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Abstract. A non-autonomous commensal symbiosis model of two populations with Michaelis-Menten type har-

vesting is proposed and studied in this paper. By using a continuation theorem based on Gaines and Mawhin’s

coincidence degree, we study the global existence of positive periodic solutions of the system. By constructing
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solution are obtained. Numeric simulations are carried out to show the feasibility of the main results.
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During the last decade, many scholars investigated the dynamic behaviors of the mutualism

model ([1]-[15], [42]) or commensalism model ([16]-[26],[41],[43]).

Sun et al.[24] proposed the following two species commensalism system

dx
dt

= r1x
(

1− x
K1

+α
y

K1

)
,

dy
dt

= r2y
(

1− y
K2

)
,

(1.1)

where r1, r2, K1, K2, α are all positive constants. By linearizing the system at equilibrium, the

authors investigated the local stability property of the equilibria of the system.

Recently, Xue, Han, Yang et al[27] argued that the non-autonomous model is more suitable,

since the coefficients of the system are varying with the time, for example, the coefficients could

be changed with the seasonal factors. They proposed the following two species non-autonomous

commensalism model:

dN1

dt
= N1

(
a(t)−b(t)N1 + c(t)N2

)
,

dN2

dt
= N2

(
d(t)− e(t)N2

)
.

(1.2)

The authors gave a set of sufficient conditions which ensure the existence of a unique globally

attractive positive periodic solution of the system. For the autonomous case of system (1.2),

recently, Lin[43] further incorporated the Allee effect to the first species, he found that the

final density of the species is increasing if the Allee effect is increased. Such a finding is very

different to the property of the predator-prey system incorporating Allee effect.

Xie et al. [21] proposed the following discrete commensal symbiosis model

x1(k+1) = x1(k)exp
{

a1(k)−b1(k)x1(k)+ c1(k)x2(k)
}
,

x2(k+1) = x2(k)exp
{

a2(k)−b2(k)x2(k)
}
,

(1.3)

where {bi(k)}, i = 1,2,{c1(k)} are all positive ω-periodic sequences, ω is a fixed positive inte-

ger, {ai(k)} are ω-periodic sequences, which satisfies ai > 0, i = 1,2. By applying the coinci-

dence degree theory, they showed that the system (1.3) admits at least one positive ω-periodic

solution.

Recently, by further incorporating the Holling II functional response to system (1.3), Li et
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al[22] proposed the following two species discrete commensal symbiosis model

x1(k+1) = x1(k)exp
{

a1(k)−b1(k)x1(k)+
c1(k)x2(k)

e1(k)+ f1(k)x2(k)

}
,

x2(k+1) = x2(k)exp
{

a2(k)−b2(k)x2(k)
}
,

(1.4)

where {bi(k)}, i = 1,2,{c1(k)}{e1(k)},{ f1(k)} are all positive ω-periodic sequences, ω is a

fixed positive integer, {ai(k)} are ω-periodic sequences, which satisfies ai > 0, i = 1,2. They

showed that the system admits at least one positive ω-periodic solution.

Wu et al[19] proposed a two species commensal symbiosis model with Holling type func-

tional response, which takes the form

dx
dt

= x
(

a1−b1x+
c1yp

1+ yp

)
,

dy
dt

= y(a2−b2y),

(1.5)

where ai,bi, i = 1,2 p and c1 are all positive constants, p ≥ 1. They showed that the unique

positive equilibrium is globally stable and the system always permanent. Recently, Wu, Lin

and Li[41] further incorporated the Allee effect to the second species in system (1.5), and they

showed that the Allee effect has no influence on the final density of the species, however, the

system needs to take much time to approach its’ positive steady-state.

Chen and Wu[20] proposed a two species commensal symbiosis model with non-monotonic

functional response, which takes the form

dx
dt

= x
(

a1−b1x+
c1y

d1 + y2

)
,

dy
dt

= y(a2−b2y),

(1.6)

where ai,bi, i = 1,2 p and c1,d1 are all positive constants. They showed show that the sys-

tem admits a unique globally asymptotically stable positive equilibrium. Recently, Lin[17]

further proposed a commensal symbiosis model with non-monotonic functional response and

non-selective harvesting in a partial closure. He showed that the system may be collapse, or

partial survival, or the two species could be coexist in a stable state. He also showed that if the

system admits a unique positive equilibrium, then it is globally asymptotically stable.

