define the function

V = (x1 + x2 + x3)+(k3 + x1)x3.
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Making use of Itô’s formula, we have

dV =[x1(r1−a1x1−
b1x2

x1 + x2
− α1Ax3

γ +αx1 +βAx3
− c1g∗1)+ x2(−d2 +

b1x1

x1 + x2
− c2g∗2)

+ x3(r3−
α3Ax3

k3 + x1
− c3g∗3)+ x1x3(r1−a1x1−

b1x2

x1 + x2
− α1Ax3

γ +αx1 +βAx3
− c1g∗1)

+(k3 + x1)x3(r3−
α3Ax3

k3 + x1
− c3g∗3)]dt +σ1g∗1x1dB1 +σ2g∗2x2dB2 +σ3g∗3x3dB3

+σ1g∗1x1x3dB1 +(k3 + x1)σ3g∗3x3dB3

≤(−a1x2
1 + r1x1− (d2 + c2g∗2)x2 + r3x3−α3Ax2

3−a1x2
1x3 +(r1 + r3)x1x3 + r3k3x3)dt

+σ1g∗1x1dB1 +σ2g∗2x2dB2 +σ3g∗3x3dB3 +σ1g∗1x1x3dB1 +(k3 + x1)σ3g∗3x3dB3.

Define the function again W = ed2tV. By Itô’s formula one may calculate the operator LW

LW =ed2t(d2V +LV )

≤ed2t [d2(x1 + x2 + x3 +(k3 + x1)x3)

−a1x2
1 + r1x1− (d2 + c2g∗2)x2 + r3x3−α3Ax2

3−a1x2
1x3 +(r1 + r3)x1x3 + r3k3x3]

=ed2t(−a1x2
1− c2g∗2x2−α3Ax2

3−a1x2
1x3 +(r1 + r3 +d2)x1x3 +(d2 + r1)x1

+(d2 + r3 + r3k3 +d2k3)x3
)
,

obviously, there exists a constant M3 such that

−a1x2
1−c2g∗2x2−α3Ax2

3−a1x2
1x3+(r1+r3+d2)x1x3+(d2+r1)x1+(d2+r3+r3k3+d2k3)x3≤M3.

Therefore

dW ≤M3ed2tdt+ed2t(σ1g∗1x1dB1+σ2g∗2x2dB2+σ3g∗3x3dB3+σ1g∗1x1x3dB1+(k3+x1)σ3g∗3x3dB3),

integrating both sides from 0 to t and taking expectation, we derive

E(ed2tV )≤W (0)+M3(ed2t−1), i.e.

E(x1 + x2 + x3 +(x1 + k3)x3)≤W (0)e−d2t +M3(1− e−d2t).

Consequently

E(|X |) = E(
√

x2
1 + x2

2 + x2
3)≤ E(x1 + x2 + x3)≤W (0)e−d2t +M3(1− e−d2t),
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i.e. E(|X |) have supper bound. To proceed, applying the Chebyshev inequality yields the

required assertion.

Next, we give the existence of a periodic Markov process of the system (2.6). For conve-

nience, we introduce the notations

r3(t) = r0(t)+

ln
p

∏
j=1

(1+δ j)

T
, f1(t) = r1(t)− c1(t)g∗1(t)−σ

2
1 (t)(g

∗
1(t))

2−b1(t)−
α1(t)
β (t)

,

f2(t) = b1(t)−d2(t)− c2(t)g∗2(t)−σ2(t)2(g∗2)
2(t), f3(t) = r3(t)− c3(t)g∗3(t)−σ

2
3 (t)(g

∗
3(t))

2.

Theorem 4.3. If 〈 f1(t)〉T > 0, 〈 f2(t)〉T > 0, 〈 f3(t)〉T > 0, then the system (2.6) exists one

positive T -periodic solution.

Proof. By the same way as in Theorem 4.1, one can see that, for any initial
(
x1(0),x2(0),x3(0)

)
∈

R3
+, the system (2.6) has a unique global positive solution

(
x1(t),x2(t),x3(t)

)
∈ R3

+, we only

need to verify the conditions (Q1), (Q2) of Lemma 3.1.

