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Abstract. A two species commensal symbiosis model with non-monotonic functional response and non-selective

harvesting in a partial closure takes the form

dx
dt

= x
(

a1−b1x+
c1y

d1 + y2

)
−q1Emx,

dy
dt

= y(a2−b2y)−q2Emy

is proposed and studied, where ai,bi,qi, i= 1,2 c1, E, m(0<m< 1) and d1 are all positive constants. Depending on

the range of the parameter m, the system may be collapse, or partial survival, or the two species could be coexist in a

stable state. We also show that if the system admits a unique positive equilibrium, then it is globally asymptotically

stable. By introducing the harvesting term and the reserve area, the system exhibit rich dynamic behaviors. Our

results generalize the main results of Chen and Wu (A commensal symbiosis model with non-monotonic functional

response, Commun. Math. Biol. Neurosci. 2017 (2017), Article ID 5).
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1. Introduction

The aim of this paper is to investigate the dynamic behaviors of the following two species

commensal symbiosis model with non-monotonic functional response and non-selective har-

vesting in a partial closure

dx
dt

= x
(

a1−b1x+
c1y

d1 + y2

)
−q1Emx,

dy
dt

= y(a2−b2y)−q2Emy,

(1.1)

where ai,bi,qi, i = 1,2 c1, E, m(0 < m < 1) and d1 are all positive constants, where E is the

combined fishing effort used to harvest and m(0 < m < 1) is the fraction of the stock available

for harvesting. Here we make the following assumption:

(1) Two species obey the Logistic type growing;

(2) The commensal of the second species to the first one obey the non-monotonic functional

response, i.e., y
1+y2 ;

(3) Two species are harvested but harvesting is limited to a suitable area (0 < m < 1).

During the last decade, many scholars investigated the dynamic behaviors of the mutualism

model ([1]-[12]), however, only recently did scholars pay attention to the commensal symbiosis

mode, a model describes a relationship which is only favorable to the one side and have no

influence to the other side([14]-[23]), commensal symbiosis is one of the relationship which

could be observed in nature for many cases, for example: A squirrel in an oak tree gets a

place to live and food for its survival, while the tree remains neither benefited nor harmed.

As was pointed out by Georgescu and Maxin[21] “One would think that the stability of the

coexisting equilibria for two-species models of commensalism would follow immediately from

the corresponding results for models of mutualism, when these results are available. After all,

commensalism can be thought as mutualism in which one of the two interspecies interaction

terms is zero, so at a glance everything should be simpler. However, this is not actually the

case”. Hence, it’s very necessary to investigate the dynamic behaviors of the commensalism

model.
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Sun and Wei[15] first time proposed a intraspecific commensal model:

dx
dt

= r1x
(k1− x+ay

k1

)
,

dy
dt

= r2y
(k2− y

k2

)
.

(1.2)

They investigated the local stability of all equilibrium points.

Zhu et al.[16] proposed and studied the following commensalism system

dx
dt

= x(a1 +b1x+ c1y),

dy
dt

= y(a1 + c2y),
(1.3)

where a1 < 0,a2 > 0,c1 > 0,c2 < 0,b1 < 0. The authors had assumed that species x is the benefit

population and x will be driven to extinction without the help of the species y. By giving the

phase trajectories analysis of the above system, they are able to analysis the stability property

of the positive equilibrium and boundary equilibrium.

Xie et al. [22] proposed the following discrete commensal symbiosis model

x1(k+1) = x1(k)exp
{

a1(k)−b1(k)x1(k)+ c1(k)x2(k)
}
,

x2(k+1) = x2(k)exp
{

a2(k)−b2(k)x2(k)
}
,

(1.4)

They showed that the system (1.4) admits at least one positive ω-periodic solution. For the

autonomous case, Xue et al[19] investigated the local stability property of the equilibria, and

they also gave a set of sufficient conditions which ensure the global stability of the positive

equilibrium; Xue et al[22] further incorporate the delay to system (1.4), and they investigated

the almost periodic solution of the system.