Han and Chen[23] considered a commensal symbiosis model with feedback control variables,
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i. e.:

ẋ = x
(
b1−a11x+a12y−α1u1

)
,

ẏ = y
(
b2−a22y−α2u2

)
,

u̇1 =−η1u1 +a1x,

u̇2 =−η2u2 +a2y.

(1.7)

They showed that system (1.7) admits a unique globally stable positive equilibrium.

Miao et al[18] proposed the following periodic Lotka-Volterra commensal symbiosis model

with impulsive.
dx1

dt
= x1

(
a1(t)−b1(t)x1 + c1(t)x2

)
,

dx2

dt
= x2

(
a2(t)−b2(t)x2

)
, t 6= τk,

xi(τ
+
k ) = (1+hik)xi(τk), t = τk, k = 1,2, · · ·

(1.8)

Their results indicates that impulsive is one of the important factors that can change the long

time behaviors of species.

On the other hand, many scholars investigated the influence of the harvesting to predator-prey

or competition system, see [28]-[38] and the references cited therein. Some of them ([36]-[38])

argued that from the biological and economic points of view, nonlinear (Michaelis-Menten type)

harvesting is more feasible. To the best of the authors knowledge, to this day, still no scholars

consider the influence of harvesting to the commensalism model.

In this paper, we propose the following non-autonomous Lotka-Volterra commensalism model

with Michaelis-Menten type harvesting for second species:

dN1(t)
dt

= N1(t)
(

a(t)−b(t)N1(t)+ c(t)N2(t)
)
,

dN2(t)
dt

= N2(t)
(

d(t)− e(t)N2(t)
)
− q(t)E(t)N2(t)

m1(t)E(t)+m2(t)N2(t)
,

N1(0) > 0,N2(0)> 0,

(1.9)

where a(t),b(t),c(t),d(t),e(t) have the same meaning as that of the system (1.2), E(t) is the

fishing effort used to harvest and q(t) is the catchablity coefficient, m1(t) and m2(t) are suitable

continuous positive periodic functions.

From now on, we assume that
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(H1) a(t),b(t),c(t),d(t),e(t), q(t), m1(t), E(t) and m2(t) are all positive continuous ω-period

function.

Here we assume that the coefficients of the system (1.9) are all periodic sequences which

having a common integer period. Such an assumption seems reasonable in view of seasonal

factors, e.g., mating habits, availability of food, weather conditions, harvesting, and hunting,

etc.

The aim of this paper is to obtain a set of sufficient conditions which ensure the existence

of a unique positive periodic solution of system (1.9), which is globally attractive. To the best

of our knowledge, this is the first time that the commensalism model with nonlinear harvesting

term is considered.

2. Existence of the positive periodic solution

Let R2
+ := {(N1,N2) ∈ R2,Ni ≥ 0, i = 1,2}. For a bounded continuous function g(t) on R, we

use the following notations: Define

gl = inf
t∈R

g(t), gu = sup
t∈R

g(t).

Specially, if g(t), is a continuous ω-periodic function, then define

g =
1
ω

∫
ω

0
g(t)dt.

Lemma 2.1. Assume that

d̄m̄1 > q̄,

and

q̄m̄2 < Ēēm̄2
1

hold, then

d̄− ēx2−
q̄Ē

m̄1Ē + m̄2x2
= 0

admits a unique positive solution

x∗2 =
−B+

√
B2−4AC

2A
,
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where

B = Ēēm̄1− d̄m̄2, A = ēm̄2, C = Ēq̄− Ēd̄m̄1.

Proof. Set

F = d̄− ēx2−
q̄Ē

m̄1Ē + m̄2x2
.

Then

F(0) = d̄− q̄
m̄1

> 0,F(+∞) =−∞.

Also, from
dF
dx2

=−ē+
q̄Ēm̄2

(Ēm̄1 + m̄2x)2 < 0,

it follows that F is monotonic decreasing on the interval [0,+∞), thus, F = 0 has a unique

positive solution. Since equation

d̄− ēx2−
q̄Ē

m̄1Ē + m̄2x2
= 0

is equivalent to the equation

Ax2
2 +Bx2 +C = 0.