Define a C2,1-function V (x1,x2,x3, t) : R3
+×R+→ R+ as follows

V (x1,x2,x3, t) =
ew1(t)

x1
+

`2ew2(t)

x2
+

ew3(t)

x3
+(x1 + x2)+(x1 + k3(t))x2

3

=V1 + `2V2 +V3 +V4 +V5,

where

w′1(t) = f1(t)−〈 f1(t)〉T , w′2(t) = f2(t)−〈 f2(t)〉T , w′3(t) = f3(t)−〈 f3(t)〉T ,

V1 =
ew1(t)

x1
, V2 =

ew2(t)

x2
, V3 =

ew3(t)

x3
, V4 = x1 + x2, V5 = (x1 + k3(t))x2

3,

and 0 < `2 < (ew1(t)〈 f1(t)〉T
b1ew2(t)

)l .

Obviously, V (x1,x2,x3, t) is T -periodic in t and satisfies

liminf
k→∞, (x1,x2,x3)∈R3

+\Dk

V (x1,x2,x3, t)→+∞,

where Dk = (1
k ,k)× (1

k ,k)× (1
k ,k), which shows that (Q1) in Lemma 3.1 holds.
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By Itô’s formula, one can get that

LV1 =
ew1(t)

x1
w′1(t)+ ew1(t)σ2

1 (t)(g
∗
1)

2(t)x2
1

− ew1(t)

x1

(
r1(t)−a1(t)x1−

b1(t)x2

x1 + x2
− α1(t)A(t)x3

γ(t)+α(t)x1 +β (t)A(t)x3
− c1(t)g∗1(t)

)
≤ew1(t)

x1
(w′1(t)− r1(t)+ c1(t)g∗1(t)+σ

2
1 (t)(g

∗
1)

2(t))+a1(t)ew1(t)+
b1(t)ew1(t)

x1
+

α1(t)
β (t)x1

=
ew1(t)

x1
(w′1(t)− r1(t)+ c1(t)g∗1(t)+σ

2
1 (t)(g

∗
1)

2(t)+b1(t)+
α1(t)
β (t)

)+a1(t)ew1(t)

=− ew1(t)〈 f1(t)〉T
x1

+a1(t)ew1(t),

similarly

LV2 =
ew2(t)

x2
w′2(t)−

ew2(t)

x2
(−d2(t)− c2(t)g∗2(t)+

b1(t)x1

x1 + x2
)+

ew2(t)σ2
2 (t)(g

∗
2)

2(t)

x2

=
ew2(t)

x2
(w′2(t)+d2(t)+ c2(t)g∗2(t)+σ

2
2 (t)(g

∗
2)

2(t))− b1(t)x1

(x1 + x2)x2
ew2(t)

=
ew2(t)

x2
(w′2(t)+d2(t)+ c2(t)g∗2(t)+σ

2
2 (t)(g

∗
2)

2(t))− (
b1(t)

x2
− b1(t)

x1 + x2
)ew2(t)

≤ew2(t)

x2
(w′2(t)+d2(t)+ c2(t)g∗2(t)+σ

2
2 (t)(g

∗
2)

2(t)−b1(t))+
b1(t)

x1
ew2(t)

=− ew2(t)〈 f2(t)〉T
x2

+
b1(t)

x1
ew2(t),

and

LV3 =
ew3(t)

x2
w′3(t)−

ew3(t)

x3
(r3(t)−

α3(t)A(t)x3

k3(t)+ x1
− c3(t)g∗3(t))+

ew3(t)σ2
3 (t)(g

∗
3)

2(t)
x3

≤ew3(t)
x3

(w′3(t)− r3(t)+ c3(t)g∗3(t)+σ
2
3 (t)(g

∗
3)

2(t))+
α3(t)A(t)ew3(t)

k3(t)

=− ew3(t)〈 f3(t)〉T
x3

+
α3(t)A(t)ew3(t)

k3(t)
,

and

LV4 ≤−a1(t)x2
1 +(r1(t)− c1(t)g∗1(t))x1− (d2(t)+ c2(t)g∗2(t))x2,
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moreover, we also have

LV5 =x1x2
3(r1(t)−a1(t)x1−

b1(t)x2

x1 + x2
− α1(t)A(t)x3

γ(t)+α(t)x1 +β (t)A(t)x3
− c1(t)g∗1(t))

+2(k3(t)+ x1)x2
3(r3(t)− c3(t)g3(t)∗(t)−

α3(t)A(t)x3

k3(t)+ x1
)+(x1 + k3(t))σ2

3 (t)(g
∗
3)