Noting that all of the above model are based on the traditional Lotka-Volterra model, which

suppose that the influence of the second species to the first one is linearize. Recently, Chen and

Wu[13] argued that this may not be suitable since the commensal between two species become

infinity as the density of the species become infinity. They proposed the following two species

commensal symbiosis model with non-monotonic functional response

dx
dt

= x
(

a1−b1x+
c1y

d1 + y2

)
,

dy
dt

= y(a2−b2y).

(1.5)



4 QIFA LIN

Their study shows that the system admits a unique positive equilibrium, which is globally

asymptotically stable.

On the other hand, to obtain the resource for the development of the human being, harvesting

of the species is necessary. Recently, Chakraborty, Das and Kar[24] argued that it is neces-

sary to harvest the population but harvesting should be regulated, such that both the ecological

sustainability and conservation of the species can be implemented in a long run. To the best

of the authors knowledge, to this day, still no scholar consider the influence of harvesting to

the commensalism model, this stimulated us propose and study the dynamic behaviors of the

system (1.1).

The aim of this paper is to investigate the local and global stability property of the possible

equilibria of system (1.1). We arrange the paper as follows: In the next section, we will investi-

gate the existence and local stability property of the equilibria of system (1.1). In Section 3, we

will investigate the global stability property of the equilibria; In Section 4, an example together

with its numeric simulations is presented to show the feasibility of our main results.

2. The existence and local stability of the equilibria

The equilibria of system (1.1) is determined by the system

x
(

a1−b1x+
c1y

d1 + y2

)
−q1Emx = 0,

y(a2−b2y)−q2Emy = 0.

The system always admits the boundary equilibrium A1(0,0).

If a1 > Emq1 holds, the system admits the boundary equilibrium A2(x0,0), where x0 =
a1−Emq1

b1
.

If a2 > Emq2 holds, the system admits the boundary equilibrium A3(0,y0), where y0 =
a2−Emq2

b2
.

If a1 +
c1y∗

(y∗)2 +d1
> q1Em and a2 > Emq2 hold, then the system admits a unique positive

equilibrium

A4(x∗,y∗) =
(a1−q1Em+

c1y∗

(y∗)2 +d1

b1
, y∗
)
,
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where y∗ =
a2−Emq2

b2
.

Concerned with the local stability property of the above four equilibria, we have

Theorem 2.1

(1) Assume that

m > max
{ a1

Eq1
,

a2

Eq2

}
(2.1)

hold, then A1(0,0) is locally asymptotically stable, otherwise, it is unstable;

(2) Assume that
a2

Eq2
< m <

a1

Eq1
(2.2)

hold, then A2(x0,0) is locally asymptotically stable, otherwise, it is unstable;

(3) Assume that

a1 +
c1y0

d1 +(y0)2 < q1Em (2.3)

and

m <
a2

Eq2
(2.4)

hold, then A3(0,y0) is locally asymptotically stable, otherwise, it is unstable;

(4) Assume that

a1 +
c1y∗

(y∗)2 +d1
> q1Em (2.5)

and

m <
a2

Eq2
(2.6)

hold, then E4(x∗,y∗) is locally asymptotically stable, otherwise, it is unstable.

Proof. The Jacobian matrix of the system (1.1) is calculated as

J(x,y) =

 a1−2b1x+
c1y

1+ y2 −q1Em
c1x(d1− y2)

(d1 + y2)2

0 −2b2y+a2−q2Em

 . (2.7)

Then the Jacobian matrix of the system (1.1) about the equilibrium A1(0,0) is given by(
a1−q1Em 0

0 a2−q2Em

)
. (2.8)

The eigenvalues of the matrix are λ1 = a1−q1Em,λ2 = a2−q2Em. Hence, if a1 < Emq1 and

a2 < Emq2 holds, then λ1 < 0,λ2 < 0, consequently A1(0,0) is locally stable, otherwise, it is
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unstable.