It immediately follows that the equation has the unique positive solution x∗2. This ends the proof

of Lemma 2.1.

Let X ,Z be normed vector spaces, L : DomL ⊂ X → Z be a linear mapping, N : X → Z be

a continuous mapping. The mapping L will be called a Fredholm mapping of index zero if

dimKerL = CodimImL < +∞ and ImL is closed in Z. If L is a Fredholm mapping of index

zero there exist continuous projectors P : X → X and Q : Z→ Z such that ImP = KerL, ImL =

KerQ = Im(I−Q). It follows that L|DomL∩KerP : (I−P)X → ImL is invertible. We denote

the inverse of that map by KP. If Ω be an open bounded subset of X , the mapping N will be

called L-compact on Ω̄ if QN(Ω̄) is bounded and KP(I−Q)N : Ω̄→ X is compact. Since ImQ

is isomorphic to KerL, there exists an isomorphisms J : ImQ→ KerL.

In the proof of our existence theorem below, we will use the continuation theorem of Gaines

and Mawhin([34]).

Lemma 2.2 (Continuation Theorem) Let L be a Fredholm mapping of index zero and let N be

L-compact on Ω̄. Suppose
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(a).For each λ ∈ (0,1), every solution x of Lx = λNx is such that x 6∈ ∂Ω;

(b).QNx 6= 0 for each x ∈ ∂Ω∩KerL and

deg{JQN,Ω∩KerL,0} 6= 0.

Then the equation Lx = Nx has at least one solution lying in DomL∩ Ω̄.

Theorem 2.1 Assume (H1) holds. Moreover, if

(H2) d̄m̄1 > q̄

and

(H3) q̄m̄2 < Ēēm̄2
1

hold, then system (1.9) has at least one positive ω-periodic solution, say (N∗1 (t),N
∗
2 (t))

T , and

there exist positive constants α∗i ,β
∗
i , i = 1,2 such that α∗j ≤ N∗j (t)≤ β ∗j , j = 1,2.

Proof. Making the change of variables

Ni(t) = exi(t)(i = 1,2),

then system (1.9) is reformulated as

dx1(t)
dt

= a(t)−b(t)exp{x1(t)}+ c(t)exp{x2(t)},
dx2(t)

dt
= d(t)− e(t)exp{x2(t)}−

q(t)E(t)
m1(t)E(t)+m2(t)exp{x2(t)}

.
(2.1)

Let X = Z = {x(t) = (x1(t),x2(t))T ∈C(R,R2) : x(t +ω) = x(t)}, Set ||x||= ||(x1(t),x2(t))||=

max
t∈[0,ω]

|x1(t)|+ max
t∈[0,ω]

|x2(t)|, Then X ,Z are both Banach spaces when they are endowed with the

above norm || · ||.

Let

Nx =

 a(t)−b(t)exp{x1(t)}+ c(t)exp{x2(t)}

d(t)− e(t)exp{x2(t)}−
q(t)E(t)

m1(t)E(t)+m2(t)exp{x2(t)}

 , x ∈ X ,

Lx =
dx(t)

dt
, Px =

1
ω

∫
ω

0
x(t)dt, x ∈ X ; Qz =

1
ω

∫
ω

0
z(t)dt, z ∈ Z,

Px =
1
ω

ω∫
0

x(t)dt, x ∈ X ; Qz =
1
ω

ω∫
0

z(t)dt, z ∈ Z.
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Then it follows

KerL = {x ∈ X : x = h ∈ R2}, ImL = {z ∈ Z :
ω∫

0

z(t)dt = 0} is closed in Z,

dimKerL = 2 = codimImL <+∞,

and P,Q are continuous projectors such that

ImP = KerL, KerQ = ImL = Im(I−Q).