2(t)x2
3

≤−2α3(t)A(t)x3
3−a1(t)x2

1x2
3 +(r1(t)− c1(t)g∗1(t))x1x2

3 +2k3(t)(r3(t)− c3(t)g∗3(t))x
2
3

+2(r3(t)− c3(t)g∗3(t))x1x2
3 + k3(t)σ2

3 (t)(g
∗
3)

2(t)x2
3

=−2α3(t)A(t)x3
3−a1(t)x2

1x2
3 +(r1(t)− c1(t)g∗1(t)+2r3(t)−2c3(t)g∗3(t)

+σ
2
3 (t)(g

∗
3)

2(t))x1x2
3 +(2k3(t)(r3(t)− c3(t)g∗3(t))+ k3(t)σ2

3 (t)(g
∗
3)

2(t))x2
3.

Similar to the proof of inequation (4.2), one can see that

− 1
2

a1(t)x2
1 +
(
r1(t)− c1(t)g∗1(t)

)
x1−α3(t)A(t)x3

3−a1(t)x2
1x2

3 +
(
r1(t)− c1(t)g∗1(t)+2r3(t)

−2c3(t)g∗3(t)+σ
2
3 (t)(g

∗
3)

2(t)
)
x1x2

3 +
(
2k3(t)(r3(t)− c3(t)g∗3(t))+ k3(t)σ2

3 (t)(g
∗
3)

2(t)
)
x2

3

+a1(t)+
α3(t)A(t)

k3(t)

also have supper bound. Let

M6 =max{−1
2

a1(t)x2
1 +
(
r1(t)− c1(t)g∗1(t)

)
x1−α3(t)A(t)x3

3−a1(t)x2
1x2

3

+
(
r1(t)− c1(t)g∗1(t)+2r3(t)−2c3(t)g∗3(t)+σ

2
3 (t)(g

∗
3)

2(t)
)
x1x2

3

+
(
2k3(t)(r3(t)− c3(t)g∗3(t))+ k3(t)σ2

3 (t)(g
∗
3)

2(t)
)
x2

3 +a1(t)+
α3(t)A(t)

k3(t)
,0},

one can get that

LV ≤− ew1(t)〈 f1(t)〉T − `2b1(t)ew2(t)

x1
− `2ew2(t)〈 f2(t)〉T

x2
− ew3(t)〈 f3(t)〉T

x3

− 1
2

a1x2
1− (d2 + c2g∗2)x2−α3Ax3

3 +M6.

Consider the bounded open subset

Dε1,2,3 = {(x1,x2,x3)|ε1 < x1 <
1
ε1
,ε2 < x2 <

1
ε2
,ε3 < x3 <

1
ε3
},
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where 0 < εi < 1 is a sufficiently small number. In the set DC
ε1,2,3

= R3
+ \Dε1,2,3 , let us choose

sufficiently small εi such that

ε1 ≤min{(e
w1〈 f1(t)〉T − `2b1ew2)l

M6 +1
,

√
1
2al

1√
M6 +1

}, ε2 ≤min{`2ew2〈 f2(t)〉lT
M6 +1

,
(d2 + c2(g∗2))

l

M6 +1
},

ε3 ≤min{ew3〈 f3(t)〉lT
M6 +1

,

3
√

α l
3Al

3
√

M6 +1
}.

For convenience, we divide DC
ε1,2,3

into six domains,

D1 = {(x1,x2,x3) ∈ R3
+|0 < x1 < ε1}, D2 = {(x1,x2,x3) ∈ R3

+|0 < x2 < ε2},

D3 = {(x1,x2,x3) ∈ R3
+|x1 ≥ ε1,0 < x3 < ε3}, D4 = {(x1,x2,x3) ∈ R3

+|x1 >
1
ε1
},

D5 = {(x1,x2,x3) ∈ R3
+|x2 >

1
ε2
}, D6 = {(x1,x2,x3) ∈ R3

+|x1 >
1
ε3
},

clearly, DC
ε1,2,3

=D1∪D2∪D3∪D4∪D5∪D6. Now we prove LV (x1,x2,x3, t)≤−1 on DC
ε1,2,3
×R,

which is equivalent to showing it on the above six domains.