The Jacobian matrix of the system (1.1) about the equilibrium A2(x0,0) is given by Emq1−a1
c1(a1−Emq1)

b1d1

0 a2−Emq2

 . (2.9)

The eigenvalues of the matrix are λ1 = Emq1−a1,λ2 = a2−Emq2. Hence, if a1 > Emq1 and

a2 < Emq2 hold, then λ1 < 0,λ2 < 0, consequently A2(x0,0) is locally stable, otherwise, it is

unstable.

The Jacobian of the system about the equilibrium point A3(0,y0) is given by(
a1−q1Em+

c1y0

d1 +(y0)2 0

0 Emq2−a2

)
. (2.10)

Under the assumption (2.3) and (2.4), The two eigenvalues of the matrix satisfies

λ1 = a1−q1Em+
c1y0

d1 +(y0)2 < 0, λ2 = Emq2−a2 < 0.

Consequently A3(0,y0) is locally stable, otherwise, it is unstable.

Under the assumption (2.5) and (2.6), system (1.1) admits unique positive equilibrium A4(x∗,y∗).

Also, (x∗,y∗) satisfies the equation(
a1−b1x∗+

c1y∗

d1 +(y∗)2

)
−q1Em = 0,

(a2−b2y∗)−q2Em = 0.

(2.11)

By using (2.11), the Jacobian matrix about the equilibrium A4(x∗,y∗) is given by

 −b1x∗ ∗

0 −b2y∗

 , (2.12)

The eigenvalues of the above matrix are λ1 =−b1x∗ < 0,λ2 =−b2y∗ < 0. Hence, A4(x∗,y∗) is

locally stable.

This ends the proof of Theorem 2.1.

3. Global stability of the equilibria



A COMMENSAL SYMBIOSIS MODEL WITH HARVESTING 7

This section try to obtain some sufficient conditions which could ensure the global asymptot-

ical stability of the equilibria.

As a direct corollary of Lemma 2.2 of Chen[26], we have

Lemma 3.1. If a > 0,b > 0 and ẋ≥ x(b−ax), when t ≥ 0 and x(0)> 0, we have

liminf
t→+∞

x(t)≥ b
a
.

If a > 0,b > 0 and ẋ≤ x(b−ax), when t ≥ 0 and x(0)> 0, we have

limsup
t→+∞

x(t)≤ b
a
.

Lemma 3.2.[25] System
dy
dt

= y(a−by) (3.1)

has a unique globally attractive positive equilibrium y∗ = a
b .

Theorem 3.1

(1) Assume that

m > max
{ a1

Eq1
,

a2

Eq2

}
(3.2)

hold, then A1(0,0) is globally asymptotically stable;

(2) Assume that
a2

Eq2
< m <

a1

Eq1
(3.3)

hold, then A2(x0,0) is globally asymptotically stable;

(3) Assume that

a1 +
c1y0

d1 +(y0)2 < q1Em (3.4)

and

m <
a2

Eq2
(3.5)

holds, then A3(0,y0) is globally asymptotically stable;

(4) Assume that

a1 +
c1y∗

(y∗)2 +d1
> q1Em (3.6)

and

m <
a2

Eq2
(3.7)
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hold, then A4(x∗,y∗) is globally asymptotically stable.

Proof.

(1) From a1 < Eq1m there exists enough small ε > 0 such that

a1 +
c1ε

d1
−Eq1m <−ε.

From the second equation of (1.1) we have

dy
dt

= y
(

a2−Eq2m−b2y
)
< (a2−Eq2m)y. (3.8)

Hence

y(t)< y(0)exp{(r2−Eq2m)t}→ 0 as t→+∞.