Therefore, L is a Fredholm mapping of index zero. Furthermore, the generalized inverse (to L)

KP : ImL→ KerP∩DomL reads KP(z) =
t∫

0
z(s)ds− 1

ω

ω∫
0

t∫
0

z(s)dsdt. Thus

QNx =
( 1

ω

∫
ω

0
Λ1(s)ds,

1
ω

∫
ω

0
Λ2(s)ds

)T
,

where

Λ1(s) = a(s)−b(s)exp{x1(s)}+ c(s)exp{x2(s)},

Λ2(s) = d(s)− e(s)exp{x2(s)}−
q(s)E(s)

m1(s)E(s)+m2(s)exp{x2(s)}
,

and

KP(I−Q)Nx =
(

Φ1,Φ2

)
,

where Φi =
∫ t

0 Λi(s)ds− 1
ω

ω∫
0

t∫
0

Λi(s)dsdt−( t
ω
− 1

2)
∫

ω

0 Λi(s)ds, Obviously, QN and KP(I−Q)N

are continuous. It is not difficult to show that KP(I−Q)N(Ω̄) is compact for any open bounded

set Ω ⊂ X by using Arzela-Ascoli theorem. Moreover, QN(Ω̄) is clearly bounded. Thus, N is

L-compact on Ω̄ with any open bounded set Ω⊂ X . The isomorphism J of ImQ onto KerL can

be the identity mapping, since ImQ = KerL.

Now we reach the position to search for an appropriate open bounded subset Ω for the ap-

plication of the continuation theorem (Lemma 2.1). Corresponding to the operator equation

Lx = λNx,λ ∈ (0,1), we have

dx1(t)
dt

= λ

[
a(t)−b(t)exp{x1(t)}+ c(t)exp{x2(t)}

]
,

dx2(t)
dt

= λ

[
d(t)− e(t)exp{x2(t)}−

q(t)E(t)
m1(t)E(t)+m2(t)exp{x2(t)}

]
.

(2.2)
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Suppose that x = (x1(t),x2(t))T ∈ X is an arbitrary solution of system (2.2) for a certain λ ∈

(0,1). Summing on both sides of (2.2) from 0 to ω , we reach∫
ω

0

[
a(t)−b(t)exp{x1(t)}+ c(t)exp{x2(t)}

]
dt = 0,∫

ω

0

[
d(t)− e(t)exp{x2(t)}−

q(t)E(t)
m1(t)E(t)+m2(t)exp{x2(t)}

]
dt = 0.

That is, ∫
ω

0
b(t)exp{x1(t)}dt = āω +

∫
ω

0
c(t)exp{x2(t)}dt, (2.3)

∫
ω

0

(
e(t)exp{x2(t)}+

q(t)E(t)
m1(t)E(t)+m2(t)exp{x2(t)}

)
dt = d̄ω. (2.4)

∫
ω

0 |ẋ1(t)|dt

= λ
∫

ω

0 |a(t)−b(t)exp{x1(t)}+ c(t)exp{x2(t)}|dt

≤
∫

ω

0 (a(t)+ c(t)exp{x2(t)})dt +
∫

ω

0 b(t)exp{x1(t)}dt

≤
∫

ω

0 a(t)dt +2
∫

ω

0 c(t)exp{x2(t)}dt

−
∫

ω

0 c(t)exp{x2(t)}dt +
∫

ω

0 b(t)exp{x1(t)}dt

= 2
∫

ω

0 c(t)exp{x2(t)}dt,

∫
ω

0 |ẋ2(t)|dt

= λ
∫

ω

0 |d(t)− e(t)exp{x2(t)}−
q(t)E(t)

m1(t)E(t)+m2(t)exp{x2(t)}
|dt

≤ λ
∫

ω

0 d(t)dt +
∫

ω

0 (e(t)exp{x2(t)}+
q(t)E(t)

m1(t)E(t)+m2(t)exp{x2(t)}
)dt

< 2d̄ω.