Case 1. On domain D1, we get

LV ≤− ew1(t)〈 f1(t)〉T − `2b1(t)ew2(t)

x1
− `2ew2(t)〈 f2(t)〉T

x2
− ew3(t)〈 f3(t)〉T

x3

− 1
2

a1x2
1− (d2 + c2g∗2)x2−α3Ax3

3 +M6

≤− ew1(t)〈 f1(t)〉T − `2b1(t)ew2(t)

ε1
+M6

≤−1.

Case 2. Similarly, for any (x1,x2,x3) ∈ D2, one can see that

LV ≤− ew1(t)〈 f1(t)〉T − `2b1(t)ew2(t)

x1
− `2ew2(t)〈 f2(t)〉T

x2
− ew3(t)〈 f3(t)〉T

x3

− 1
2

a1x2
1− (d2 + c2g∗2)x2−α3Ax3

3 +M6

≤− `2ew2(t)〈 f2(t)〉T
ε2

+M6

≤−1.
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Case 3. on D3 we derive

LV ≤− ew1(t)〈 f1(t)〉T − `2b1(t)ew2(t)

x1
− `2ew2(t)〈 f2(t)〉T

x2
− ew3(t)〈 f3(t)〉T

x3

− 1
2

a1x2
1− (d2 + c2g∗2)x2−α3Ax3

3 +M6

≤− ew3(t)〈 f3(t)〉T
ε3

+M6

≤−1.

Case 4. on D4 one can get that

LV ≤− ew1(t)〈 f1(t)〉T − `2b1(t)ew2(t)

x1
− `2ew2(t)〈 f2(t)〉T

x2
− ew3(t)〈 f3(t)〉T

x3

− 1
2

a1x2
1− (d2 + c2g∗2)x2−α3Ax3

3 +M6

≤− 1
2

a1ε
−2
1 +M6

≤−1.

Case 5. on D5 yields

LV ≤− ew1(t)〈 f1(t)〉T − `2b1(t)ew2(t)

x1
− `2ew2(t)〈 f2(t)〉T

x2
− ew3(t)〈 f3(t)〉T

x3

− 1
2

a1x2
1− (d2 + c2g∗2)x2−α3Ax3

3 +M6

≤− (d2 + c2g∗2)ε
−1
2 +M6

≤−1.

Case 6. on D6 we obtain

LV ≤− ew1(t)〈 f1(t)〉T − `2b1(t)ew2(t)

x1
− `2ew2(t)〈 f2(t)〉T

x2
− ew3(t)〈 f3(t)〉T

x3

− 1
2

a1x2
1− (d2 + c2g∗2)x2−α3Ax3

3 +M6

≤−α3Aε
−3
3 +M6

≤−1.

Consequently

LV (x1,x2,x3, t)≤−1, f or ∀ (x1,x2,x3, t) ∈ DC
ε1,2,3
×R.
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That is, the condition (Q2) in Lemma 3.1 holds. Hence the proof of this theorem is completed.

Corollary 4.1. If 〈r1−c1g∗1(t)−σ2
1
(
g∗1(t)

)2−b1− α1
β
〉T > 0, 〈b1−d2−c2g∗2(t)−σ2

2
(
g∗2(t)

)2〉T >

0, 〈r3− c3g∗3(t)−σ2
3
(
g∗3(t)

)2〉T > 0, then the system (2.5) exists one positive T -periodic solu-

tion.

Theorem 4.4. Let (x1(t),x2(t),x3(t)) be a positive solution of system (2.5) with initial value

(x1(0),x2(0),x3(0)). Then if r3 > c3g∗3(t), r3 > 〈c3g∗3(t)+
1
2σ2

3 (g
∗
3(t))

2〉T , a1βγ > αα1, b1 <

d2 + 〈c2g∗2(t)+
1
2σ2

2 (g
∗
2(t))

2〉T and r1 <
α1
β
+ 〈c1g∗1(t)+

1
2σ2

1 (g
∗
1(t))

2− α1γ

β (γ+βAzT (t))〉T then the

system (2.5) has a boundary T-periodic solution (0,0,zT (t)), which is globally attractive.

Proof. By the third function of (2.5), yields

dx3 =x3(r3−
α3Ax3

k3 + x1
− c3g∗3)dt +σ3g∗3x3dB3

≥x3(r3−
α3Ax3

k3
− c3g∗3)dt +σ3g∗3x3dB3.