For above ε > 0, there exists a T1 > 0, such that

y(t)< ε for all t > T1. (3.9)

For t > T1, from the first equation of system (1.1), we have

dx
dt

< x
(

a1−b1x+
c1ε

d1

)
−q1Emx

= x
(

a1 +
c1ε

d1
−q1Em−b1x

)
< −εx,

Hence

x(t)< x(T1)exp{−ε(t−T1)}→ 0 as t→+∞. (3.10)

(2) Similarly to the analysis of (3.8)-(3.9), for arbitrary enough small ε > 0, there exists a T2 > 0,

such that

y(t)< ε as t > T2.

For t > T2, from the first equation of system (1.1), we have

dx
dt

< x
(

a1−b1x+
c1ε

d1

)
−q1Emx

= x
(

a1 +
c1ε

d1
−q1Em−b1x

)
.

(3.11)

It follows from Lemma 3.1 that

limsup
t→+∞

x(t)≤
a1 +

c1ε

d1
−q1Em

b1
. (3.12)
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On the other hand, from the first equation of system (1.1), we also have

dx
dt

> x
(

a1−b1x
)
−q1Emx

= x
(

a1−q1Em−b1x
)
.

(3.13)

It follows from Lemma 3.1 that

liminf
t→+∞

x(t)≥ a1−q1Em
b1

. (3.14)

It follows from (3.12) and (3.14) that

a1−q1Em
b1

≤ liminf
t→+∞

x(t)≤ limsup
t→+∞

x(t)≤
a1 +

c1ε

d1
−q1Em

b1
. (3.15)

Since ε is any arbitrary small positive constants, setting ε → 0 in (3.15) leads to

lim
t→+∞

x(t) =
a1−q1Em

b1
.

(3) For ε > 0 enough small, without loss of generality, we may assume that ε < 1
2y0, from

(3.4), we have

a1 +
c1(y0 + ε)

d1 +(y0− ε)2 −q1Em <−ε (3.16)

From the second equation of (1.1) we have

dy
dt

= y
(

a2−Eq2m−b2y
)
. (3.17)

It follows from Lemma 3.2 that

lim
t→+∞

y(t) =
a2−Eq2m

b2
= y0 > 0.

For ε > 0 enough small, there exists an enough large T3 > 0 such that

y0− ε < y(t)< y0 + ε for all t ≥ T3. (3.18)

For t > T3, from the first equation of system (1.1), we have

dx
dt

< x
(

a1−b1x+
c1(y0 + ε)

d1 +(y0− ε)2

)
−q1Emx

= x
(

a1 +
c1(y0 + ε)

d1 +(y0− ε)2 −q1Em−b1x
)

< −εx.

(3.19)
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Hence

x(t)< x(T3)exp{−ε(t−T3)}→ 0 as t→+∞. (3.20)

(4) Firstly we proof that every solution of system (1.1) that starts in R2
+ is uniformly bounded.

Similarly to the analysis of (3.17), we have

lim
t→+∞

y(t) =
a2−Eq2m

b2
= y∗ > 0.

Hence, for arbitrary small positive constant ε > 0, there exists a T4 > 0 such that

y(t)< y∗+ ε for all t ≥ T4. (3.21)

Similarly to the analysis of (3.18)-(3.19), For t > T4, from the first equation of system (1.1), we

have
dx
dt

< x
(

a1−b1x+
c1(y∗+ ε)

d1 +(y∗− ε)2

)
−q1Emx

= x
(

a1 +
c1(y∗+ ε)

d1 +(y∗− ε)2 −q1Em−b1x
)
.

(3.22)

It follows from Lemma 3.1 that

limsup
t→+∞

x(t)≤
a1 +

c1(y∗+ ε)

d1 +(y∗− ε)2 −q1Em

b1
. (3.23)

Hence, there exists a T5 > T4 such that

x(t)<
a1 +

c1(y∗+ ε)

d1 +(y∗− ε)2 −q1Em

b1
+ ε for all t ≥ T5. (3.24)

Let

D =

{
(x,y) ∈ R2

+ : x <
a1 +

c1(y∗+ ε)

d1 +(y∗− ε)2 −q1Em

b1
+ ε, y < y∗+ ε

}
.