(2.5)

Since {x(t)}= {(x1(t),x2(t))T} ∈ X , there exist ηi,δi, i = 1,2 such that

xi(ηi) = min
t∈[0,ω]

xi(t), xi(δi) = max
t∈[0,ω]

xi(t). (2.6)

By (2.4), one could easily obtain∫
ω

0

(
e(t)exp{x2(η2)}

)
dt ≤ d̄ω. (2.7)
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Thus,

x2(η2)≤ ln
d̄
ē
. (2.8)

By (2.4), one could also obtain∫
ω

0

(
e(t)exp{x2(δ2)}+

q(t)
m1(t)

)
dt ≥ d̄ω. (2.9)

Thus,

x2(δ2)≥ ln
d̄− q

m1
ē

. (2.10)

Therefore,

x2(t)≤ x2(η2)+
∫

ω

0
|ẋ2(t)|dt ≤ ln

d̄
ē
+2d̄ω. (2.11)

x2(t)≥ x2(δ2)−
∫

ω

0
|ẋ2(t)|dt ≥ ln

d̄− q
m1

ē
−2d̄ω. (2.12)

So,

|x2(t)| ≤max
{
| ln d̄

ē
+2d̄ω|, | ln

d̄− ¯( q
m1

)
ē

−2d̄ω|
}

def
= H2. (2.13)

It follows from (2.3) that

∫
ω

0 b(t)exp{x1(η1)}dt ≤ āω +
∫

ω

0 c(t)exp{x2(t)}dt ≤ āω + c̄ω exp{H2},

and so,

x1(η1)≤ ln
∆1

b
, (2.14)

where

∆1 = ā+ c̄exp{H2}.

It follows from (2.5) and (2.14) that

x1(t) ≤ x1(η1)+
∫

ω

0 |ẋ1(t)|dt

≤ ln ∆1
b
+2c̄exp{H2}ω

def
= M1.

(2.15)

It follows from (2.3) that

∫
ω

0 b(t)exp{x1(δ1)}dt ≥ āω +
∫

ω

0 c(t)exp{x2(t)}dt ≥ āω + c̄ω exp{−H2},
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and so,

x1(δ1)≥ ln
∆2

b
, (2.16)

where

∆2 = ā+ c̄exp{−H2}.

It follows from (2.5) and (2.16) that

x1(t) ≥ x1(δ1)−
∫

ω

0 |ẋ1(t)|dt

≥ ln ∆2
b
−2c̄exp{−H2}ω

def
= M2.

(2.17)

It follows from (2.15) and (2.17) that

|x1(t)| ≤max
{
|M1|, |M2|

}
def
= H1. (2.18)

Clearly, H1 and H2 are independent on the choice of λ . Obviously, the system of algebraic

equations

ā− b̄x1 + c̄x2 = 0, d̄− ēx2−
q̄Ē

m̄1Ē + m̄2x2
= 0 (2.19)

has a unique positive solution (x∗1,x
∗
2) ∈ R+

2 , where

x∗1 =
ā+ c̄x∗2

b̄
,

and x∗2 is defined by Lemma 2.1.

Let H = H1+H2+H3, where H3 > 0 is taken enough large such that ||(ln{x∗1}, ln{x∗2})T ||=

| ln{x∗1}|+ | ln{x∗2}|< H3.

Let H = H1 +H2 +H3, and define

Ω =
{

x(t) = (x1(t),x2(t))T ∈ X : ‖x‖< H
}
.

It is clear that Ω verifies requirement (a) in Lemma 2.2. When x ∈ ∂Ω∩KerL = ∂Ω∩R2, x is

constant vector in R2 with ||x||= H. Then

QNx =

 ā− b̄exp{x1}+ c̄exp{x2}

d̄− ēexp{x2}−
q̄Ē

m̄1Ē + m̄2 exp{x2}

 6= 0.

Moreover, direct calculation shows that

deg{JQN,Ω∩KerL,0}= sgn
(

b̄K exp{x∗1}exp{x∗2}
)
= 1 6= 0.
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where

K = ē− q̄Ēm̄2

(m̄1Ē + m̄2 exp{x∗2})2 > ē− q̄m̄2

(m̄1)2Ē
> 0,

deg(.) is the Brouwer degree and the J is the identity mapping since ImQ = KerL.

By now we have proved that Ω verifies all the requirements in Lemma 2.2. Hence (2.1) has at

least one solution (x∗1(t),x
∗
2(t))

T in DomL∩ Ω̄. And so, system (1.9) admits a positive periodic

solution (x∗1(t),x
∗
2(t))

T , where N∗i (t) = exp{x∗i (t)}, i = 1,2. This completes the proof of the

claim.�

3. Permanence and global attractivity

Lemma 3.1.[40] If a > 0,b > 0 and ẋ≥ x(b−ax), when t ≥ 0 and x(0)> 0, we have

liminf
t→+∞

x(t)≥ b
a
.