By Remark 3.1 and comparison theorem for stochastic differential equations, one can get that

x3(t)≥ z(t) a.s.,

moreover for arbitrary small ε > 0, there exist t0 and a set Ωε such that P(Ωε) ≥ 1− ε and

z(t)> zT (t)− ε almost surely. Hence

x3(t)≥ zT (t)− ε a.s..

By the Itô’s formula, one can get that

d lnx1 =(r1−a1x1−
b1x2

x1 + x2
− α1Ax3

γ +αx1 +βAx3
− c1g∗1)dt +σ1g∗1dB1

≤(r1−a1x1−
α1

β
+

α1(αx1 + γ)

β (γ +αx1 +βAx3)
− c1g∗1−

1
2

σ
2
1 (g
∗
1)

2)dt +σ1g∗1dB1

=(r1−
α1

β
− c1g∗1−

1
2

σ
2
1 (g
∗
1)

2− a1βx1(γ +αx1 +βAx3)−α1(αx1 + γ)

β (γ +αx1 +βAx3)
)dt +σ1g∗1dB1

≤(r1−
α1

β
− c1g∗1−

1
2

σ
2
1 (g
∗
1)

2 +
α1γ

β (γ +βA(zT (t)− ε))
)dt +σ1g∗1dB1.

Integrating both sides from 0 to t and dividing by t, yields

lnx1(t)− lnx1(0)
t

≤

∫ t
0(r1− α1

β
− c1g∗1−

1
2σ2

1 (g
∗
1)

2 + α1γ

β (γ+βA(zT (t)−ε))
)dt +

∫ t
0 σ1g∗1dB1

t
.
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In view of the strong law of large numbers for martingales, we obtain limsup
t→∞

∫ t
0 σ1g∗1dB1

t = 0,

and then

lim
t→∞

lnx1(t)
t
≤ lim

t→∞

∫ t
0[r1− α1

β
− c1g∗1−

1
2σ2

1 (g
∗
1)

2 + α1γ

β (γ+βA(zT (t)−ε))
]dt

t
. (4.3)

On the other hand, since r1, α1, β , c1, σ1, γ are all positive constant and g∗1(t), A(t) are both

positive T -periodic continuous functions, therefore

lim
t→∞

∫ t
0[r1− α1

β
− c1g∗1−

1
2σ2

1 (g
∗
1)

2 + α1γ

β (γ+βA(zT (t)−ε))
]dt

t

=

∫ T
0 [r1− α1

β
− c1g∗1−

1
2σ2

1 (g
∗
1)

2 + α1γ

β (γ+βA(zT (t)−ε))
]dt

T
.

For the arbitrary of ε , we must have

lim
t→∞

lnx1(t)
t
≤

∫ T
0 [r1− α1

β
− c1g∗1−

1
2σ2

1 (g
∗
1)

2 + α1γ

β (γ+βAzT (t)) ]dt

T
< 0 almost surely, i.e.

lim
t→∞

x1(t) = 0 a.s..

In view of Itô’s formula, one can get that

d lnx2(t) =(−d2− c2g∗2−
1
2

σ
2
2 (g
∗
2)

2 +
b1x1

x1 + x2
)dt +σ2g∗2dB2

≤(−d2− c2g∗2−
1
2

σ
2
2 (g
∗
2)

2 +b1)dt +σ2g∗2dB2,

Similarly, one can see that

lim
t→∞

lnx2(t)
t
≤
∫ T

0 (−d2− c2g∗2−
1
2σ2

2 (g
∗
2)

2 +b1)dt
T

< 0 almost surely, i.e.

lim
t→∞

x2(t) = 0 a.s..

On the other hand, for arbitrary small ε3 > 0, there exists t2 > t0 and a set Ωε3 such that

P(Ωε3)≥ 1− ε3 and x1 < ε3 for t > t2 and ω ∈Ω.

Consider the periodic Logistic equation
dφ = φ(r3−

α3Aφ

k3 + ε3
− c3g∗3)dt +σ3g∗3φdB3,

φ(0) = x3(0),
(4.4)

obviously,

φ(t) =
e
∫ t

0(r3−c3g∗3−
1
2 σ2

3 (g
∗
3)

2)ds+
∫ t

0 σ3g∗3dB1(s)

1
x3(0)

+
∫ t

0
α3A

k3+ε3
e
∫

τ

0 (r3−c3g∗3−
1
2 σ2

3 (g
∗
3)

2)ds+
∫

τ

0 σ3g∗3dB1(s)dτ

,
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is the solution to the equation (5.4). By the comparison theorem for stochastic equations, yields

z(t)≤ x3(t)≤ φ(t) a.s..