Then every solution of system (1.1) starts in R2
+ is uniformly bounded on D. Also, from Theo-

rem 2.1 there is a unique local stable positive equilibrium A4(x∗,y∗), all the other three boundary

equilibrium are unstable. To show that A4(x∗,y∗) is globally stable, it’s enough to show that the

system admits no limit cycle in the area D, Let’s consider the Dulac function u(x,y) = x−1y−1,

then
∂ (uF1)

∂x
+

∂ (uF2)

∂y
=−b1x+b2y

xy
< 0,



A COMMENSAL SYMBIOSIS MODEL WITH HARVESTING 11

where

F1(x,y) = x
(

a1−b1x+
c1y

d1 + y2

)
−q1Emx,

F2(x,y) = y(a2−b2y)−q2Emy.

By Dulac Theorem[27], there is no closed orbit in area D. Consequently, A4(x∗,y∗) is globally

asymptotically stable. This completes the proof of Theorem 3.1.

4. Numeric simulations

Now let us consider the following example.

Example 4.1. Consider the following system

dx
dt

= x
(

3−6x+
2y

10+ y2

)
−4mx,

dy
dt

= y(1−2y)−4my.

(4.1)

In this system, corresponding to system (1.1), we take a1 = 3,b1 = 6,c1 = 2,d1 = 10,a2 =

1,b2 = 2,q1 = q2 = 1,E = 4. For the system without harvesting, i. e., m = 0, from Chen and

Wu[13], the system admits a unique positive equilibrium
(127

246 ,
1
2

)
, which is globally asymptot-

ically stable.

(1) Take m = 0.8, then

m > max
{ a1

Eq1
,

a2

Eq2

}
= 0.75,

and so, from Theorem 3.1, A1(0,0) is globally asymptotically stable, see Fig.1;

(2) Take m = 0.5, then
1
4
=

a2

Eq2
< m <

a1

Eq1
=

3
4

hold, and A2(
1
6 ,0) is globally asymptotically stable, see Fig.2;

(3) Take m = 0.1, then

a1 +
c1y∗

(y∗)2 +d1
> a1 = 3 > q1Em =

4
10

and

m <
a2

Eq2
=

1
4
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hold, then A4(0.4432441361,0.3) is globally asymptotically stable, see Fig.3;

FIGURE 1. Numeric simulations of system (4.1)

with m = 0.8, the initial conditions (x(0),y(0)) =

(0.4,2),(1,0.3),(0.2,0.2),(1,2) and (0.1,2), respectively.

5. Conclusion

Chen and Wu[13] proposed a two species commensal symbiosis model with non-monotonic

functional response, they showed that the unique positive equilibrium of the system is globally

asymptotically stable. Stimulated by the work of Chakraborty, Das and Kar[24], we further

incorporate the harvesting term to the system, however, the harvesting is restricted to a limited

area. Our study shows that the harvesting effort and the area for harvesting plays essential

factor on the dynamic behaviors of the system. Indeed, depending the parameter m, both species

maybe driven to extinction, or one of the species will be driven to extinction, while the other

one is permanent, or both species could be coexist in a stable state.

It’s well known that due to the over exploitation of the resources in the world, more and

more species become endangered, to avoid the extinction of the species, more and more natural

reserves area are established. However, our study shows that if the reserve area is limited, the
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FIGURE 2. Numeric simulations of system (4.1)

with m = 0.5, the initial conditions (x(0),y(0)) =

(0.4,2),(1,0.3),(0.2,0.2),(1,2) and (0.1,2), respectively.

FIGURE 3. Numeric simulations of system (4.1)

with m = 0.1, the initial conditions (x(0),y(0)) =

(0.4,2),(1,0.3),(0.2,0.2),(1,2) and (0.1,2), respectively.
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species may still be driven to the extinction due to the harvesting outside the reserve area, such

an finding seems interesting and maybe useful in advising the protect of wild animals.
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