If a > 0,b > 0 and ẋ≤ x(b−ax), when t ≥ 0 and x(0)> 0, we have

limsup
t→+∞

x(t)≤ b
a
.

Theorem 3.1. Let (N1(t),N2(t))T be any solution of system (1.9), assume that

dlml
1 > qu, (3.1)

then the system is permanent, i. e., there exists positive constants βi,Γi, i = 1,2, which indepen-

dent of the solutions of (1.9), such that

β1 ≤ liminf
t→+∞

N1(t)≤ limsup
t→+∞

N1(t)≤ Γ1,

β2 ≤ liminf
t→+∞

N2(t)≤ limsup
t→+∞

N2(t)≤ Γ2.

(3.2)

where

β1 =
al

bu ; Γ1 =
au + cu du

el

bu ; β2 =

dl− qu

ml
1

eu ; Γ2 =
du

el .
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Proof Let (N1(t),N2(t))T be any solution of system (1.9). From the second equation of system

(1.9), it immediately follows that

dN2(t)
dt

≤ N2(t)
(

du− elN2(t)
)
, (3.3)

Applying Lemma 3.1 to above inequality leads to

limsup
t→+∞

N2(t)≤
du

el . (3.4)

For any small positive constants ε > 0, there exists T1 > 0 such that

N2(t)<
du

el + ε for all t ≥ T1. (3.5)

Again, from the second equation of system (1.9), we also have

dN2(t)
dt

≥ N2(t)
(

dl− qu

ml
1
− euN2(t)

)
. (3.6)

Applying Lemma 3.1 to above inequality leads to

liminf
t→+∞

N2(t)≥
dl− qu

ml
1

eu . (3.7)

From the first equation of system (1.9), it immediately follows that

dN1(t)
dt

≥ N1(t)
(

al−buN1(t)
)
,

Applying Lemma 3.1 to above inequality leads to

liminf
t→+∞

N1(t)≥
al

bu . (3.8)

(3.5) together with the first equation of system (1.9) leads to

dN1(t)
dt

≤ N1(t)
(

au + cu(
du

el + ε)−blN1(t)
)
,

Applying Lemma 3.1 to above inequality leads to

limsup
t→+∞

N1(t)≤
au + cu(

du

el + ε)

bu .

Setting ε → 0 leads to

limsup
t→+∞

N1(t)≤
au + cu du

el

bu . (3.9)
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(3.4), (3.7), (3.8) and (3.9) show that the conclusion of Theorem 3.1 holds, This ends the proof

of Theorem 3.1.

Theorem 3.2 In addition to (3.1), further assume that

el > cu +
mu

2qu

(ml
1)

2E l
(3.10)

holds, then system (1.9) admits a unique positive periodic solution N∗(t) = (N∗1 (t),N
∗
2 (t))

T

which is globally attractive, i. e., for any positive solution N(t) = (N1(t),N2(t))T of system

(1.9), one has

lim
t→+∞

(
|N1(t)−N∗1 (t)|+ |N2(t)−N∗2 (t)|

)
= 0.

Proof. Let N(t) = (N1(t),N2(t))T be any positive solutions of system (1.9), and N∗(t) =

(N∗1 (t),N
∗
2 (t))

T be the positive periodic solution of the system (1.9). For any enough small

positive constants ε > 0, it then follows from Theorem 3.1 that there exists a enough large T2,

such that for all t ≥ T2

N1(t),N∗1 (t)< Γ1 + ε, N2(t),N∗2 (t)< Γ2 + ε,

N1(t),N∗1 (t)> β1− ε, N2(t),N∗2 (t)> β2− ε.

(3.11)

Now we let

V (t) = | lnN1(t)− lnN∗1 (t)|+ | lnN2(t)− lnN∗2 (t)|.

Then for t > T2, we have

D+V (t)

≤ −b(t)|N1(t)−N∗1 (t))|+ c(t)|N2(t)−N∗2 (t)|

−
(

e(t)− m2(t)q(t)E(t)
(m1(t)E(t)+m2(t)N2(t))(m1(t)E(t)+m2(t)N∗2 (t))

)
|N2(t)−N∗2 (t)|

≤ −bl|N1(t)−N∗1 (t))|−
(

el− cu−
mu

2qu

(ml
1)

2E l

)
|N2(t)−N∗2 (t)|.