For the arbitrary of ε3, we must have

lim
t→∞

φ(t) = z(t) a.s..

The result is confirmed.

5. Numerical simulations and conclusion

In this paper, in order to investigate the consequences of periodically spraying pesticides and

releasing natural enemies at different fixed moment in pest-natural enemy system, a stochastic

SI epidemic model for pest management concerning spraying pesticide and releasing natural

enemies is proposed. For the stochastic system (2.5), the existence and uniqueness of the pos-

itive global solution are obtained. Moreover, the positive solution is stochastically ultimately

bounded is proved, it is known to all that the stochastic boundedness is one of most important

topics because boundedness of a system guarantees its validity. we still established the sufficient

conditions for global attractiveness of the pest-extinction periodic solution have been obtained,

which shows that there exists a globally asymptotically stable pest-eradication periodic solution

under certain parametric restrictions.

In addition, in view of the factors, such as seasonal variation, weather changes, food supplies

and so on, we investigate a periodic system (2.6) with stochastic disturbance. The result shows

that, the system (2.6) has at least one positive periodic system solution under a certain condi-

tion. Thus, the difference and connection in dealing with the system (2.5) and system (2.6) are

obtained by comparison.

The numerically simulate the solution of stochastic model by the Milstein’s Higher Order

Method proposed by Higham [21].

Numerical simulations are carried out to investigate effects of impulsive period varying on

dynamical behaviors of system (2.1) and (2.2) as well as to illustrate our theoretical results, we

choose the parameters r1 = 0.55, r0 = 0.4, c1 = 0.465, c2 = 0.5, c3 = 0.3, a1 = 0.1, b1 = 0.3,
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α1 = 1, α = 4, β = 10, γ = 6, d2 = 0.2, α3 = 0.5, k3 = 1, σ1 = 0.02, σ2 = 0.02, σ3 = 0.02,

p = 0.5, l1 = 0.3, m1 = 0.1, n1 = 0.1, l2 = 0.3, m2 = 0.1, n2 = 0.1, l3 = 0.3, m3 = 0.1, n3 = 0.1,

q = 1, δk = 0.8, and µ = 0.4.

We start our numerical simulation with T = 10 and starting from the initial point

(S(0), I(0),y(0)) = (3.5,0.55,6),
(
g∗i (0),c

∗
e(0)

)
= (0.0599,0.4027). By the Lemma 2.1, one

can see that

g∗i (t)≈ 0.4626e−0.2t−0.4027e−0.5t ,
∫ 10

0
g∗i (t)dt ≈ 1.2000 (i = 1,2,3),∫ 10

0
r1− c1g∗1(t)−σ

2
1 (g
∗
1(t))

2−b1−
α1

β
dt > 0,

∫ 10

0
b1−d2− c2g∗2(t)−σ

2
2 (g
∗
2(t))

2dt > 0,

∫ 10

0
r0 +

ln
1
∏
j=1

(1+δ j)

10
− c3g∗3(t)−σ

2
3 (g
∗
3(t))

2dt > 0.

Obviously, parameter values chosen above and the choice of T are consistent with the condi-

tions required for the existence of periodic solution (see Corollary 4.1). Results of two simula-

tion run are reported in Fig 1 and Fig 2.

Next we decrease impulsive period to T = 1. By computation, we get

g∗i (0)≈ 1.1901, g∗i (t)≈ 2.2067e−0.2t−1.0166e−0.5t ,
∫ 1

0
g∗i (t)dt ≈ 1.1996 (i = 1,2,3),

r3 > c3g∗3(t), r3 > 〈c3g∗3(t)+
1
2

σ
2
3 (g
∗
3(t))

2〉T , a1βγ > αα1,

〈r1−
α1

β
− c1g∗1(t)−

1
2

σ
2
1 (g
∗
1)

2 +
α1γ

β [γ +βA(t)zT (t)]
〉T < 0.

Obviously, parameter values chosen above are consistent with the conditions required for ex-

istence and global attractivity of the boundary periodic solutions (see Theorem 4.4). Result of

one simulation run is reported in Fig 3.