(3.12)

Integrating both sides of (3.12) on interval [T2, t), then, for t ≥ T2,

V (t)−V (T2)≤
∫ t

T2

[
−bl|N1(s)−N∗1 (s)|−

(
el− cu−

mu
2qu

(ml
1)

2E l

)
|N2(s)−N∗2 (s)|

]
ds. (3.13)
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It follows from (3.13) that for t ≥ T2,

V (t)+min
{

bl,el−cu−
mu

2qu

(ml
1)

2E l

}∫ t

T2

[
|N1(s)−N∗1 (s)|+ |N2(s)−N2(s)|

]
ds≤V (T2). (3.14)

Therefore, V (t) is bounded on [T2,+∞) and also∫ t

T2

[
|N1(s)−N∗1 (s)|+ |N2(s)−N2(s)|

]
ds <+∞. (3.15)

By (3.11), |N1(t)−N∗1 (t)|, |N2(t)−N∗2 (t)| are bounded on [T2,+∞). On the other hand, it is

easy to see that Ṅ1(t), Ṅ2(t), Ṅ∗1 (t) and Ṅ∗2 (t) are bounded for t ≥ T2. Therefore, |N1(t)−

N∗1 (t)|, |N2(t)−N∗2 (t)| are uniformly continuous on [T2,+∞). By Barbălat Lemma, one can

conclude that

lim
t→+∞

[
|N1(t)−N∗1 (t)|+ |N2(t)−N∗2 (t)|

]
= 0.

This ends the proof of the Theorem 3.2.

4. Numerical simulations

Example 4.1. Consider the following system

dN1(t)
dt

= N1(t)
(

2+ 1
4 cos(t)−N1(t)+(1

2 +
1
4 sin(t))N2(t)

)
,

dN2(t)
dt

= N2(t)
(

2+ 1
4 sin(t)−3N2(t)

)
− N2(t)

1+N2(t)
,

N1(0) > 0,N2(0)> 0.

(4.1)

Corresponding to system (1.9), here we take

a(t) = 2+
1
4

cos(t), d(t) = 2+
1
4

sin(t), (4.2)

q(t) = E(t) = m1(t) = m2(t) = 1, c(t) =
1
2
+

1
4

sin(t), e(t) = 3,

One could easily verify that conditions (H1)-(H3), (3.1) and (3.10) hold, and it follows from

Theorem 2.1, 3.1 and 3.2 that the system admits a unique positive equilibrium which is globally

attractive. Numeric simulations (Fig. 1, Fig.2) also support this assertion.
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FIGURE 1. Numeric simulations of the first compo-

nent system (4.1), the initial conditions (x(0),y(0)) =

(3,0.1),(0.8,0.5),(0.3,0.7), and (4,0.9), respectively.

FIGURE 2. Numeric simulations of the second compo-

nent of system (4.1), the initial conditions (x(0),y(0)) =

(3,0.1),(0.8,0.5),(0.3,0.7), and (4,0.9), respectively.
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5. Discussion

Recently, many scholars [15]-[27] studied the dynamic behaviors of the commensalism model,

however, none of them consider the influence of harvesting. In this paper, we incorporate the

Michaelis-Menten type harvesting term to the system (1.2), and this leads to the system (1.9).

Though there are many scholars study the predator-prey system with the Michaelis-Menten

type harvesting [35]-[37], all of them are focus on the autonomous case and none of them con-

sider the non-autonomous case. We consider the non-autonomous case of system (1.9), which

implies that the coefficients of the system are time-dependent. By using a continuation theorem,

a set of sufficient conditions which ensure the global existence of positive periodic solutions of

the system are obtained. After that, we also investigated the permanence and global stability

of the system. Our study shows that the intrinsic growth rate (d(t)) and the intrinsic competi-

tion rate (e(t)) of the second species are the most important factors to determine the dynamic

behaviors of the system.

It seems interesting to incorporating the time delay to system (1.9) and study the influence of

the time delay, we will leave this for the future study.
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