Remark 5.1: From Figs. 1, 2 and 3, we see that, if the impulsive period is larger than some

critical value, the concentration of pestcide will not be sufficiently high to kill pest and the pest

will be permanent and tends to the unique positive T -periodic solution of system (2.1).

In the following, we give an example to illustrate our result of Theorem 4.3.

Choose parameters T = 10, r1 = 2+0.01sin(πt
5 ), r0 = 0.94+0.01sin(πt

5 ), c1 = 0.2+0.01sin(πt
5 ),

c2 = 0.2+0.01sin(πt
5 ), c3 = 0.1+0.01sin(πt

5 ), a1 = 0.1+0.01sin(πt
5 ), b1 = 0.5+0.01sin(πt

5 ),

α1 = 1+ 0.01sin(πt
5 ), α = 4+ 0.01sin(πt

5 ), β = 2+ 0.01sin(πt
5 ), γ = 6+ 0.01sin(πt

5 ), d2 =
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FIGURE 1. The solutions of system (2.1), system (2.2) and their cor-

responding deterministic system with initial conditions (S(0), I(0),y(0)) =

(3.5,0.55,6),
(
gi(0),ce(0)

)
= (0.0599,0.4027).
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FIGURE 2. Sample phase portrait of system (2.1), system (2.1) and their

corresponding deterministic system with initial conditions (S(0), I(0),y(0)) =

(3.5,0.55,6),
(
gi(0),ce(0)

)
= (0.0599,0.4027).
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FIGURE 3. The solutions X1(t) = (S1(t), I1(t),y1(t)), X2(t) =

(S2(t), I2(t),y2(t)) and X3(t) = (0,0,zT (t)) of system (2.1) with the initial

value (3.5,0.55,6), (3.7,1.6,1.5) and (0,0,0.5), respectively. X1(t) and X2(t)

both are attracted the pest-extinction periodic solution (0,0,zT (t)).
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0.3+ 0.01sin(πt
5 ), α3 = 0.5+ 0.01sin(πt

5 ), k3 = 1+ sin(πt
5 ), σ1 = 0.3+ 0.001sin(πt

5 ), σ2 =

0.3+0.001sin(πt
5 ), σ3 = 0.3+0.001sin(πt

5 ), p = 1, µ = 0.01, l1 = 0.6, m1 = 0.01, n1 = 0.01,

l2 = 0.6, m2 = 0.01, n2 = 0.01, l3 = 0.6, m3 = 0.01, n3 = 0.01, q = 1 and δk = 0.01.

By the Lemma 2.1, one can see that

g∗i (0) =
liµ(e−(mi+ni)T − e−pT )

(p−mi−ni)(1− e−(mi+ni)T )(1− e−pT )
≈ 0.0277,

therefore

g∗i (t) = g∗i (0)e
−(mi+ni)(t−nT )+

liµ(e−(mi+ni)(t−nT )− e−p(t−nT ))

(p−mi−ni)(1− e−pT )
≤ 0.0388.

By computation, one can get that

〈 f1(t)〉T = 〈r1(t)− c1(t)g∗1(t)−σ2
1 (t)(g

∗
1(t))

2−b1(t)− α1(t)
β (t) 〉T > 0,

〈 f2(t)〉T = 〈b1(t)−d2(t)− c2(t)g∗2(t)−σ2(t)2(g∗2)
2(t)〉T > 0,

〈 f3(t)〉T = 〈r0(t)+
ln

q
∏
j=1

(1+δ j)

T −c3(t)g∗3(t)−σ2
3 (t)(g

∗
3(t))

2〉T > 0, by Theorem 4.3, we know

that the system (2.6) exists one positive T -periodic solution. (see Figs 4 and 5.)

Remark 5.2: From Figs. 1,2 and 4,5, we see that, for any positive initial value, the solution

of the deterministic system will enter the periodic orbit after a period of time, and the solution

of the stochastic system is fluctuating in a small neighborhood of the periodic orbit when the

noise intensity is small.
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FIGURE 4. The solutions of system (2.3), system (2.2) and their cor-

responding deterministic system with initial conditions (S(0), I(0),y(0)) =

(15,4,30),
(
gi(0),ce(0)

)
= (0.0277,0.0100).
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FIGURE 5. Sample phase portrait of system (2.1), system (2.1) and their

corresponding deterministic system with initial conditions (S(0), I(0),y(0)) =

(15,4,30),
(
gi(0),ce(0)

)
= (0.0277,0.0100).
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